Herschel II Lista Di Herschel II

Total Page:16

File Type:pdf, Size:1020Kb

Herschel II Lista Di Herschel II Herschel II Lista di Herschel II Oltre i 400 Pagina 1 Gabriele Franzo Herschel II Chart R.A. Dec. Size Size Object OTHER Type Con. Mag. SUBR Class NGC Description No. ( h m ) ( o ' ) max min 61 NGC 23 UGC 89 GALXY PEG 00 09.9 +25 55 12 13 2.5 m 1.6 m SBa 3 S st + neb 109 NGC 24 ESO 472-16 GALXY SCL 00 09.9 -24 58 11,6 13,7 6.1 m 1.4 m Sc vF,cL,mE,gbm 85 NGC 125 UGC 286 GALXY PSC 00 28.8 +02 50 12,1 13 1.8 m 1.6 m Sa Ring vF,S,bM,D * sp 85 NGC 151 NGC 153 GALXY CET 00 34.0 -09 42 11,6 13,4 3.8 m 1.6 m SBbc pF,pL,lE 90 degrees,vglbM 109 NGC 175 NGC 171 GALXY CET 00 37.4 -19 56 12,2 13,5 2.1 m 1.9 m SBab pB,pL,E,gbM,r 85 NGC 198 UGC 414 GALXY PSC 00 39.4 +02 48 13,1 13,4 1.1 m 1.1 m Sc F,S,vgbM 37 NGC 206 G+C+N AND 00 40.5 +40 44 99,9 99,9 Pec vF,vL,mE 0 degrees 61 NGC 214 UGC 438 GALXY AND 00 41.5 +25 30 12,3 13,1 1.9 m 1.5 m SBc pF,pS,gvlbM,R 85 NGC 217 MCG - 2- 2- 85 GALXY CET 00 41.6 -10 01 13.5p 99,9 2.7 m 0.6 m Sa F,S,lE 90 degrees,glbM 61 NGC 315 UGC 597 GALXY PSC 00 57.8 +30 21 11,2 13,2 3 m 2.5 m E-SO pB,pL,R,gbM,* 9 nf 3' 85 NGC 337 MCG - 1- 3- 53 GALXY CET 00 59.8 -07 35 11,6 13,3 3 m 1.8 m SBcd pF,L,E,glbM,* 10 f 21 sec 84 NGC 357 MCG - 1- 3- 81 GALXY CET 01 03.4 -06 20 12 13,4 2.5 m 1.7 m SBO-a F,S,iR,sbM,* 14 nf 20'' 60 NGC 410 UGC 735 GALXY PSC 01 11.0 +33 09 11,5 12,7 2.3 m 1.8 m SB0 pB,pL,nf of 2 84 NGC 428 UGC 763 GALXY CET 01 12.9 +00 59 11,5 14,1 4 m 2.9 m Scp F,L,R,bM,er 60 NGC 499 IC 1686 GALXY PSC 01 23.2 +33 28 12,1 12,8 1.7 m 1.3 m E-SO pB,pL,R,3rd of 3 60 NGC 513 UGC 953 GALXY AND 01 24.4 +33 48 12,9 11,1 0.7 m 0.3 m Sc F,S,stellar 60 NGC 514 UGC 947 GALXY PSC 01 24.1 +12 55 11,6 13,9 3.7 m 3 m SBc F,L,lE,vglbM,**F 60 NGC 604 GX+DN TRI 01 34.6 +30 47 99,9 99,9 2 m Pec B,vS,R,vvlBM 84 NGC 636 MCG - 1- 5- 13 GALXY CET 01 39.1 -07 31 11,5 13,4 2.8 m 2 m E1 pB,vS,R,mbM,r 60 NGC 660 UGC 1201 GALXY PSC 01 43.0 +13 39 11,2 14,6 8 m 2.9 m SBap pB,pL,E,bM,r 84 NGC 665 UGC 1223 GALXY PSC 01 44.9 +10 25 12,1 13,5 2.4 m 1.6 m SO F,S,lE,bM,r 60 NGC 672 UGC 1256 GALXY TRI 01 47.9 +27 26 10,9 13,9 7.5 m 2.6 m SBc F,pL,mE80 84 NGC 706 UGC 1334 GALXY PSC 01 51.8 +06 18 12,5 13,4 1.9 m 1.5 m Sc F,S,bM,*13n1' 84 NGC 718 UGC 1356 GALXY PSC 01 53.2 +04 12 11,7 13,3 2.3 m 2.2 m SBa pB,S,iR,psmbM 84 NGC 741 IC 1741 GALXY PSC 