Effects of Competitors, Predators, and Prey on the Grazing Behavior of Herbivorous Calanoid Copepods

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Competitors, Predators, and Prey on the Grazing Behavior of Herbivorous Calanoid Copepods BULLETIN OF MARINE SCIENCE, 43(3): 573-582, \988 EFFECTS OF COMPETITORS, PREDATORS, AND PREY ON THE GRAZING BEHAVIOR OF HERBIVOROUS CALANOID COPEPODS C Kim Wong ABSTRACT Gut fluorescence was measured to test the effects of potential competitors, predators, and alternate animal prey on the short term (1,5-2 h) herbivorous feeding rates of the marine calanoid copepods Calanus pac!ficus Brodsky, Pseudocalanus minutus (Kroyer), and Metridia pacl}ica Brodsky. The diatoms Thalassiossira weissjlogii and Coscinodiscus perforatus were used as food. The presence of the predatory copepod Euchaeta elongata Esterly affected the swimming behavior and caused a significant reduction in the gut fullness of Pseudocalanus. Neither the presence of conspecifics nor other herbivorous grazers affected the gut fullness of any of the copepods, Feeding on algae by the omnivore Metridia was not significantly affected by the presence of Artemia nauplii as alternate prey, despite the fact that Artemia were ingested along with algae. Grazing by zooplankton may influence the growth and abundance of phyto- plankton (Riley, 1946; Steele, 1974). Because calanoid copepods are important grazers in the ocean, many factors that affect their feeding performance have been studied to estimate the grazing impact on the phytoplankton community. The most intensively studied are food concentration, size and quality of food particles, size and previous feeding history of the copepods, temperature, and light (reviewed by Conover and Huntley, 1980; Frost, 1980). While many of these studies were carried out in single-species experiments where the grazers were excluded from other animals, zooplankton typically occur in patches that are multi-species ag- gregates (Haury and Wiebe, 1982). Both the density and species composition of zooplankton patches can vary over a wide range of temporal scales. Thus, a herbivorous zooplankter must often survive and feed in an environment where encounter rates with potential competitors and predators are high. The feeding efficiency of a herbivorous zooplankter can be affected by the presence of other animals in several ways. First, food concentration may be reduced as a result of exploitation by other grazers. Second, feeding activity may be reduced as a result of direct behavioral interference. For example, the grazing rate of the freshwater copepod Diaptomus tyrrelli was decreased by chemicals produced by its potential competitor and predator Epischura lacustris (Folt and Goldman, 1981). Copepods also avoid physical contacts with other zooplankters by jumping away (Strickler, 1975). The jumping frequency of Diaptomus minutus is altered by the presence of other zooplankters (Wong et al., 1986). In areas of high animal density, avoidance reactions may exact a cost by reducing time available for feeding. Herbivorous copepods generate feeding currents to capture algae (Koehl and Strickler, 1981). Because the hydromechanical signals from these feeding currents may be sensed by tactile predators, potential prey may stop all feeding movements to reduce the risk of predation. Finally, omnivorous copepods may switch from herbivory to carnivory during periods of high prey density and low algal abundance (Landry, 1981). Even for copepods that are predominantly herbivorous, feeding on animals may reduce the need and time for grazing on phytoplankton. Omnivorous calanoid copepods may change their swimming pattern when exposed to zooplankton prey (Wong 573 574 BULLETIN OF MARINE SCIENCE, VOL. 43, NO.3, 1988 and Sprules, 1986). Some swimming behaviors that facilitate the capture of zoo- plankton prey (e.g. ambush behavior) may decrease the efficiency of grazing on phytoplankton. Thus, it is somewhat surprising that the impact of other zoo- plankters on the feeding performance of herbivorous calanoid copepods has rarely been examined. The purpose of this research is to study the effects of other zooplankters on the grazing behavior of the marine calanoid copepods Pseudocalanus minutus (Kroy- er), Calanus pacificus Brodsky, and Metridia pacifica Brodsky. The specific ques- tions addressed in this study are: (1) Is the grazing behavior of Pseudocalanus, Calanus, and Metridia affected by the density of conspecifics? (2) Is the grazing behavior of Pseudocalanus, Cala nus, and Metridia affected by the presence of other grazers? (3) Is the grazing behavior of the omnivore Metridia (Haq, 1967) affected by the presence of alternate animal prey? (4) Is the grazing and swimming behavior of Pseudocalanus affected by the presence of its predator Euchaeta elon- gata Esterly (Yen, 1985). MATERIALS AND METHODS Calanoid copepods were collected between April and August 1986 from Saanich Inlet, Vancouver