Naming Objects in Thesky

Total Page:16

File Type:pdf, Size:1020Kb

Naming Objects in Thesky - ; Chapter 4 Naming ObjectS in TheSky Astronomers need to be able to assimilate and exchange information about specific objects in the sky. Many systems have been devised over the last few thousand years to identify and name the most conspicuous ones. As our technology has advanced, studies of astronomical objects have become more precise. Today it is common for astronomers to assign numerous designations to a single celestial body. Humans have observed the stars for millennia. Our ancestors named the bright stars as well as larger groups of stars called constellations. As we said in Chapter 1, the ancients named many of the constellations after mythological beasts, gods, demigods, and ordinary household objects. Astronomers continue to use the names of the constellations first recorded by ancient astronomers thousands of years ago. It is here that we may begin to learn about where things are located in the sky and how they are named. Astronomers officially recognize 88 distinct constellations today. TheSky displays all of them quite accurately. From the mid-northern latitudes, you can see over half of them. Most are visible every night from your location at some time during the night. TheSky helps you to find them but you must go outside on any clear night throughout the year and look for them yourself. About a half dozen or so constellations are visible every night from 40°north latitude all year round. These are the circumpolar constellations. They are all located in the northern sky near the North Star, Polaris. Using TheSky will definitely help you locate all these constellations easily during any season of the year. Exercise A is designed to help you locate some of the constellations visible from mid-northern latitudes. Exercise A: View Some Constellations I. Run TheSky. 2. Click Qata on the toolbar at the top of the sky window, then .s.iteInformation and then click the Location tab. 3. Set your location to 40° north latitude. The city or longitude is not important here! Figure 4-1 displays the appropriate information that should be entered into the Site Information window. 4. Click APply. -41- ~ 5. On the Qrientation toolbar, click "North" ~. 6. Go to View toolbar and click on the constellation lines.(I I),if they are not already displayed. 7. Click the common names button (~ on the View Toolbar, if they are not already displayed. 8. Go to the Time Skip toolbar and click the Go Forward. button and watch the motion. 9. List the names of the constellations that do not go below the northern horizon. These constellations are visible every night throughout the year and are known as circumpolar constellations. Exercise B is designed to find a particular constellation in TheSky. Exercise B: Find the Constellation of Orion I. Click gdit on the toolbar at the top of the sky window, and then Eind, or right click the mouse anywhere in the sky window. 2. Click on the "Constellation Labels" in the Common Names window. 3. Use the scroll bar and find the constellation Orion. Figure 4-2 displays the "Eind" window. -42- ~~.:'N;-~-{~('->j<~-t~ ' _:bL-~~'~ ?1~~~ .-. ~ .., . -- Planets. SI.I'I. Moon Comets Minor Planets Common Non-Stela! ".CommonStalN~I~ MessierO' . 4. Double-click on "Orion." 5. After clicking on "Orion," an Object Information window appears, like the one displayed in Figure 4-3. This box indicates where the constellation is located in the sky and other pertinent information about the constellation, such as the pronunciation of its name. ......... Figure 4-3 Object Information window. for Orion 6. Click the Rise, Transit, and Set button. at the bottom of the Object Information window. This displays the time of day that Orion appears to rise, cross your local celestial meridian, and set at your location. The time of meridian transit is the best time to view the object. At whattimedoesOrionappearto rise?_:_ At whattimedoesOrionappearto set? _:_ When is the best time to view Orion? _'_ 7. Next click the Center Object button (I~) at the lower left-hand corner of the Objec,t Information window. This will center Orion in your sky window. -43- 8. Click on some of the objects in the constellation. Did you find M42? 