01 56.3 +05 38 11,1 13,5 3 m 3 m E1 pF,S,R,p of 2 Pagina 2 Gabriele Franzo Herschel II Chart R.A. Dec. Size Size Object OTHER Type Con. Mag. SUBR Class NGC Description No. ( h m ) ( o ' ) max min 83 NGC 821 UGC 1631 GALXY ARI 02 08.4 +11 00 10,7 12,2 2.4 m 1.7 m E2 pB,vS,vlE,svmbM,* np 59 NGC 890 UGC 1823 GALXY TRI 02 22.0 +33 16 11,2 12,7 2.9 m 2.3 m E4 B,S,R,bM,3F* sp 12 NGC 896 SG 1.04 BRTNB CAS 02 25.5 +62 01 99,9 99,9 27 m 13 m E eF,pL,iF 59 NGC 925 UGC 1913 GALXY TRI 02 27.3 +33 35 10,1 14,4 10.9 m 6.2 m SBcd cF,cL,E,vgbM,2*13 np 83 NGC 991 MCG - 1- 7- 23 GALXY CET 02 35.5 -07 09 11,7 13,5 3 m 2.7 m SB Ring vF,cL,iF,vlbM 35 NGC 1003 UGC 2137 GALXY PER 02 39.3 +40 52 11,4 13,8 5.7 m 2.2 m Sc pF,L,E90,mbM,r 59 NGC 1012 UGC 2141 GALXY ARI 02 39.2 +30 09 12 12,9 2.5 m 1.1 m Sa F,pS,iR,bM,st inv 83 NGC 1032 UGC 2147 GALXY CET 02 39.4 +01 06 11,6 12,9 3.4 m 1.1 m Sa pB,S,vlE,bM,3*trapezoid 83 NGC 1035 MCG - 1- 7- 27 GALXY CET 02 39.5 -08 08 12,2 12,6 2.2 m 0.6 m Sc pF,L,mE,r,*17 att sf 83 NGC 1045 MCG - 2- 7- 59 GALXY CET 02 40.5 -11 17 13 99,9 2.3 m 1.2 m E-SO F,S,R,bM 35 NGC 1058 UGC 2193 GALXY PER 02 43.5 +37 20 11,2 13,4 3.2 m 3.1 m Sc pF,cL,R,glbM 59 NGC 1060 UGC 2191 GALXY TRI 02 43.3 +32 25 11,8 13,2 2.3 m 1.7 m E-SO F,pL,R,lbM,*F46s,3's 83 NGC 1070 UGC 2200 GALXY CET 02 43.4 +04 58 11,9 13,4 2.3 m 1.9 m Sb pF,S,iR,gbM 83 NGC 1073 UGC 2210 GALXY CET 02 43.7 +01 23 11 14,2 4.9 m 4.3 m SBc vF,L,lbM,er 83 NGC 1087 UGC 2245 GALXY CET 02 46.4 -00 30 10,9 13,1 3.9 m 2.3 m SBc Ring pB,cL,lE,mbM 83 NGC 1090 UGC 2247 GALXY CET 02 46.6 -00 15 11,8 13,8 3.9 m 1.8 m SBbc vF,pL,iR,bM 107 NGC 1114 MCG - 3- 8- 29 GALXY ERI 02 49.1 -17 00 13 99,9 1.8 m 0.8 m Sc pF,pL,pmE,glbM 59 NGC 1156 UGC 2455 GALXY ARI 02 59.7 +25 14 11,7 13,9 3.3 m 2.8 m Ir+ pB,cL,pmE0,bet 2* 34 NGC 1161 UGC 2474 GALXY PER 03 01.2 +44 54 11 12,8 2.8 m 2 m SO F,pS,lE,sbM 107 NGC 1162 MCG - 2- 8- 36 GALXY ERI 02 58.9 -12 24 13 99,9 1.4 m 1.4 m Elliptical F,R,glbM,stellar 34 NGC 1169 UGC 2503 GALXY PER 03 03.6 +46 23 11,3 13,8 4.6 m 2.7 m SBab pF,pS,iF,sbM 106 NGC 1172 MCG - 3- 8- 59 GALXY ERI 03 01.6 -14 50 11,9 13,3 2.3 m 1.7 m E1 pF,pL,R,psbM 34 NGC 1175 UGC 2515 GALXY PER 03 04.5 +42 20 12,9 12,9 1.9 m 0.7 m Sa F,cL,E 12 NGC 1184 UGC 2583 GALXY CEP 03 16.8 +80 48 12,4 12,9 2.8 m 0.6 m Sa F,pL,mE 106 NGC 1187 ESO 480-23 GALXY ERI 03 02.6 -22 52 10,8 14 5.6 m 3.8 m SBc