Island, B.c. (48°39'N, I 23°30'W). Pseudocalanus minutus, Calanus pacijicus, and Metridia pacifica were collected from 120-m daytime vertical hauls (0.2- or 0.3-mm mesh, 0.5-m mouth diameter). The zooplankton samples were immediately diluted with surface seawater in 15 liter carboys. Euchaeta elongata was caught in 150-m daytime oblique hauls (0.5-mm mesh, I-m mouth diameter) and sorted into 2 liter glass jars (1 to 5 copepods per jar) containing seawater from 20 to 30 m (temperature below 15°C). All animals were kept at 12°C under a reversed 14L: 10D light cycle in the laboratory. Concentrated surface phytoplankton from Saanich Inlet was added to the carboys to feed the herbiv- orous copepods every 1 or 2 days. Euchaeta were fed small zooplankters. The copepods were allowed at least 3 days to acclimatize to the conditions in the laboratory. Only copepods kept in the laboratory for more than 3 days but less than 10 days were used for experiments. Grazing experiments were carried out in 450-ml glass fleakers (Corning) containing 250 ml of filtered (1.5 I'm Whatman 934AH fiber glass filters) surface seawater. Experimental animals were sorted and transferred to the fleakers with wide-bore glass pipets. Pseudocalanus (prosome length 0.7-1.0 mm) was sorted under a stereomicroscope. Calanus (prosome length 2.0-2.6 mm), Metridia (prosome length 1.7-2.0 mm), Euchaeta (prosome length 4.6-5.4 mm), and Artemia nauplii (2-3 days post-hatch) were usually sorted without optical aids. With the exception of a few C5 and adult male Calanus, only adult female copepods were used. The animals were allowed a 0.5 to 1 h acclimation period. Because estimates of gut passage time were 0.4 h for Pseudocalanus (Wong, unpubl.), 0.4 h for Calanus and 0.6 h for Metridia (Mackas and Burns, 1986), animals were assumed to have empty guts when algal monocultures of Thalassiossira weissjlogii (8-12 I'm) or Coscinodiscus perforatus (70-80 I'm) were added to the fleakers to initiate grazing experiments. Both acclimation and grazing were carried out in darkness at 12°C. All experiments were performed between 1000 and 1500 h, and lasted from 1.5 to 2 h. For experiments with Coscinodiscus, the contents of the fleakers were stirred every 30 min to keep cells in suspension. Food concentration never changed more than 10% over the short duration of the experiment. At the end of each experiment, the contents of each fleaker were poured through a 102-l'm mesh. Copepods on the mesh were washed with filtered seawater and kept frozen in closed petri dishes until analysis. The amount of chlorophyll and its derived pigments in the guts was used as an index of the amount of phytoplankton ingested in the short interval prior to the termination of the grazing period. Copepods were removed from the filter and soaked overnight in 90% aqueous acetone. The fluorescence of the acetone extract before and after acidification with 5% BCL was measured with a Turner Designs fluorometer. Gut fullness (chlorophyll + phaeopigment) was calculated using the equations from Dagg (1983). The method assumes that chlorophyll-a was converted to phaeophorbide-a with 100% molar efficiency, and that no fluorescing compounds were lost due to digestion. Some authors (Dagg and Grill, 1980; Kiorboe et aI., 1982; 1985) have found close agreement between ingestion rates determined by gut fluorescence method and other direct measurements of filtration rates. Others argue that more than 90% of chlorophyll-derived pigment may at times be lost due to digestive processes (Conover et aI., 1986a; Wang and Conover, 1986). If pigment was indeed lost, the gut fluorescence method underestimated the amount of chlorophyll ingested. I assumed that the chemical process of pigment destruction during gut passage was not related to treatment effects such as density of copepods and WONG: EFFECTS OF COMPETITORS AND PREDATORS ON GRAZING 575 1.6 20 A c b B b 16 b b b b 1.2 b 6 ~ 12 b b " 6. .8 6. 8 6. f! b 6. 6. .4~ ~ ~~ll~ " o ~ . ._. II b 6. b o ~ , o l' i , 1 2 3 4 5 6 7 8 34 6789 123456789 copepod· fleaker-1 Figure 1. Relationship between gut pigment content and copepod density. A) Calanus fed Thalas- siossira at 7.5 /lg Chla'liter-I; regression: Y = -0.18X + 10.56, t = -0.42, df = 30, P > 0.5. B) it1etridia fed Thalassiossira at 9.7 /lg Chla'liter-I; regression: Y = -0.70X + 15.25, t = -1.36, df = I 24, P > 0.1. C) Pseudocalanus fed Thalassiossira at 1.9 /lg Chla'liter- ; regression: Y = 0.02X + 0.26, t = 1.17, df= 32, P > 0.2. At I Pseudocalanus per fleaker, each point represents the average of two animals. All other points in this figure represent the mean for a given fleaker. presence of predators, and the fraction of pigment lost did not vary between treatment and control animals. One or two water samples (2-5 ml) from each fleaker were filtered with 0.45-/lm Millipore filters. Thc filters were extracted overnight in 90% aqueous acetone. Food concentration was measured fluorometrically as chlorophyll-a concentration.