9. If a camera icon is displayed in the sky window, you can view an image of the object by simply clicking on the camera. If the camera icon is no! displayed in the sky window, then to view an image of the object you must click on the object. After clicking on the object, an Object Information window appears. Now click on the Multimedia tab to access any images of the object. You can display or hide the camera icons in your sky window by choosing either option in the Eilters menu. That's all there is to it. Try finding another constellation-perhaps one you like better than Orion. You can use this exercise to find any astronomical object in TheSky's database. Appendix B contains a list of the 88 recognized constellations. Now let's turn our attention to how astronomical objects are named or designated. Basically, astronomical objects fall into two groups, stellar and nonstellar. The first group includes only the stars. The second group has a more diversified population of astronomical objects. The later group contains objects that lie well beyond our Solar System. The nonstellar group contains objects such as nebulae, star clusters, and other galaxies. The planets in contrast are not included in either of these groups. Because they are Solar System objects, astronomers usually designate them by their given name. Let's first discuss how stars are designated. Over the millennia people have used several systems to denote the stars. The numerous cultures that have inhabited our planet have assigned many names to the stars over the years. Proper Names Astronomers usually refer to stars as either prominent stars or representative stars. Prominent stars are the bright stars. Stars, such as those displayed in Figure 4-4, are typically the bright stars seen in the winter months. They are located in the constellations of Taurus, Orion, Canis Major, and Canis Minor. The dot sizes displayed in the sky window, representing stars, indicate the stars' relative brightnesses, not their true physical sizes. In other words, the bigger the dot, the brighter the star; the smaller the dot, the fainter the star. The magnitude system that astronomers use in observational astronomv is discussed in ADDendixF. Figure 4-4 Prominent or bright stars of winter -44- l The bright stars of summer are typically those that are displayed in Figure 4-5. These stars are located in the constellations of Lyra, Cygnus, and Aquila. Figure 4-5 Prominent or bright stars of summer The brightest stars are usually designated with proper names. Only a few dozen stars are frequently referred to by their proper names. Several hundred stars have been named this way, but only a few are easily recognized by name. The bright stars are easily seen after the Sun goes down and twilight falls. The representative stars; in contrast, are those that are for the most part in the solar neighborhood. They are close by, so to speak. Their distances are within 4 to 8 parsecs of Earth. This is about 13 - 26 light years. Not many of the representative stars have proper names. The representative stars in the Milky Way Galaxy are usually fainter than the Sun's intrinsic brightness. These stars are usually small, cool, and very faint. On any clear night in spring, you can find the bright star Arcturus in the evening sky. In summer, it might be Antares (heart of the scorpion), or perhaps Vega, the brightest star in the constellation Lyra. In autumn, you might find the star Capella in Auriga, the charioteer. In the winter, it might be Betelgeuse or Rigel in the constellation of Orion. A list of some of the brightest stars is provided in Appendix A. This list includes the stars' designations, proper names, coordinates, apparent brightnesses, spectral types, intrinsic brightnesses, and their approximate distances. Exercises C and D are designed for you to locate some bright stars. Exercise C: Find the Bright Star Aldebaran Set your location for Cleveland, Ohio. Set the date for October 19,2005. Set the time to 9:00 P.M. Set Daylight Savings adjustment option to "North America." The Site Information window looks like that in Figure 4-6. -45- Figure 4-6 Site Infonnation window for Exercise C 1. In what constellation is Aldebaran located? 2. AtwhattimedoesAldebaranappeartorise?_:_ 3. AtwhattimedoesAldebaranappeartoset?_:_ 4. Whenis thebest timeto viewAldebaran?_:_ Exercise D: Find the Bright Star Altair Set your location for Golden, Colorado. Set the date for October 1, 2010. Set the time to 9:00 P.M. Set Daylight Savings adjustment option to "North America." 1. In what constellation is Altair located? 2. At whattimedoesAltairappearto rise?_:_ 3. At whattimedoesAltairappearto set? _:_ 4. Whenis the besttimeto viewAltair? _:_ Bayer Letters Because it is difficult for most of us to memorize the names of hundreds of stars, Johann Bayer developed a more convenient system in 1603. His system used Greek letters. The stars in the constellations in the northern sky were assigned letters according to their relative brightnesses. Bayer used the Greek alphabet to designate the stars by their order of brightness in each constellation. Each naked-eye star is labeled with a Greek letter followed by the genitive case (possessive--second person singular) of the Latin name of the constellation in which it is found. This system started with the brightest star in the constellation and went to the faintest.