pF,cL,pmE,gbM*16,r Pagina 3 Gabriele Franzo Herschel II Chart R.A. Dec. Size Size Object OTHER Type Con. Mag. SUBR Class NGC Description No. ( h m ) ( o ' ) max min 34 NGC 1193 OCL 390 OPNCL PER 03 05.9 +44 23 12,6 99,9 1.5 m II 3 m F,cL,er 106 NGC 1199 MCG - 3- 8- 67 GALXY ERI 03 03.6 -15 37 11,4 13 2.3 m 1.7 m E2 cB,pS,iR,smbM 34 NGC 1207 UGC 2548 GALXY PER 03 08.3 +38 23 12,6 13,9 2.3 m 1.6 m Sb Ring cF,vS,R,psb in npp end 106 NGC 1209 MCG - 3- 8- 73 GALXY ERI 03 06.0 -15 37 11,4 12,5 2.2 m 1.1 m E5 B,S,cE,psbM 106 NGC 1325 ESO 548- 7 GALXY ERI 03 24.4 -21 33 11,5 13,6 4.8 m 1.6 m SBbc F,mE239,com,*9.5 att 106 NGC 1332 ESO 548-18 GALXY ERI 03 26.3 -21 20 10,3 12,2 4 m 1.5 m E7 vB,S,E114,smbMN 34 NGC 1348 OCL 391 OPNCL PER 03 34.1 +51 25 99,9 99,9 5 m II 2 p Cl,lRi,st L 106 NGC 1353 ESO 548-31 GALXY ERI 03 32.1 -20 49 11,4 13 3.4 m 1.4 m SBb pB,cL,IE,mbM 106 NGC 1400 ESO 548-62 GALXY ERI 03 39.5 -18 41 11 12,5 2.5 m 2.1 m E1 cB,pS,R,psmbM 106 NGC 1421 MCG - 2-10- 8 GALXY ERI 03 42.5 -13 29 11,4 12,5 3.4 m 0.8 m SBbc F,cL,mE 0,r 33 NGC 1491 LBN 704 BRTNB PER 04 03.2 +51 19 99,9 99,9 6 m 9 m E vB,S,iF,bM,r,* inv 81 NGC 1507 UGC 2947 GALXY ERI 04 04.5 -02 11 12,3 13,4 3.6 m 1 m SBp vF,pL,mE,vlbM,er 57 NGC 1514 PK 165-15.1 PLNNB TAU 04 09.3 +30 47 10,8 12,6 120 s 90 s 3(2) *9 in neb 3'Diam 57 NGC 1579 LBN 766 BRTNB PER 04 30.2 +35 17 99,9 99,9 3 m 3 m R pB,vL,iR,mbM,*8 2' nf 33 NGC 1582 OCL 407 OPNCL PER 04 31.8 +43 47 7 99,9 37.0 m IV 2 p Cl,vL,pRi,lC,st L 81 NGC 1587 UGC 3063 GALXY TAU 04 30.7 +00 40 11,7 12,7 1.7 m 1.4 m E1p F,pS,R,r,p of Dneb 81 NGC 1600 MCG - 1-12- 17 GALXY ERI 04 31.7 -05 05 10,9 12,4 3.1 m 2.2 m E2 pB,pL,R,gmbM 33 NGC 1605 OCL 406 OPNCL PER 04 34.9 +45 16 10,7 99,9 5.0 m III 1 m Cl,vF,pS,C,st eS 81 NGC 1618 MCG - 1-12- 34 GALXY ERI 04 36.1 -03 09 12,7 13,3 2.4 m 0.8 m SBb F,S,iF,lbM,2* sf 33 NGC 1624 OCL 403 CL+NB PER 04 40.6 +50 28 11,8 99,9 1.9 m II 1 p n:b F,cL,iF,6or7*+ neb 81 NGC 1637 MCG 0-12- 68 GALXY ERI 04 41.5 -02 52 10,8 13,4 3.9 m 3.3 m SBc cB,L,R,vgbM 81 NGC 1662 OCL 470 OPNCL ORI 04 48.4 +10 57 6,4 99,9 20.0 m I 2 p Cl OF L&S sc st 57 NGC 1663 OCL 461 OPNCL ORI 04 48.6 +13 09 99,9 99,9 IV 2 p Cl,lRi,st L&S 81 NGC 1700 MCG - 1-13- 38 GALXY ERI 04 56.9 -04 52 11,2 13,3 3 m 1.8 m E1 cB,S,mbM* 56 NGC 1750 OPNCL TAU 05 03.9 +23 41 99,9 99,9 Cl,st L,vc sc Pagina 4 Gabriele Franzo Herschel II Chart R.A.
