Fifty-Second Supplfmfnt to the American Ornithologists' Union Check-List of North American Birds

Total Page:16

File Type:pdf, Size:1020Kb

Fifty-Second Supplfmfnt to the American Ornithologists' Union Check-List of North American Birds We/lM/t 128(3):500-613, 2011 © The American Ornithologists' Union, 2011. Printed in USA. FIFTY-SECOND SUPPLFMFNT TO THE AMERICAN ORNITHOLOGISTS' UNION CHECK-LIST OF NORTH AMERICAN BIRDS R. TERRY CHESSER,^'^2,I3 RICHARD C. BANKS,^ F. KEITH BARKER,^ CARLA CICERO,^ JON L. DUNN,'* ANDREW W. KRATTER,^ IRBY J. LOVETTE,^ PAMELA C. RASMUSSEN,^ J. V. REMSEN, JR.,"^ JAMES D. RISING,^ DOUGLAS F. STOTZ,^"^ AND KEVIN WINKER" 'i/.S. Geological Survey, Patuxent Wildlife Research Center, National Museum of Natural History, MRC-IU, P.O. Box 37012, Washington, D.C. 20013, USA; ''•Bell Museum of Natural History, 10 Church Street, University of Minnesota, Minneapolis, Minnesota SS4S5, USA; ^Museum of Vertebrate Zooiogy, 3101 Valley Life Sciences Building, University of California, Berkeley, California 94720, USA; "52 Nevada Street, Bishop, California 93514, USA; '^Florida Museum of Natural History, P.O. Box 117800, University of Florida, Gainesviile, Florida 32611, USA; ^Cornell Laboratory of Ornithoiogy, 159 Sapsucker Woods Road, Ithaca, New York 14850, USA; ''Michigan State University Museum and Department ofZooiogy, West Circle Drive, East Lansing, Michigan 48824, USA; ^Museum of Naturai Science, Louisiana State University, Foster Hall 119, Baton Rouge, Louisiana 70803, USA; ^Department of Ecology and Evolutionary Biology, Ramsay Wright Zoological Labs, University of Toronto, Toronto, Ontario M5S 3G5, Canada; ^^Environment, Culture and Conservation, Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA; and ^''University of Alaska Museum, 907 Yukon Drive, Fairbanks, Aiaska 99775, USA This is the 11th supplement since publication of the seventh (Chrysomus icterocephalus) is changed; (9) the English name of one edition of the Check-list of North American Birds (American Or- species (Aphelocoma ultramarina) is modified as a result of a taxo- nithologists' Union [AOU] 1998). It summarizes decisions made nomic change, and the English name of another species (Turdus nu- between 1 April 2010 and 15 April 2011 by the AOU's Committee digenis) is modified to distinguish it from an Old World species; and on Classification and Nomenclature—North and Middle Amer- (10) seven species (Procellaria aequinoctialis, Tigrisoma mexicanum, ica. The Committee has continued to operate in the manner out- Heliornis fúlica, Chloroceryle amazona, Pachyramphus major, My- lined in the 42nd Supplement (AOU 2000). There were no changes adestes occidentalis, and Turdus plumbeus) are added to the list of to committee membership in 2010. species known to occur in the United States. Changes in this supplement include the following: (1) six species More sweeping changes derive from adoption of a new classifi- (Pterodroma rostrata, Procellaria aequinoctialis. Circus buffoni, Ac- cation of the Parulidae, which results in the following: (1) 40 species cipiter poliogaster, Gallinago solitaria, and Oryzoborus crassirostris) (Geothlypis tolmiei, G. Philadelphia, G.formosa, Setophaga plúmbea, are added to the main list (including three species transferred from S. angelae, S. pharetra, S. citrina, S. kirtlandii, S. tigrina, S. cerúlea, S. the Appendix) on the basis of new distributional information; (2) americana, S. pitiayumi, S. magnolia, S. castanea, S. fusca, S. petechia, two species (Aphelocoma wollweberi and Setophaga flavescens) are S. pensylvanica, S. striata, S. caerulescens, S. palmarum, S. pityophila, added as a result of splits from species already on the list; (3) three S. pinus, S. coronata, S. dominica, S. vitellina, S. discolor, S. adelaidae, species' names are changed (to Gallinula galeata, Charadrius