Recommended publications
  • Celestial Navigation (Fall) NAME GROUP
    SIERRA COLLEGE OBSERVATIONAL ASTRONOMY LABORATORY EXERCISE Lab N03: Celestial Navigation (Fall) NAME GROUP OBJECTIVE: Learn about the Celestial Coordinate System. Learn about stellar designations. Learn about deep sky object designations. INTRODUCTION: The Horizon Coordinate System is simple, but flawed, because the altitude and azimuth measures of stars change as the sky rotates. Astronomers have developed an improved scheme called the Celestial Coordinate System, which is fixed with the stars. The two coordinates are Right Ascension and Declination. Declination ranges from the North Celestial Pole to the South Celestial Pole, with the Celestial Equator being a line around the sky at the midline of those two extremes. We will use these coordinates when navigating using the SC001 and SC002 charts. There are many ways to designate stars. The most common is called the Bayer designations. The Bayer designation of a star starts with a Greek letter. The brightest star in the constellation gets “alpha” (the first letter in the Greek alphabet), the second brightest star gets “beta,” and so on. (The Greek alphabet is shown below.) The Bayer designation must also include the constellation name. There are only 24 letters in the Greek alphabet, so this system is obviously very limited. The Greek alphabet 1) Alpha 7) Eta 13) Nu 19) Tau 2) Beta 8) Theta 14) Xi 20) Upsilon 3) Gamma 9) Iota 15) Omicron 21) Phi 4) Delta 10) Kappa 16) Pi 22) Chi 5) Epsilon 11) Lambda 17) Rho 23) Psi 6) Zeta 12) Mu 18) Sigma 24) Omega A more extensive naming system is called the Flamsteed designation.
    [Show full text]
  • Curriculum Vitae Avishay Gal-Yam
    January 27, 2017 Curriculum Vitae Avishay Gal-Yam Personal Name: Avishay Gal-Yam Current address: Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel. Telephones: home: 972-8-9464749, work: 972-8-9342063, Fax: 972-8-9344477 e-mail: [email protected] Born: March 15, 1970, Israel Family status: Married + 3 Citizenship: Israeli Education 1997-2003: Ph.D., School of Physics and Astronomy, Tel-Aviv University, Israel. Advisor: Prof. Dan Maoz 1994-1996: B.Sc., Magna Cum Laude, in Physics and Mathematics, Tel-Aviv University, Israel. (1989-1993: Military service.) Positions 2013- : Head, Physics Core Facilities Unit, Weizmann Institute of Science, Israel. 2012- : Associate Professor, Weizmann Institute of Science, Israel. 2008- : Head, Kraar Observatory Program, Weizmann Institute of Science, Israel. 2007- : Visiting Associate, California Institute of Technology. 2007-2012: Senior Scientist, Weizmann Institute of Science, Israel. 2006-2007: Postdoctoral Scholar, California Institute of Technology. 2003-2006: Hubble Postdoctoral Fellow, California Institute of Technology. 1996-2003: Physics and Mathematics Research and Teaching Assistant, Tel Aviv University. Honors and Awards 2012: Kimmel Award for Innovative Investigation. 2010: Krill Prize for Excellence in Scientific Research. 2010: Isreali Physical Society (IPS) Prize for a Young Physicist (shared with E. Nakar). 2010: German Federal Ministry of Education and Research (BMBF) ARCHES Prize. 2010: Levinson Physics Prize. 2008: The Peter and Patricia Gruber Award. 2007: European Union IRG Fellow. 2006: “Citt`adi Cefal`u"Prize. 2003: Hubble Fellow. 2002: Tel Aviv U. School of Physics and Astronomy award for outstanding achievements. 2000: Colton Fellow. 2000: Tel Aviv U. School of Physics and Astronomy research and teaching excellence award.