Recommended publications
  • Arxiv:2012.09981V1 [Astro-Ph.SR] 17 Dec 2020 2 O
    Contrib. Astron. Obs. Skalnat´ePleso XX, 1 { 20, (2020) DOI: to be assigned later Flare stars in nearby Galactic open clusters based on TESS data Olga Maryeva1;2, Kamil Bicz3, Caiyun Xia4, Martina Baratella5, Patrik Cechvalaˇ 6 and Krisztian Vida7 1 Astronomical Institute of the Czech Academy of Sciences 251 65 Ondˇrejov,The Czech Republic(E-mail: [email protected]) 2 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, 119234, Moscow, Russia 3 Astronomical Institute, University of Wroc law, Kopernika 11, 51-622 Wroc law, Poland 4 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotl´aˇrsk´a2, 611 37 Brno, Czech Republic 5 Dipartimento di Fisica e Astronomia Galileo Galilei, Vicolo Osservatorio 3, 35122, Padova, Italy, (E-mail: [email protected]) 6 Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynsk´adolina F-2, 842 48 Bratislava, Slovakia 7 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary Received: September ??, 2020; Accepted: ????????? ??, 2020 Abstract. The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from TESS mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type ob- jects. Of all flares, 63 % were detected in sample of cool stars (Teff < 5000 K), and 29 % { in stars of spectral type G, while 23 % in K-type stars and ap- proximately 34% of all detected flares are in M-type stars.
    [Show full text]
  • Infrared Spectroscopy of Nearby Radio Active Elliptical Galaxies
    The Astrophysical Journal Supplement Series, 203:14 (11pp), 2012 November doi:10.1088/0067-0049/203/1/14 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. INFRARED SPECTROSCOPY OF NEARBY RADIO ACTIVE ELLIPTICAL GALAXIES Jeremy Mould1,2,9, Tristan Reynolds3, Tony Readhead4, David Floyd5, Buell Jannuzi6, Garret Cotter7, Laura Ferrarese8, Keith Matthews4, David Atlee6, and Michael Brown5 1 Centre for Astrophysics and Supercomputing Swinburne University, Hawthorn, Vic 3122, Australia; [email protected] 2 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) 3 School of Physics, University of Melbourne, Melbourne, Vic 3100, Australia 4 Palomar Observatory, California Institute of Technology 249-17, Pasadena, CA 91125 5 School of Physics, Monash University, Clayton, Vic 3800, Australia 6 Steward Observatory, University of Arizona (formerly at NOAO), Tucson, AZ 85719 7 Department of Physics, University of Oxford, Denys, Oxford, Keble Road, OX13RH, UK 8 Herzberg Institute of Astrophysics Herzberg, Saanich Road, Victoria V8X4M6, Canada Received 2012 June 6; accepted 2012 September 26; published 2012 November 1 ABSTRACT In preparation for a study of their circumnuclear gas we have surveyed 60% of a complete sample of elliptical galaxies within 75 Mpc that are radio sources. Some 20% of our nuclear spectra have infrared emission lines, mostly Paschen lines, Brackett γ , and [Fe ii]. We consider the influence of radio power and black hole mass in relation to the spectra. Access to the spectra is provided here as a community resource. Key words: galaxies: elliptical and lenticular, cD – galaxies: nuclei – infrared: general – radio continuum: galaxies ∼ 1. INTRODUCTION 30% of the most massive galaxies are radio continuum sources (e.g., Fabbiano et al.