nivo- S. súbita, S. delicata, S. graciae, S. nigrescens, S. townsendi, S. occiden- sus, and Chaetura meridionalis) because of splits from extralimital talis, S. chrysoparia, S. virens, Basileuterus lachrymosus, CardelUna species; (4) two species are changed (to Amazilia brevirostris and canadensis, C. pusilla, C. rubra, and C. versicolor) are transferred to Ramphastos ambiguus) by being lumped with extralimital species; currently recognized genera; (2) one genus (Myiothlypis) is added be- (5) the authority for one genus (Peucedramus) is changed; (6) the cause of a split from another genus; (3) six genera (Parula, Dendroica, type localities of two species (Aethia pygmaea and Spizella brew- Wilsonia, Ergaticus, Euthlypis, and Phaeothlypis) are deleted by being eri) are revised; (7) the distributional status of one species (Puffinus lumped with other genera; and (4) a new linear sequence is adopted nativitatis) is changed; (8) the category of occurrence of one species for genera and species in this family. '^The authors are members of the American Ornithologists' Union's Committee on Classification and Nomenclature—North and Middle America, listed alphabetically after the Chairman. "E-mail: [email protected] The Auk, Vol. 128, Number 3, pages 600-613. ISSN 0004-8038, electronic ISSN 1938-4254. © 2011 by The American Ornithologists' Union. All rights reserved. Please direct all requests for permission to photocopy or reproduce article content through the University of California Press's Rights and Permissions website, http://www.ucpressjournals. com/reprintlnfo.asp. DOI: 10.1525/auk.2011.128.3.600 -600- JULY 2011 — FIFTY-SECOND SUPPLEMENT — 601 One newly recognized order (Pteroclidiformes) is added to Move PTEROCLIDIDAE and its included species to the the main list because of a split from an existing order, two newly newly inserted order PTEROCLIDIFORMES, to follow Frater- recognized families (Sapayoidae and Tityridae) are added to the cula cirrhata. main list by splits from existing families, and one family (Eury- laimidae) is removed because of one of these splits. A new linear Transfer Sapayoa aenigma to the newly inserted family sequence is adopted for families in the furnarioid suboscines. Four SAPAYOIDAE, to follow Campephilus imperialis. genera (Schiffornis, Laniocera, Tityra, and Pachyramphus) are moved from incertae sedis to the new family Tityridae, and one Change the sequence of families in the furnarioid suboscines species (Sapayoa aenigma) is moved to the new family Sapayoi- (FURNARIIDAE through RHINOCRYPTIDAE) to: dae. The genus Chlorospingus is moved from the family Thraup- idae to the family Emberizidae. Five genera (Luscinia, Tarsiger, THAMNOPHILIDAE Copsychus, Oenanthe, and Saxicola) are moved from the family CONOPOPHAGIDAE Turdidae to the family Muscicapidae, and a new linear sequence is GRALLARIIDAE adopted for species in the family Muscicapidae. RHINOCRYPTIDAE FORMICARIIDAE Literature that provides the basis for the Committee's de- FURNARIIDAE cisions is cited at the end of this supplement, and citations not already in the Literature Cited of the seventh edition (with supple- Transfer Schiffornis tardina, Laniocera rufescens, the two ments) become additions to it. An updated list of the bird species species of Tityra, and the nine species oí Pachyramphus, in this known from the AOU Check-list area is available at www.aou.org/ sequence, to the newly inserted family TITYRIDAE, to precede checklist/north/index.php. COTINGIDAE. Leave Piprites griseiceps as Genus INCERTAE SEDIS within the Tyrannidae, following Tyrannus savana. The following changes to the seventh edition (page numbers refer thereto) and its supplements result from the Committee's Move the four species oí Luscinia, Tarsiger cyanurus, Cop- actions: sychus malabaricus, Oenanthe oenanthe, and Saxicola torqua- tus to MUSCICAPIDAE, and rearrange the species in this family