    [Show full text]
  • Dwarfs Walking in a Row the filamentary Nature of the NGC 3109 Association
    A&A 559, L11 (2013) Astronomy DOI: 10.1051/0004-6361/201322744 & c ESO 2013 Astrophysics Letter to the Editor Dwarfs walking in a row The filamentary nature of the NGC 3109 association M. Bellazzini1, T. Oosterloo2;3, F. Fraternali4;3, and G. Beccari5 1 INAF – Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: [email protected] 2 Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, The Netherlands 3 Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen, The Netherlands 4 Dipartimento di Fisica e Astronomia - Università degli Studi di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy 5 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei Munchen, Germany Received 24 September 2013 / Accepted 22 October 2013 ABSTRACT We re-consider the association of dwarf galaxies around NGC 3109, whose known members were NGC 3109, Antlia, Sextans A, and Sextans B, based on a new updated list of nearby galaxies and the most recent data. We find that the original members of the NGC 3109 association, together with the recently discovered and adjacent dwarf irregular Leo P, form a very tight and elongated configuration in space. All these galaxies lie within ∼100 kpc of a line that is '1070 kpc long, from one extreme (NGC 3109) to the other (Leo P), and they show a gradient in the Local Group standard of rest velocity with a total amplitude of 43 km s−1 Mpc−1, and a rms scatter of just 16.8 km s−1. It is shown that the reported configuration is exceptional given the known dwarf galaxies in the Local Group and its surroundings.
    [Show full text]
  • Stellarium User Guide
    Stellarium User Guide Matthew Gates 25th January 2008 Copyright c 2008 Matthew Gates. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sec- tions, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". 1 Contents 1 Introduction 6 2 Installation 7 2.1 SystemRequirements............................. 7 2.2 Downloading ................................. 7 2.3 Installation .................................. 7 2.3.1 Windows ............................... 7 2.3.2 MacOSX............................... 7 2.3.3 Linux................................. 8 2.4 RunningStellarium .............................. 8 3 Interface Guide 9 3.1 Tour...................................... 9 3.1.1 TimeTravel.............................. 10 3.1.2 MovingAroundtheSky . 10 3.1.3 MainTool-bar ............................ 11 3.1.4 TheObjectSearchWindow . 13 3.1.5 HelpWindow............................. 14 3.1.6 InformationWindow . 14 3.1.7 TheTextMenu ............................ 15 3.1.8 OtherKeyboardCommands . 15 4 Configuration 17 4.1 SettingtheDateandTime .. .... .... ... .... .... .... 17 4.2 SettingYourLocation. 17 4.3 SettingtheLandscapeGraphics. ... 19 4.4 VideoModeSettings ............................. 20 4.5 RenderingOptions .............................. 21 4.6 LanguageSettings............................... 21
    [Show full text]
  • GTO Keypad Manual, V5.001
    ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN!
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • Why Pluto Is Not a Planet Anymore Or How Astronomical Objects Get Named
    3 Why Pluto Is Not a Planet Anymore or How Astronomical Objects Get Named Sethanne Howard USNO retired Abstract Everywhere I go people ask me why Pluto was kicked out of the Solar System. Poor Pluto, 76 years a planet and then summarily dismissed. The answer is not too complicated. It starts with the question how are astronomical objects named or classified; asks who is responsible for this; and ends with international treaties. Ultimately we learn that it makes sense to demote Pluto. Catalogs and Names WHO IS RESPONSIBLE for naming and classifying astronomical objects? The answer varies slightly with the object, and history plays an important part. Let us start with the stars. Most of the bright stars visible to the naked eye were named centuries ago. They generally have kept their old- fashioned names. Betelgeuse is just such an example. It is the eighth brightest star in the northern sky. The star’s name is thought to be derived ,”Yad al-Jauzā' meaning “the Hand of al-Jauzā يد الجوزاء from the Arabic i.e., Orion, with mistransliteration into Medieval Latin leading to the first character y being misread as a b. Betelgeuse is its historical name. The star is also known by its Bayer designation − ∝ Orionis. A Bayeri designation is a stellar designation in which a specific star is identified by a Greek letter followed by the genitive form of its parent constellation’s Latin name. The original list of Bayer designations contained 1,564 stars. The Bayer designation typically assigns the letter alpha to the brightest star in the constellation and moves through the Greek alphabet, with each letter representing the next fainter star.