    [Show full text]
  • Filter Performance Comparisons for Some Common Nebulae
    Filter Performance Comparisons For Some Common Nebulae By Dave Knisely Light Pollution and various “nebula” filters have been around since the late 1970’s, and amateurs have been using them ever since to bring out detail (and even some objects) which were difficult to impossible to see before in modest apertures. When I started using them in the early 1980’s, specific information about which filter might work on a given object (or even whether certain filters were useful at all) was often hard to come by. Even those accounts that were available often had incomplete or inaccurate information. Getting some observational experience with the Lumicon line of filters helped, but there were still some unanswered questions. I wondered how the various filters would rank on- average against each other for a large number of objects, and whether there was a “best overall” filter. In particular, I also wondered if the much-maligned H-Beta filter was useful on more objects than the two or three targets most often mentioned in publications. In the summer of 1999, I decided to begin some more comprehensive observations to try and answer these questions and determine how to best use these filters overall. I formulated a basic survey covering a moderate number of emission and planetary nebulae to obtain some statistics on filter performance to try to address the following questions: 1. How do the various filter types compare as to what (on average) they show on a given nebula? 2. Is there one overall “best” nebula filter which will work on the largest number of objects? 3.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • LIST of PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute
    LIST OF PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute of Department of Science and Technology, Govt. of India) Manora Peak, Naini Tal - 263 129, India (1955−2020) ABBREVIATIONS AA: Astronomy and Astrophysics AASS: Astronomy and Astrophysics Supplement Series ACTA: Acta Astronomica AJ: Astronomical Journal ANG: Annals de Geophysique Ap. J.: Astrophysical Journal ASP: Astronomical Society of Pacific ASR: Advances in Space Research ASS: Astrophysics and Space Science AE: Atmospheric Environment ASL: Atmospheric Science Letters BA: Baltic Astronomy BAC: Bulletin Astronomical Institute of Czechoslovakia BASI: Bulletin of the Astronomical Society of India BIVS: Bulletin of the Indian Vacuum Society BNIS: Bulletin of National Institute of Sciences CJAA: Chinese Journal of Astronomy and Astrophysics CS: Current Science EPS: Earth Planets Space GRL : Geophysical Research Letters IAU: International Astronomical Union IBVS: Information Bulletin on Variable Stars IJHS: Indian Journal of History of Science IJPAP: Indian Journal of Pure and Applied Physics IJRSP: Indian Journal of Radio and Space Physics INSA: Indian National Science Academy JAA: Journal of Astrophysics and Astronomy JAMC: Journal of Applied Meterology and Climatology JATP: Journal of Atmospheric and Terrestrial Physics JBAA: Journal of British Astronomical Association JCAP: Journal of Cosmology and Astroparticle Physics JESS : Jr. of Earth System Science JGR : Journal of Geophysical Research JIGR: Journal of Indian
    [Show full text]
  • Arxiv:1809.03080V1
    DRAFT VERSION SEPTEMBER 11, 2018 Typeset using LATEX twocolumn style in AASTeX62 Polar Dust, Nuclear Obscuration and IR SED Diversity in Type-1 AGNs ∗ JIANWEI LYU (吕建伟 )1 AND GEORGE H. RIEKE1 1 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA (Received 2018 May 15; Revised 2018 August 29; Accepted 2018 September 8) Submitted to ApJ ABSTRACT Despite the hypothesized similar face-on viewing angles, the infrared emission of type-1 AGNs has diverse spectral energy distribution (SED) shapes that deviate substantially from the well-characterized quasar tem- plates. Motivated by the commonly-seen UV-optical obscuration and the discovery of parsec-scale mid-IR polar dust emission in some nearby AGNs, we develop semi-empirical SED libraries for reddened type-1 AGNs built on the quasar intrinsic templates, assuming low-level extinction caused by an extended distribution of large dust grains. We demonstrate that this model can reproduce the nuclear UV-to-IR SED and the strong mid-IR polar dust emission of NGC 3783, the type-1 AGN with the most relevant and robust observational constraints. In addition, we compile 64 low-z Seyfert-1 nuclei with negligible mid-IR star formation contamination and satisfactorily fit the individual IR SEDs as well as the composite UV to mid-IR composite SEDs. Given the success of these fits, we characterize the possible infrared SED of AGN polar dust emission and utilize a simple but effective strategy to infer its prevalence among type-1 AGNs. The SEDs of high-z peculiar AGNs, including the extremely red quasars, mid-IR warm-excess AGNs, and hot dust-obscured galaxies, can be also reproduced by our model.