Recommended publications
  • Basics of Management - Intensive Grazing Stephen K
    Proceedings of the Integrated Crop Management Proceedings of the 10th Annual Integrated Crop Conference Management Conference Nov 18th, 12:00 AM Basics of Management - Intensive Grazing Stephen K. Barnhart Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/icm Part of the Agriculture Commons, and the Agronomy and Crop Sciences Commons Barnhart, Stephen K., "Basics of Management - Intensive Grazing" (1998). Proceedings of the Integrated Crop Management Conference. 28. https://lib.dr.iastate.edu/icm/1998/proceedings/28 This Event is brought to you for free and open access by the Conferences and Symposia at Iowa State University Digital Repository. It has been accepted for inclusion in Proceedings of the Integrated Crop Management Conference by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. BASICS OF MANAGEMENT -INTENSIVE GRAZING Stephen K. Barnhart Agronomist-Extension Forage Programs Department of Agronomy Iowa State University. What Is Management-Intensive Grazing ? Management-intensive grazing is a method for regulating how often and how much to graze in order to control the quality, yield, consumption, and persistence of forage from pasture. Managed grazing attempts to optimize animal performance or limit intake to a desired level and reduce wasted forage. Depending on the grazing methods used, the amount of fresh pasture provided, the amount of forage eaten, and its quality is regulated by the size of pasture area being grazed, the duration of that grazing, and the amount of the available forage allowed for grazing. Also critical is the period that each pasture is rested between grazings.
    [Show full text]
  • Livestock and Landscapes
    SUSTAINABILITY PATHWAYS LIVESTOCK AND LANDSCAPES SHARE OF LIVESTOCK PRODUCTION IN GLOBAL LAND SURFACE DID YOU KNOW? Agricultural land used for ENVIRONMENT Twenty-six percent of the Planet’s ice-free land is used for livestock grazing LIVESTOCK PRODUCTION and 33 percent of croplands are used for livestock feed production. Livestock contribute to seven percent of the total greenhouse gas emissions through enteric fermentation and manure. In developed countries, 90 percent of cattle Agricutural land used for belong to six breed and 20 percent of livestock breeds are at risk of extinction. OTHER AGRICULTURAL PRODUCTION SOCIAL One billion poor people, mostly pastoralists in South Asia and sub-Saharan Africa, depend on livestock for food and livelihoods. Globally, livestock provides 25 percent of protein intake and 15 percent of dietary energy. ECONOMY Livestock contributes up to 40 percent of agricultural gross domestic product across a significant portion of South Asia and sub-Saharan Africa but receives just three percent of global agricultural development funding. GOVERNANCE With rising incomes in the developing world, demand for animal products will continue to surge; 74 percent for meat, 58 percent for dairy products and 500 percent for eggs. Meeting increasing demand is a major sustainability challenge. LIVESTOCK AND LANDSCAPES SUSTAINABILITY PATHWAYS WHY DOES LIVESTOCK MATTER FOR SUSTAINABILITY? £ The livestock sector is one of the key drivers of land-use change. Each year, 13 £ As livestock density increases and is in closer confines with wildlife and humans, billion hectares of forest area are lost due to land conversion for agricultural uses there is a growing risk of disease that threatens every single one of us: 66 percent of as pastures or cropland, for both food and livestock feed crop production.