    [Show full text]
  • May / June 2010 Amateur Astronomy Club Issue 93.1/94.1 29°39’ North, 82°21’ West
    North Central Florida’s May / June 2010 Amateur Astronomy Club Issue 93.1/94.1 29°39’ North, 82°21’ West Member Member Astronomical International League Dark-Sky Association NASA Early Morning Launch of Discovery STS-131 Provides Quite a Show! Photo Below: Taken in Titusville on SR 406 / 402 Causeway by Mike Lewis. The camera is a Nikon D2X with Nikon 400mm / f2.8 lens on automatic exposure (f8 @ 1/250s). “First night launch I’ve made it to in a while, and it was great.” - Mike Lewis Photo Below: Time-lapse photo by Howard Cohen taken from SW Gainesville (190 sec- onds long, beginning 6:22:52 a.m. EDT). “I like others was struck by the comet-like contrail that eventually followed the shuttle as it gained altitude.” - Howard Cohen Newberry Sports Complex and Observatory Rich Russin The President’s Corner As we head to press, work continues towards the establishment of an agree- ment between the AAC, the NSC, and the City of Newberry that would establish a permanent observing site on the grounds of the Newberry Sports Complex. The outcome will almost certainly be known before the next newsletter. For those of you not familiar with the project, the club has been offered an op- portunity to establish a base for both club and outreach events. Part of the pro- posal includes a permanent observing site, onsite storage, and possibly an ob- servatory down the road. In return, the club will provide an agreed upon number of outreach events and astronomy related support for the local school science programs.
    [Show full text]
  • Chasing the Pole — Howard L. Cohen
    Reprinted From AAC Newsletter FirstLight (2010 May/June) Chasing the Pole — Howard L. Cohen Polaris like supernal beacon burns, a pivot-gem amid our star-lit Dome ~ Charles Never Holmes (1916) ew star gazers often believe the North Star (Polaris) is brightest of all, even mistaking Venus for this best known star. More advanced star gazers soon learn dozens of Nnighttime gems appear brighter, forty-seven in fact. Polaris only shines at magnitude +2.0 and can even be difficult to see in light polluted skies. On the other hand, Sirius, brightest of all nighttime stars (at magnitude -1.4), shines twenty-five times brighter! Beginning star gazers also often believe this guidepost star faithfully defines the direction north. Although other stars staunchly circle the heavens during night’s darkness, many think this pole star remains steadfast in its position always marking a fixed point on the sky. Indeed, a popular and often used Shakespeare quote (from Julius Caesar) is in tune with this perception: “I am constant as the northern star, Of whose true-fix'd and resting quality There is no fellow in the firmament.” More advanced star gazers know better, that the “true-fix’d and resting quality”of the northern star is only an approximation. Not only does this north star slowly circle the northen heavenly pole (Fig. 1) but this famous star is also not quite constant in light, slightly varying about 0.03 magnitudes. Polaris, in fact, is the brightest appearing Cepheid variable, a type of pulsating star. Still, Polaris is a good marker of the north cardinal point.
    [Show full text]
  • The Night Sky This Month
    The Night Sky (April 2020) BST (Universal Time plus one hour) is used this month. Northern Horizon Eastern Western Horizon Horizon 23:00 BST at beginning of the month 22:00 BST in middle of month 21:00 BST at end of month Southern Horizon The General Weather Pattern Surprisingly rainfall is not particularly high in April, but of course heavy rain showers do occur, often with hail and thunder. Expect it to be cloudy. Temperatures usually rise steadily, but clear evenings can still be cold with very cold mornings. Wear multiple layers of clothes, with a warm hat, socks and shoes to maintain body heat. As always, an energy snack and a flask containing a warm non-alcoholic drink might well be welcome at some time. Should you be interested in obtaining a detailed weather forecast for observing in the Usk area, log on to https://www.meteoblue.com/en/weather/forecast/seeing/usk_united-kingdom_2635052 other locations are available. Earth (E) As the Earth moves from the vernal equinox in March, the days are still opening out rapidly. The Moon no longer raises high in the mid-night sky as it does in the winter, but relocates at lower latitudes for the summer. The Sun, of course, does the converse. Artificial Satellites or Probes Should you be interested in observing the International Space Station or other space craft, carefully log on to http://www.heavens-above.com to acquire up-to-date information for your observing site. Sun Conditions apply as to the use of this matter. © D J Thomas 2020 (N Busby 2019) The Sun is becoming better placed for observing as it climbs to more northerly latitudes, and, it is worth reminding members that sunlight contains radiation across the spectrum that is harmful to our eyes and that the projection method should be used.