    [Show full text]
  • Observing Galaxies in Pegasus 01 October 2015 23:07
    Observing galaxies in Pegasus 01 October 2015 23:07 Context As you look towards Pegasus you are looking below the galactic plane under the Orion spiral arm of our galaxy. The Perseus-Pisces supercluster wall of galaxies runs through this constellation. It stretches from RA 3h +40 in Perseus to 23h +10 in Pegasus and is around 200 million light years away. It includes the Pegasus I group noted later this document. The constellation is well placed from mid summer to late autumn. Pegasus is a rich constellation for galaxy observing. I have observed 80 galaxies in this constellation. Relatively bright galaxies This section covers the galaxies that were visible with direct vision in my 16 inch or smaller scopes. This list will therefore grow over time as I have not yet viewed all the galaxies in good conditions at maximum altitude in my 16 inch scope! NGC 7331 MAG 9 This is the stand out galaxy of the constellation. It is similar to our milky way. Around it are a number of fainter NGC galaxies. I have seen the brightest one, NGC 7335 in my 10 inch scope with averted vision. I have seen NGC 7331 in my 25 x 100mm binoculars. NGC 7814 - Mag 10 ? Not on observed list ? This is a very lovely oval shaped galaxy. By constellation Page 1 NGC 7332 MAG 11 / NGC 7339 MAG 12 These galaxies are an isolated bound pair about 67 million light years away. NGC 7339 is the fainter of the two galaxies at the eyepiece. I have seen NGC 7332 in my 25 x 100mm binoculars.
    [Show full text]
  • Übersicht NGC-Objektauswahl Cepheus Zur Übersichtskarte
    NGC-Objektauswahl Cepheus NGC 40 NGC 7055 NGC 7354 NGC 188 NGC 7076 NGC 7380 NGC 1184 NGC 7129 NGC 7419 NGC 1544 NGC 7139 NGC 7423 NGC 2276 NGC 7142 NGC 7429 NGC 2300 NGC 7160 NGC 7510 NGC 6939 NGC 7226 NGC 7538 NGC 6949 NGC 7235 NGC 7708 NGC 6951 NGC 7261 NGC 7762 NGC 7023 NGC 7281 NGC 7822 Sternbild- Übersicht Zur Objektauswahl: Nummer anklicken Zur Übersichtskarte: Objekt anklicken Sternbildübersicht Auswahl NGC 40_7708 Aufsuchkarte Auswahl NGC 188_Aufsuchkarte 2 UMi 2 Auswahl NGC 1184 Aufsuchkarte Auswahl NGC 1544_2276_2300 Aufsuchkarte Auswahl NGC 6939 Aufsuchkarte Auswahl NGC 6949_6951 Aufsuchkarte Auswahl NGC 7023 Aufsuchkarte Auswahl NGC 7055 Aufsuchkarte Auswahl NGC 7076 Aufsuchkarte Auswahl NGC 7129_7142 Aufsuchkarte Auswahl NGC 7139_7160 Aufsuchkarte Auswahl NGC 7226_7235 Aufsuchkarte Auswahl N 7261_7281 Aufsuchkarte Auswahl NGC 7354_7419_7429_7510_7538 Aufsuchkarte Auswahl NGC 7380_7423 Aufsuchkarte Auswahl NGC 7762_7822 Aufsuchkarte Auswahl NGC 40 Übersichtskarte Aufsuch- Auswahl karte NGC 188 Übersichtskarte Aufsuch- Auswahl karte NGC 1184 Übersichtskarte Aufsuch- Auswahl karte NGC 1544 Übersichtskarte Aufsuch- Auswahl karte N 2276_N 2300 Übersichtskarte Aufsuch- Auswahl karte NGC 6939 Übersichtskarte Aufsuch- Auswahl karte NGC 6949 Übersichtskarte Aufsuch- Auswahl karte NGC 6951 Übersichtskarte Aufsuch- Auswahl karte NGC 7023 Übersichtskarte Aufsuch- Auswahl karte NGC 7055 Übersichtskarte Aufsuch- Auswahl karte NGC 7076 Übersichtskarte Aufsuch- Auswahl karte NGC 7129_7142 Übersichtskarte Aufsuch- Auswahl karte NGC 7139
    [Show full text]
  • Newsletter Archive the Skyscraper October 2018