pp. xvii-liv. Change the number in the title of the list of spe- in the following sequence: cies to 2,078. Insert the following names in the proper position as indicated by the text of this supplement: Mascicapa griseisticta Gray-streaked Flycatcher. Muscicapa dauurica Asian Brown Flycatcher. Pterodroma rostrata Tahiti Petrel. (A) Muscicapa striata Spotted Flycatcher. Procellaria aequinoctialis White-chinned Petrel. (A) Muscicapa sibirica Dark-sided Flycatcher. Circus buffoni Long-winged Harrier. (A) Copsychus malabaricus White-rumped Shama. AccipiterpoUogaster Gray-bellied Hawk. (A) Lascinia sibilans Rufous-tailed Robin. Gallinula galeata Common Gallinule. Luscinia calliope Siberian Rubythroat. Charadrius tttvosus Snowy Plover. Luscinia svecica Bluethroat. Gallinago solitaria Solitary Snipe. (A) Luscinia cyane Siberian Blue Robin. PTEROCLIDIFORMES Tarsiger cyanurus Red-flanked Bluetail. Chaetura meridionalis Sick's Swift. (A) Ficedula narcissina Narcissus Flycatcher. Ramphastos ambiguas Black-mandibled Toucan. Ficedula mugimaki Mugimaki Flycatcher. SAPAYOIDAE Ficedula albicilla Taiga Flycatcher. TITYRIDAE Oenanthe oenanthe Northern Wheatear. Aphelocoma ultramarina Transvolcanic Jay. Saxicola torquatus Stonechat. Aphelocoma wollweberi Mexican Jay. Turdus nudigenis Spectacled Thrush. Rearrange the generic placements and sequence of species in *Oryzoborus crassirostris Large-billed Seed-Finch. PARULIDAE to the following: Delete the following names: Seiurus aurocapilla Ovenbird. Gallinula chloropus Common Moorhen. Helmitheros vermivorum Worm-eating Warbler. Charadrius alexandrinus Snowy Plover. Parkesia motacilla Louisiana Waterthrush. Chaetura andret Ashy-tailed Swift. Parkesia noveboracensis Northern Waterthrush. Ramphastos swainsonii Chestnut-mandibled Toucan. t Vermivora bachmanii Bachman's Warbler. EURYLAIMIDAE Vermivora chrysoptera Golden-winged Warbler. Aphelocoma ultramarina Mexican Jay. Vermivora cyanoptera Blue-winged Warbler. Turdus nudigenis Bare-eyed Thrush. Mniotilta varia Black-and-white
Recommended publications
  • The Basilinna Genus (Aves: Trochilidae): an Evaluation Based on Molecular Evidence and Implications for the Genus Hylocharis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Revista Mexicana de Biodiversidad 85: 797-807, 2014 DOI: 10.7550/rmb.35769 The Basilinna genus (Aves: Trochilidae): an evaluation based on molecular evidence and implications for the genus Hylocharis El género Basilinna (Aves: Trochilidae): una evaluación basada en evidencia molecular e implicaciones para el género Hylocharis Blanca Estela Hernández-Baños1 , Luz Estela Zamudio-Beltrán1, Luis Enrique Eguiarte-Fruns2, John Klicka3 and Jaime García-Moreno4 1Museo de Zoología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México. Apartado postal 70- 399, 04510 México, D. F., Mexico. 2Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México. Apartado postal 70-275, 04510 México, D. F., Mexico. 3Burke Museum of Natural History and Culture, University of Washington, Box 353010, Seattle, WA, USA. 4Amphibian Survival Alliance, PO Box 20164, 1000 HD Amsterdam, The Netherlands. [email protected] Abstract. Hummingbirds are one of the most diverse families of birds and the phylogenetic relationships within the group have recently begun to be studied with molecular data. Most of these studies have focused on the higher level classification within the family, and now it is necessary to study the relationships between and within genera using a similar approach. Here, we investigated the taxonomic status of the genus Hylocharis, a member of the Emeralds complex, whose relationships with other genera are unclear; we also investigated the existence of the Basilinna genus. We obtained sequences of mitochondrial (ND2: 537 bp) and nuclear genes (AK-5 intron: 535 bp, and c-mos: 572 bp) for 6 of the 8 currently recognized species and outgroups.