    [Show full text]
  • Using the SFA Star Charts and Understanding the Equatorial Coordinate System
    Using the SFA Star Charts and Understanding the Equatorial Coordinate System SFA Star Charts created by Dan Bruton of Stephen F. Austin State University Notes written by Don Carona of Texas A&M University Last Updated: August 17, 2020 The SFA Star Charts are four separate charts. Chart 1 is for the north celestial region and chart 4 is for the south celestial region. These notes refer to the equatorial charts, which are charts 2 & 3 combined to form one long chart. The star charts are based on the Equatorial Coordinate System, which consists of right ascension (RA), declination (DEC) and hour angle (HA). From the northern hemisphere, the equatorial charts can be used when facing south, east or west. At the bottom of the chart, you’ll notice a series of twenty-four numbers followed by the letter “h”, representing “hours”. These hour marks are right ascension (RA), which is the equivalent of celestial longitude. The same point on the 360 degree celestial sphere passes overhead every 24 hours, making each hour of right ascension equal to 1/24th of a circle, or 15 degrees. Each degree of sky, therefore, moves past a stationary point in four minutes. Each hour of right ascension moves past a stationary point in one hour. Every tick mark between the hour marks on the equatorial charts is equal to 5 minutes. Right ascension is noted in ( h ) hours, ( m ) minutes, and ( s ) seconds. The bright star, Antares, in the constellation Scorpius. is located at RA 16h 29m 30s. At the left and right edges of the chart, you will find numbers marked in degrees (°) and being either positive (+) or negative(-).
    [Show full text]
  • A History of Star Catalogues
    A History of Star Catalogues © Rick Thurmond 2003 Abstract Throughout the history of astronomy there have been a large number of catalogues of stars. The different catalogues reflect different interests in the sky throughout history, as well as changes in technology. A star catalogue is a major undertaking, and likely needs strong justification as well as the latest instrumentation. In this paper I will describe a representative sample of star catalogues through history and try to explain the reasons for conducting them and the technology used. Along the way I explain some relevent terms in italicized sections. While the story of any one catalogue can be the subject of a whole book (and several are) it is interesting to survey the history and note the trends in star catalogues. 1 Contents Abstract 1 1. Origin of Star Names 4 2. Hipparchus 4 • Precession 4 3. Almagest 5 4. Ulugh Beg 6 5. Brahe and Kepler 8 6. Bayer 9 7. Hevelius 9 • Coordinate Systems 14 8. Flamsteed 15 • Mural Arc 17 9. Lacaille 18 10. Piazzi 18 11. Baily 19 12. Fundamental Catalogues 19 12.1. FK3-FK5 20 13. Berliner Durchmusterung 20 • Meridian Telescopes 21 13.1. Sudlich Durchmusterung 21 13.2. Cordoba Durchmusterung 22 13.3. Cape Photographic Durchmusterung 22 14. Carte du Ciel 23 2 15. Greenwich Catalogues 24 16. AGK 25 16.1. AGK3 26 17. Yale Bright Star Catalog 27 18. Preliminary General Catalogue 28 18.1. Albany Zone Catalogues 30 18.2. San Luis Catalogue 31 18.3. Albany Catalogue 33 19. Henry Draper Catalogue 33 19.1.
    [Show full text]