    [Show full text]
  • Hog Pastures and Conservation Compliance
    Illinois Grazing Manual Fact Sheet GRAZING MANAGEMENT Hog Pastures and Conservation Compliance General Information Significant problems exist in meeting conservation compliance requirements for livestock producers. These include high intensity grazing of hogs on forages in rotation with row crops, grazing crop residues, and manure injection of HEL fields. Swine pasture trials have been conducted to learn more about the interrelationships of pasture species selection, seeding rate, stocking density, grass stand (plants per sq. ft.), and per cent ground cover. These trials have networked the experience, knowledge, and skills of pro-active swine producers, the Natural Resources Conservation Service and University of Illinois Extension. Initial trials were seeded in the spring of 1992 utilizing alfalfa and grass mixtures. The grass species included were: 1) Tetraploid perennial ryegrass, 2) Matua Rescuegrass, 3) low endophyte Tall Fescue, and 4) Orchardgrass. These trial plots were intensively grazed and evaluated during 1993 with a mean stocking rate of 11.6 sows and litter per acre. Grass stands and % cover was evaluated throughout the year. Results indicated that tetraploid perennial ryegrass exhibited a very vigorous growth habit and was able to withstand high levels of grazing and trampling. It maintained higher levels of ground cover throughout the season. Tall Fescue established well, exhibited high stand counts, and even with very high grazing intensity was able to maintain over until late in the season. Tall Fescue also reduced the seed cost per acre. The use of alfalfa-orchardgrass under high intensity use, held up through mid-season but declined rapidly to only 20% cover in the fall.
    [Show full text]
  • Calculation and Use of Selectivity Coefficients of Feeding: Zooplankton Grazing *
    Ecological Modelling, 7 (1979) 135--149 135 © Elsevier Scientific Publishing Company, Amsterdam -- Printed in The Netherlands CALCULATION AND USE OF SELECTIVITY COEFFICIENTS OF FEEDING: ZOOPLANKTON GRAZING * HENRY A. VANDERPLOEG and DONALD SCAVIA National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Great Lakes Environmental Research Laboratory, Ann Arbor, Mich. 48104 (U.S.A.) (Received 8 June 1978; revised 27 September 1978) ABSTRACT Vanderploeg, H.A. and Scavia, D., 1979. Calculation and use of selectivity coefficients of feeding: zooplankton grazing. Ecol. Modelling, 7: 135--149. A straightforward method of calculating selectivity coefficients (Wii) of predation from raw data, mortality rates of prey, filtering rates, feeding rates and electivity indices is derived. Results from a comparison of selectivity coefficients for the copepod Diaptomus oregonensis grazing under a number of experimental conditions suggest that Wij's for size- selective feeding are invariant, a conclusion also supported by the leaky-sieve model. Recommendations are made on how to use Wij's in linear and nonlinear feeding constructs for zooplankton and other animals. INTRODUCTION Many recent aquatic ecosystem models have been designed to simulate seasonal succession of phytoplankton and zooplankton. In order to accom- plish this, the models have included several phytoplankton and zooplankton groups (Bloomfield et al., 1973; Park et al., 1974; Canale et al., 1976; Scavia et al., 1976a and b; Bierman, 1976). A main factor controlling successional change in both phytoplankton and zooplankton is zooplankton selective feeding (cf. Porter, 1977). Many field and laboratory studies have been carried out to quantify the selection process; however, the forms in which the data are reported are not immediately applicable to models.