    [Show full text]
  • Systematic Relationships and Biogeography of the Tracheophone Suboscines (Aves: Passeriformes)
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 23 (2002) 499–512 www.academicpress.com Systematic relationships and biogeography of the tracheophone suboscines (Aves: Passeriformes) Martin Irestedt,a,b,* Jon Fjeldsaa,c Ulf S. Johansson,a,b and Per G.P. Ericsona a Department of Vertebrate Zoology and Molecular Systematics Laboratory, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden b Department of Zoology, University of Stockholm, SE-106 91 Stockholm, Sweden c Zoological Museum, University of Copenhagen, Copenhagen, Denmark Received 29 August 2001; received in revised form 17 January 2002 Abstract Based on their highly specialized ‘‘tracheophone’’ syrinx, the avian families Furnariidae (ovenbirds), Dendrocolaptidae (woodcreepers), Formicariidae (ground antbirds), Thamnophilidae (typical antbirds), Rhinocryptidae (tapaculos), and Conop- ophagidae (gnateaters) have long been recognized to constitute a monophyletic group of suboscine passerines. However, the monophyly of these families have been contested and their interrelationships are poorly understood, and this constrains the pos- sibilities for interpreting adaptive tendencies in this very diverse group. In this study we present a higher-level phylogeny and classification for the tracheophone birds based on phylogenetic analyses of sequence data obtained from 32 ingroup taxa. Both mitochondrial (cytochrome b) and nuclear genes (c-myc, RAG-1, and myoglobin) have been sequenced, and more than 3000 bp were subjected to parsimony and maximum-likelihood analyses. The phylogenetic signals in the mitochondrial and nuclear genes were compared and found to be very similar. The results from the analysis of the combined dataset (all genes, but with transitions at third codon positions in the cytochrome b excluded) partly corroborate previous phylogenetic hypotheses, but several novel arrangements were also suggested.
    [Show full text]
  • Downloaded from Birdtree.Org [48] to Take Into Account Phylogenetic Uncertainty in the Comparative Analyses [67]
    bioRxiv preprint doi: https://doi.org/10.1101/586362; this version posted November 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. RESEARCH ARTICLE Open Access Distribution of iridescent colours in Open Peer-Review hummingbird communities results Open Data from the interplay between Open Code selection for camouflage and communication Cite as: preprint Posted: 15th November 2019 Hugo Gruson1, Marianne Elias2, Juan L. Parra3, Christine Recommender: Sébastien Lavergne Andraud4, Serge Berthier5, Claire Doutrelant1, & Doris Reviewers: Gomez1,5 XXX Correspondence: 1 [email protected] CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France 2 ISYEB, CNRS, MNHN, Sorbonne Université, EPHE, 45 rue Buffon CP50, Paris, France 3 Grupo de Ecología y Evolución de Vertrebados, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia 4 CRC, MNHN, Ministère de la Culture et de la Communication, CNRS, Paris, France 5 INSP, Sorbonne Université, CNRS, Paris, France This article has been peer-reviewed and recommended by Peer Community In Evolutionary Biology Peer Community In Evolutionary Biology 1 of 33 bioRxiv preprint doi: https://doi.org/10.1101/586362; this version posted November 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Identification errors between closely related, co-occurring, species may lead to misdirected social interactions such as costly interbreeding or misdirected aggression. This selects for divergence in traits involved in species identification among co-occurring species, resulting from character displacement.
    [Show full text]
  • Trematoda: Digenea: Plagiorchiformes: Prosthogonimidae
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 8-2003 Whallwachsia illuminata n. gen., n. sp. (Trematoda: Digenea: Plagiorchiformes: Prosthogonimidae) in the Steely-Vented Hummingbird Amazilia saucerrottei (Aves: Apodiformes: Trochilidae) and the Yellow-Olive Flycatcher Tolmomyias sulphurescens (Aves: Passeriformes: Tyraninidae) from the Área de Conservación Guanacaste, Guanacaste, Costa Rica David Zamparo University of Toronto Daniel R. Brooks University of Toronto, [email protected] Douglas Causey University of Alaska Anchorage, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Zamparo, David; Brooks, Daniel R.; and Causey, Douglas, "Whallwachsia illuminata n. gen., n. sp. (Trematoda: Digenea: Plagiorchiformes: Prosthogonimidae) in the Steely-Vented Hummingbird Amazilia saucerrottei (Aves: Apodiformes: Trochilidae) and the Yellow-Olive Flycatcher Tolmomyias sulphurescens (Aves: Passeriformes: Tyraninidae) from the Área de Conservación Guanacaste, Guanacaste, Costa Rica" (2003). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 235. https://digitalcommons.unl.edu/parasitologyfacpubs/235 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for
    [Show full text]
  • Notes on Chestnut-Bellied Hummingbird Amazilia
    Cotinga 17 Notes on Chestnut-bellied Hum m ingbird Amazilia castaneiventris : a new record for Boyacá, Colom bia Bernabé López-Lanús Cotinga 17 (2002): 51- 52 Amazilia castaneiventris es una especie endémica de Colombia, amenazada de peligro de extinción, de la vertiente oeste del norte de la Cordillera Oriental y Serranía de San Lucas. Su hábitat al parecer es de arbustales y bordes de bosques en zonas semiáridas, lo cual se comprueba con la identificación de un ejemplar en Villa de Leyva, departamento de Boyacá, situada en una región semiárida. El individuo compartía el hábitat con Amazilia tzacatl. Villa de Leyva se encuentra a c. 120 km de la localidad más al sur conocida para la especie, en el mismo altiplano boyacense. Este hábitat en términos generales no se encuentra amenazado, por lo cual la especie podría ser tanto localizada como desapercibida por falta de observaciones. Introduction tzacatl. The black bill was different from adult male Chestnut-bellied Hummingbird Am azilia A. tzacatl, which has a pinkish bill with a black tip castaneiventris is a Colombian endemic3,6 with a (old females and juvenile males of A. tzacatl can restricted distribution5 that occurs very sporadically have black upper mandibles; F. G. Stiles pers. on the western slope of the Cordillera Oriental and comm.). Juvenile plumage was assessed from speci­ Serranía de San Lucas, at 850–2045 m1,3. It was mens (n =2) at Instituto de Ciencias Nacional, formerly considered Vulnerable1 and at present Universidad Nacional, Bogotá (lack of green throat Endangered2,4, with records from just five localities and breast, with ill-defined greyish underparts), and in the departments of Bolívar (Norosí: Serranía de due to the intensity of green on throat and breast, San Lucas), Santander (Lebrija and Portugal), and and chestnut belly and vent, the Villa de Leyva in­ Boyacá (Caseteja and Tipacoque)1.