    [Show full text]
  • Grazing and Browsing Behavior, Grazing Management, Forage Evaluation and Goat Performance: Strategies to Enhance Meat Goat Production in North Carolina
    1 Grazing and Browsing Behavior, Grazing Management, Forage Evaluation and Goat Performance: Strategies to Enhance Meat Goat Production in North Carolina Jean-Marie Luginbuhl, Professor, J. Paul Mueller, Professor and Interim Dean of International Programs, James. T. Green, Jr., Professor Emeritus, Douglas S. Chamblee, Professor Emeritus, and Heather M. Glennon, Meat Goat Program Research Technician and PhD candidate College of Agriculture and Life Sciences, North Carolina State University Campus Box 7620, Raleigh NC 27695 ABSTRACT the use of high quality forage and browse and the Goats (Capra hircus hircus) offer an opportunity strategic use of expensive concentrate feeds. This can to more effectively convert pasture nutrients to be achieved by developing a year-round forage animal products as milk, meat and fiber which are program allowing for as much grazing as possible currently marketable and in demand by a growing throughout the year. segment of the US population. With the introduction of the Boer breed and the upgrading of meat-type Some people still believe that goats eat and do goats with Boer genetics, research focusing on well on low quality feed. Attempting to manage and forage evaluation, feeding strategies and the feed goats with such a belief will not lead to development of economical grazing systems was successful meat goat production. On pasture or urgently needed to meet the needs of this emerging rangeland, maximum goat gains or reproduction can industry. The first part of this paper focuses on the be attained by combining access to large quantities of quality forage that allow for selective feeding. description of grazing/browsing behavior of goats and grazing management, and grazing strategies such Goat Brazing/Browsing Behavior as control and strip grazing, differences between Goats are very active foragers, able to cover a control and continuous grazing, forward creep wide area in search of scarce plant materials.
    [Show full text]
  • 1933–1941, a New Deal for Forest Service Research in California
    The Search for Forest Facts: A History of the Pacific Southwest Forest and Range Experiment Station, 1926–2000 Chapter 4: 1933–1941, A New Deal for Forest Service Research in California By the time President Franklin Delano Roosevelt won his landslide election in 1932, forest research in the United States had grown considerably from the early work of botanical explorers such as Andre Michaux and his classic Flora Boreali- Americana (Michaux 1803), which first revealed the Nation’s wealth and diversity of forest resources in 1803. Exploitation and rapid destruction of forest resources had led to the establishment of a federal Division of Forestry in 1876, and as the number of scientists professionally trained to manage and administer forest land grew in America, it became apparent that our knowledge of forestry was not entirely adequate. So, within 3 years after the reorganization of the Bureau of Forestry into the Forest Service in 1905, a series of experiment stations was estab- lished throughout the country. In 1915, a need for a continuing policy in forest research was recognized by the formation of the Branch of Research (BR) in the Forest Service—an action that paved the way for unified, nationwide attacks on the obvious and the obscure problems of American forestry. This idea developed into A National Program of Forest Research (Clapp 1926) that finally culminated in the McSweeney-McNary Forest Research Act (McSweeney-McNary Act) of 1928, which authorized a series of regional forest experiment stations and the undertaking of research in each of the major fields of forestry. Then on March 4, 1933, President Roosevelt was inaugurated, and during the “first hundred days” of Roosevelt’s administration, Congress passed his New Deal plan, putting the country on a better economic footing during a desperate time in the Nation’s history.
    [Show full text]
  • A Review of Planktivorous Fishes: Their Evolution, Feeding Behaviours, Selectivities, and Impacts
    Hydrobiologia 146: 97-167 (1987) 97 0 Dr W. Junk Publishers, Dordrecht - Printed in the Netherlands A review of planktivorous fishes: Their evolution, feeding behaviours, selectivities, and impacts I Xavier Lazzaro ORSTOM (Institut Français de Recherche Scientifique pour le Développement eri Coopération), 213, rue Lu Fayette, 75480 Paris Cedex IO, France Present address: Laboratorio de Limrzologia, Centro de Recursos Hidricob e Ecologia Aplicada, Departamento de Hidraulica e Sarzeamento, Universidade de São Paulo, AV,DI: Carlos Botelho, 1465, São Carlos, Sï? 13560, Brazil t’ Mail address: CI? 337, São Carlos, SI? 13560, Brazil Keywords: planktivorous fish, feeding behaviours, feeding selectivities, electivity indices, fish-plankton interactions, predator-prey models Mots clés: poissons planctophages, comportements alimentaires, sélectivités alimentaires, indices d’électivité, interactions poissons-pltpcton, modèles prédateurs-proies I Résumé La vision classique des limnologistes fut de considérer les interactions cntre les composants des écosystè- mes lacustres comme un flux d’influence unidirectionnel des sels nutritifs vers le phytoplancton, le zoo- plancton, et finalement les poissons, par l’intermédiaire de processus de contrôle successivement physiqucs, chimiques, puis biologiques (StraSkraba, 1967). L‘effet exercé par les poissons plaiictophages sur les commu- nautés zoo- et phytoplanctoniques ne fut reconnu qu’à partir des travaux de HrbáEek et al. (1961), HrbAEek (1962), Brooks & Dodson (1965), et StraSkraba (1965). Ces auteurs montrèrent (1) que dans les étangs et lacs en présence de poissons planctophages prédateurs visuels. les conimuiiautés‘zooplanctoniques étaient com- posées d’espèces de plus petites tailles que celles présentes dans les milieux dépourvus de planctophages et, (2) que les communautés zooplanctoniques résultantes, composées d’espèces de petites tailles, influençaient les communautés phytoplanctoniques.