    [Show full text]
  • Programs and Field Trips
    CONTENTS Welcome from Kathy Martin, NAOC-V Conference Chair ………………………….………………..…...…..………………..….…… 2 Conference Organizers & Committees …………………………………………………………………..…...…………..……………….. 3 - 6 NAOC-V General Information ……………………………………………………………………………………………….…..………….. 6 - 11 Registration & Information .. Council & Business Meetings ……………………………………….……………………..……….………………………………………………………………………………………………………………….…………………………………..…..……...….. 11 6 Workshops ……………………….………….……...………………………………………………………………………………..………..………... 12 Symposia ………………………………….……...……………………………………………………………………………………………………..... 13 Abstracts – Online login information …………………………..……...………….………………………………………….……..……... 13 Presentation Guidelines for Oral and Poster Presentations …...………...………………………………………...……….…... 14 Instructions for Session Chairs .. 15 Additional Social & Special Events…………… ……………………………..………………….………...………………………...…………………………………………………..…………………………………………………….……….……... 15 Student Travel Awards …………………………………………..………...……………….………………………………..…...………... 18 - 20 Postdoctoral Travel Awardees …………………………………..………...………………………………..……………………….………... 20 Student Presentation Award Information ……………………...………...……………………………………..……………………..... 20 Function Schedule …………………………………………………………………………………………..……………………..…………. 22 – 26 Sunday, 12 August Tuesday, 14 August .. .. .. 22 Wednesday, 15 August– ………………………………...…… ………………………………………… ……………..... Thursday, 16 August ……………………………………….…………..………………………………………………………………… …... 23 Friday, 17 August ………………………………………….…………...………………………………………………………………………..... 24 Saturday,
    [Show full text]
  • Bird) Species List
    Aves (Bird) Species List Higher Classification1 Kingdom: Animalia, Phyllum: Chordata, Class: Reptilia, Diapsida, Archosauria, Aves Order (O:) and Family (F:) English Name2 Scientific Name3 O: Tinamiformes (Tinamous) F: Tinamidae (Tinamous) Great Tinamou Tinamus major Highland Tinamou Nothocercus bonapartei O: Galliformes (Turkeys, Pheasants & Quail) F: Cracidae Black Guan Chamaepetes unicolor (Chachalacas, Guans & Curassows) Gray-headed Chachalaca Ortalis cinereiceps F: Odontophoridae (New World Quail) Black-breasted Wood-quail Odontophorus leucolaemus Buffy-crowned Wood-Partridge Dendrortyx leucophrys Marbled Wood-Quail Odontophorus gujanensis Spotted Wood-Quail Odontophorus guttatus O: Suliformes (Cormorants) F: Fregatidae (Frigatebirds) Magnificent Frigatebird Fregata magnificens O: Pelecaniformes (Pelicans, Tropicbirds & Allies) F: Ardeidae (Herons, Egrets & Bitterns) Cattle Egret Bubulcus ibis O: Charadriiformes (Sandpipers & Allies) F: Scolopacidae (Sandpipers) Spotted Sandpiper Actitis macularius O: Gruiformes (Cranes & Allies) F: Rallidae (Rails) Gray-Cowled Wood-Rail Aramides cajaneus O: Accipitriformes (Diurnal Birds of Prey) F: Cathartidae (Vultures & Condors) Black Vulture Coragyps atratus Turkey Vulture Cathartes aura F: Pandionidae (Osprey) Osprey Pandion haliaetus F: Accipitridae (Hawks, Eagles & Kites) Barred Hawk Morphnarchus princeps Broad-winged Hawk Buteo platypterus Double-toothed Kite Harpagus bidentatus Gray-headed Kite Leptodon cayanensis Northern Harrier Circus cyaneus Ornate Hawk-Eagle Spizaetus ornatus Red-tailed
    [Show full text]
  • Passerines: Perching Birds
    3.9 Orders 9: Passerines – perching birds - Atlas of Birds uncorrected proofs 3.9 Atlas of Birds - Uncorrected proofs Copyrighted Material Passerines: Perching Birds he Passeriformes is by far the largest order of birds, comprising close to 6,000 P Size of order Cardinal virtues Insect-eating voyager Multi-purpose passerine Tspecies. Known loosely as “perching birds”, its members differ from other Number of species in order The Northern or Common Cardinal (Cardinalis cardinalis) The Common Redstart (Phoenicurus phoenicurus) was The Common Magpie (Pica pica) belongs to the crow family orders in various fine anatomical details, and are themselves divided into suborders. Percentage of total bird species belongs to the cardinal family (Cardinalidae) of passerines. once thought to be a member of the thrush family (Corvidae), which includes many of the larger passerines. In simple terms, however, and with a few exceptions, passerines can be described Like the various tanagers, grosbeaks and other members (Turdidae), but is now known to belong to the Old World Like many crows, it is a generalist, with a robust bill adapted of this diverse group, it has a thick, strong bill adapted to flycatchers (Muscicapidae). Its narrow bill is adapted to to feeding on anything from small animals to eggs, carrion, as small birds that sing. feeding on seeds and fruit. Males, from whose vivid red eating insects, and like many insect-eaters that breed in insects, and grain. Crows are among the most intelligent of The word passerine derives from the Latin passer, for sparrow, and indeed a sparrow plumage the family is named, are much more colourful northern Europe and Asia, this species migrates to Sub- birds, and this species is the only non-mammal ever to have is a typical passerine.
    [Show full text]
  • Interspecific Social Dominance Mimicry in Birds
    bs_bs_banner Zoological Journal of the Linnean Society, 2014. With 6 figures Interspecific social dominance mimicry in birds RICHARD OWEN PRUM1,2* 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8150, USA 2Peabody Natural History Museum, Yale University, New Haven, CT 06520-8150, USA Received 3 May 2014; revised 17 June 2014; accepted for publication 21 July 2014 Interspecific social dominance mimicry (ISDM) is a proposed form of social parasitism in which a subordinate species evolves to mimic and deceive a dominant ecological competitor in order to avoid attack by the dominant, model species. The evolutionary plausibility of ISDM has been established previously by the Hairy-Downy game (Prum & Samuelson). Psychophysical models of avian visual acuity support the plausibility of visual ISDM at distances ∼>2–3 m for non-raptorial birds, and ∼>20 m for raptors. Fifty phylogenetically independent examples of avian ISDM involving 60 model and 93 mimic species, subspecies, and morphs from 30 families are proposed and reviewed. Patterns of size differences, phylogeny, and coevolutionary radiation generally support the predic- tions of ISDM. Mimics average 56–58% of the body mass of the proposed model species. Mimics may achieve a large potential deceptive social advantage with <20% reduction in linear body size, which is well within the range of plausible, visual size confusion. Several, multispecies mimicry complexes are proposed (e.g. kiskadee- type flycatchers) which may coevolve through hierarchical variation in the deceptive benefits, similar to Müllerian mimicry. ISDM in birds should be tested further with phylogenetic, ecological, and experimental investigations of convergent similarity in appearance, ecological competition, and aggressive social interactions between sympatric species.
    [Show full text]
  • Aves, Passeriformes)
    Genetics and Molecular Biology, 43, 3, e20200018 (2020) Copyright © 2020, Sociedade Brasileira de Genética. DOI: https://doi.org/10.1590/1678-4685-GMB-2020-0018 Short Communication Animal Genetics The molecular cytogenetic characterization of Conopophaga lineata indicates a common chromosome rearrangement in the Parvorder Furnariida (Aves, Passeriformes) Thays Duarte de Oliveira1 , Rafael Kretschmer2 , Natasha Ávila Bertocchi2 , Patricia C.M. O’Brien3, Malcolm A. Ferguson-Smith3, Analía del Valle Garnero4 , Edivaldo Herculano Correa de Oliveira5,6 and Ricardo José Gunski4 1Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Biologia Animal, Porto Alegre, RS, Brazil. 2Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil. 3University of Cambridge, Department of Veterinary Medicine, Cambridge, United Kingdom. 4Universidade Federal do Pampa (UNIPAMPA), Programa de Pós-Graduação em Ciências Biológicas, São Gabriel, RS, Brazil. 5Instituto Evandro Chagas, Seção Meio Ambiente (SAMAM), Ananindeua, PA, Brazil. 6Universidade Federal do Pará, Belém, Instituto de Ciências Exatas e Naturais, Belém, PA, Brazil. Abstract Cytogenetic analyses of the Suboscines species are still scarce, and so far, there is no karyotype description of any species belonging to the family Conopophagidae. Thus, the aim of this study is to describe and analyze the karyotype of Conopophaga lineata by chromosome painting using Gallus gallus (GGA) probes and to identify the lo- cation of the 18/28S rDNA cluster. Metaphases were obtained from fibroblast culture from two individuals of C. lineata. We observed a diploid number of 2n=78. GGA probes showed that most ancestral syntenies are conserved, except for the fission of GGA1 and GGA2, into two distinct pairs each.