    [Show full text]
  • About Holistic Planned Grazing
    What Is Holistic Planned Grazing? Holistic Planned Grazing is a planning process for dealing simply with the great complexity livestock managers face daily in integrating livestock production with crop, wildlife and forest production while working to ensure continued land regeneration, animal health and welfare, and profitability. Holistic Planned Grazing helps ensure that livestock are in the right place, at the right time, and with the right behavior. It is based on a military planning procedure developed over hundreds of years to enable the human mind to handle many variables in a constantly changing, and often stressful, environment. The technique reduces incredible complexity step-by-step to absolute simplicity. It allows managers to focus on the necessary details, one at a time, without losing sight of the whole and what they hope to achieve. Traditional goals of producing meat, milk or fiber generally become a by-product of more primary purposes – creating a landscape and harvesting sunlight. In the process of creating a landscape, livestock managers also plan for the needs of wildlife, crops, and other uses, as well as the potential fire or drought. To harvest the maximum amount of sunlight, they strive through the planning to decrease the amount of bare ground and increase the mass of plants. They time livestock production cycles to the cycles of nature, market demands, and their own abilities. If profit from livestock is important, they factor that in too. At times they may favor the needs of the livestock, at other times the needs of wildlife or the needs of plants. Because so many factors are involved, and because they are always changing it is easy to be swayed by those who say we can ignore all the variables: managers will do all right if they just watch the animals and the grass, or if they just keep their animals bunched and rotating.
    [Show full text]
  • Grazing Practices: a Review of the Literature
    Grazing Practices: A Review of the Literature D. L. Osmond, Soil Science D. M. Butler, Crop Science* N. R. Rannells, Crop Science* M. H. Poore, Animal Science A. Wossink, Agricultural and Resource Economics J. T. Green, Crop Science North Carolina Agricultural Research Service North Carolina State University Raleigh, North Carolina Technical Bulletin 325-W April 2007 This research was conducted in the departments of Soil Science, Crop Science, Animal Science, and Agricultural and Resource Economics at North Carolina State University. * Former Crop Science member Grazing Practices: A Review of the Literature This literature review presents numeric information in the original measurement system in which they were presented. Thus, there are both metric and English units. Citation of this document should be as follows: Osmond, D.L., D.M. Butler, N.R. Rannells, M.H. Poore, A. Wossink, J. T. Green. 2007. Grazing Practices: A Review of the Literature. North Carolina Agricultural Research Service, Technical Bulletin 325-W. North Carolina State University. Raleigh, NC. Acknowledgements: We would like to thank Janet Young for layout. This document would not have been possible without her help. Grazing Practices: A Review of the Literature Table of Contents 1. Introduction .................................................................................................................................... 1 1.1 Livestock production and environmental management ........................................................... 1 1.2 Previous literature reviews
    [Show full text]
  • Sheep and Goat Feeding Behavior Profile in Grazing Systems
    Acta Scientiarum http://periodicos.uem.br/ojs/acta ISSN on-line: 1807-8672 Doi: 10.4025/actascianimsci.v43i1.51265 REVIEW Sheep and goat feeding behavior profile in grazing systems Tairon Pannunzio Dias-Silva1* and Adibe Luiz Abdalla Filho2 1Instituto Federal do Amazonas, Campus Maués, Estrada dos Morais, 69190-000, Maués, Amazonas, Brazil. 2Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, São Paulo, Brazil. *Author for correspondence. E-mail: [email protected] ABSTRACT. Feeding behavior analysis provides information about the relationships between animals and pastures. Therefore, this review aims to describe some aspects of the feeding behavior profiles of both sheep and goats in grazing systems. The structure of the pasture is a key factor in the feeding behavior of grazing animals. The amount of feed consumed in a given period of time is affected by the number of meals, duration and velocity of swallowing, changes in grazing time, bite rate, bite weight, and quality of ingested forage. The different phenological stages of forage also influence the animals’ strategies to optimize their intake, which consequently changes their behavioral activities. Sheep and goats tend to be more selective than cattle, and young animals are more selective than older animals; this selectivity characteristic is one of the most important aspects to be observed in pasture management. According to the degree of selectivity, the animals will intake forages of higher or lower nutritive quality. In addition, the intensity and distribution of their daily activities (grazing, ruminating, and resting) are influenced by several factors, such as the availability and nutritive value of the pasture, its management, the animal activity in the group, and the predominant climatic conditions of the region.
    [Show full text]
  • Facilitating Foundation Species: the Potential for Plant–Bivalve Interactions to Improve Habitat Restoration Success
    Received: 28 March 2019 | Accepted: 3 February 2020 DOI: 10.1111/1365-2664.13605 REVIEW Facilitating foundation species: The potential for plant–bivalve interactions to improve habitat restoration success Karine Gagnon1 | Eli Rinde2 | Elizabeth G. T. Bengil3,4 | Laura Carugati5 | Marjolijn J. A. Christianen6,7 | Roberto Danovaro5,8 | Cristina Gambi5 | Laura L. Govers7,9 | Silvija Kipson10 | Lukas Meysick1 | Liina Pajusalu11 | İnci Tüney Kızılkaya3,12 | Johan van de Koppel9,13 | Tjisse van der Heide7,9,14 | Marieke M. van Katwijk7 | Christoffer Boström1 1Environmental and Marine Biology, Åbo Akademi University, Turku, Finland; 2Norwegian Institute for Water Research, Oslo, Norway; 3Mediterranean Conservation Society, Izmir, Turkey; 4Girne American University, Marine School, Girne, TRNC via Turkey; 5Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; 6Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, The Netherlands; 7Department of Environmental Science, Institute for Wetland and Water Research, Radboud University Nijmegen, Nijmegen, The Netherlands; 8Stazione Zoologica Anton Dohrn, Naples, Italy; 9Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands; 10Faculty of Science, Department of Biology, University of Zagreb, Zagreb, Croatia; 11Estonian Marine Institute, University of Tartu, Tallinn, Estonia; 12Faculty of Science, Ege University, Izmir, Turkey; 13Royal Netherlands Institute for Sea Research and Utrecht
    [Show full text]
  • Apparent Competition, Lion Predation, and Managed Livestock Grazing: Can Conservation Value Be Enhanced?
    ORIGINAL RESEARCH published: 12 April 2019 doi: 10.3389/fevo.2019.00123 Apparent Competition, Lion Predation, and Managed Livestock Grazing: Can Conservation Value Be Enhanced? Caroline C. Ng’weno 1,2*, Steven W. Buskirk 1, Nicholas J. Georgiadis 3, Benard C. Gituku 2, Alfred K. Kibungei 2, Lauren M. Porensky 4, Daniel I. Rubenstein 5 and Jacob R. Goheen 1* 1 Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States, 2 Conservation Department, Ol Pejeta Conservancy, Nanyuki, Kenya, 3 Puget Sound Institute, University of Washington, Tacoma, WA, United States, 4 Agricultural Research Service Rangeland Resource Unit, US Department of Agriculture, Fort Collins, CO, United States, 5 Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States Edited by: Predator restorations often result in apparent competition, where co-occurring prey Matt W. Hayward, populations experience asymmetric predation pressure driven by predator preferences. Faculty of Science, University of Newcastle, Australia In many rangeland ecosystems, livestock share the landscape with wildlife, including Reviewed by: ungulates and the large carnivores that consume them. We examined whether apparent Inger Suzanne Prange, competition reorganized prey communities following restoration of lions (Panthera leo) Appalachian Wildlife Research to a savanna ecosystem, and whether and how livestock management could alter this Institute, United States António Onofre Soares, indirect interaction between lions and their prey. Three lines of evidence supported the Universidade dos Açores, Portugal hypothesis that Jackson’s hartebeest (Alcelaphus bucelaphus lelwel; an ungulate of *Correspondence: conservation concern) are suppressed via lion-mediated apparent competition. First, Caroline C. Ng’weno [email protected] hartebeest exhibited an Allee effect where they were exposed to lions, but displayed Jacob R.
    [Show full text]