    [Show full text]
  • Use of Floral Nectar in Heliconia Stilesii Daniels by Three Species of Hermit Hummingbirds
    The Condor89~779-787 0 The Cooper OrnithologicalSociety 1987 ECOLOGICAL FITTING: USE OF FLORAL NECTAR IN HELICONIA STILESII DANIELS BY THREE SPECIES OF HERMIT HUMMINGBIRDS FRANK B. GILL The Academyof Natural Sciences,Philadelphia, PA 19103 Abstract. Three speciesof hermit hummingbirds-a specialist(Eutoxeres aquikz), a gen- eralist (Phaethornissuperciliosus), and a thief (Threnetesruckerz]-visited the nectar-rich flowers of Heliconia stilesii Daniels at a lowland study site on the Osa Peninsula of Costa Rica. Unlike H. pogonanthaCufodontis, a related Caribbean lowland specieswith a less specialized flower, H. stilesii may not realize its full reproductive potential at this site, becauseit cannot retain the services of alternative pollinators such as Phaethornis.The flowers of H. stilesii appear adapted for pollination by Eutoxeres, but this hummingbird rarely visited them at this site. Lek male Phaethornisvisited the flowers frequently in late May and early June, but then abandonedthis nectar sourcein favor of other flowers offering more accessiblenectar. The strong curvature of the perianth prevents accessby Phaethornis to the main nectar chamber; instead they obtain only small amounts of nectar that leaks anteriorly into the belly of the flower. Key words: Hummingbird; pollination; mutualism;foraging; Heliconia stilesii; nectar. INTRODUCTION Ultimately affectedare the hummingbird’s choice Species that expand their distribution following of flowers and patterns of competition among speciationenter novel ecologicalassociations un- hummingbird species for nectar (Stiles 1975, related to previous evolutionary history and face 1978; Wolf et al. 1976; Feinsinger 1978; Gill the challenges of adjustment to new settings, 1978). Use of specificHeliconia flowers as sources called “ecological fitting” (Janzen 1985a). In the of nectar by particular species of hermit hum- case of mutualistic species, such as plants and mingbirds, however, varies seasonally and geo- their pollinators, new ecological settingsmay in- graphically (Stiles 1975).
    [Show full text]
  • NC2006 (Fauna) Doc. 4.1 (English Only/Únicamente En Inglés/Seulement En Anglais)
    NC2006 (fauna) Doc. 4.1 (English only/Únicamente en inglés/Seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Nomenclature Committee Fauna Lima (Peru), 10 July 2006 Update on issues following CoP13 BIRD NOMENCLATURE 1. This document has been submitted by the zoologist of the Nomenclature Committee. 2. At the latest meeting of the Nomenclature Committee (fauna) in Geneva, on 23 May 2005, the zoologist of the Nomenclature Committee suggested to consider the Howard and Moore Complete Checklist of the Birds of the World, edited by Dickinson1, as new standard reference for the bird nomenclature. She promised to provide a document for the next NC meeting in 2006 outlining the consequences of the adoption of this reference for the present nomenclature of CITES listed bird species. 3. The present document is based on an analysis carried out by Tim Inskipp (UNEP-WCMC), who compared the bird species so far accepted under CITES with the bird taxa in the The Howard and Moore Complete Checklist of the Birds of the World edited by Dickinson. 4. CITES Appendices currently include altogether 1,570 species or subspecies of birds. The adoption of the Howard and Moore Checklist edited by Dickinson would result in: – 141 one-to-one replacements (86 generic changes, 50 spelling changes, 5 name replacements) (see Annex 1); – 39 changes of species being reduced to subspecies level (see Annex 2); and – 45 split-listings where present subspecies are elevated to species level (see Annex 3). 5. One-to-one replacements will create no implementation problem as in the case of re-exports old documents the old scientific names can be easily be related to the new valid names.
    [Show full text]