    the vol. 45 no. 10 Skyscraper October 2018 AMATEUR ASTRONOMICAL SOCIETY OF RHODE ISLAND 47 PEEPTOAD ROAD NORTH SCITUATE, RHODE ISLAND 02857 WWW.THESKYSCRAPERS.ORG In This Issue: 2 Upcoming Meetings 2 Skyscrapers Library Update 3 Moon Maps 4 Observe the Moon 5 The Sun, Moon & Planets in October 6 October Meteor Showers & Still Time to Observe Mars and Saturn 7 On the Change of Seasons 8 NGC 7129 : Cluster & Nebula in Cepheus Saturday, October 20, 7:00pm 9 August Reports at Seagrave Observatory 9 My First Telescope: A Every year, astronomers dedicate one night to really concentrate on our Family Program only natural satellite, the Moon. Observatories around the world will be enjoying the sight of the Moon, in its waxing gibbous phase. Seagrave Memorial Observatory will have its beautiful 1878 8-inch Clark refractor and other telescopes open for the evening. Members of Skyscrap- ers, Inc., guardians of Seagrave Memorial Observatory, will be available to interpret your observations, to make your visit truly a night to remember. Come and be a part of a worldwide effort to introduce, and appreciate, our Phases of the Moon nearest celestial neighbor. Last Quarter Moon October 2 09:45 New Moon October 9 03:47 Seagrave Memorial First Quarter Moon Observatory October 16 18:02 Open Nights Full Hunter's Moon October 24 16:45 Saturdays st 7:00 pm Last Quarter Moon weather permitting October 31 16:40 Upcoming Meetings Skyscrapers Library Update Friday, November 2: Seagrave Observatory Thanks to member Roger Forsythe for his donation of books to Diana Hannikainen: "Stepping Through the Cosmos" our library a couple of months ago.
    [Show full text]
  • Understanding the H2/HI Ratio in Galaxies 3
    Mon. Not. R. Astron. Soc. 394, 1857–1874 (2009) Printed 6 August 2021 (MN LATEX style file v2.2) Understanding the H2/HI Ratio in Galaxies D. Obreschkow and S. Rawlings Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK Accepted 2009 January 12 ABSTRACT galaxy We revisit the mass ratio Rmol between molecular hydrogen (H2) and atomic hydrogen (HI) in different galaxies from a phenomenological and theoretical viewpoint. First, the local H2- mass function (MF) is estimated from the local CO-luminosity function (LF) of the FCRAO Extragalactic CO-Survey, adopting a variable CO-to-H2 conversion fitted to nearby observa- 5 1 tions. This implies an average H2-density ΩH2 = (6.9 2.7) 10− h− and ΩH2 /ΩHI = 0.26 0.11 ± · galaxy ± in the local Universe. Second, we investigate the correlations between Rmol and global galaxy properties in a sample of 245 local galaxies. Based on these correlations we intro- galaxy duce four phenomenological models for Rmol , which we apply to estimate H2-masses for galaxy each HI-galaxy in the HIPASS catalog. The resulting H2-MFs (one for each model for Rmol ) are compared to the reference H2-MF derived from the CO-LF, thus allowing us to determine the Bayesian evidence of each model and to identify a clear best model, in which, for spi- galaxy ral galaxies, Rmol negatively correlates with both galaxy Hubble type and total gas mass. galaxy Third, we derive a theoretical model for Rmol for regular galaxies based on an expression for their axially symmetric pressure profile dictating the degree of molecularization.
    [Show full text]
  • A Search For" Dwarf" Seyfert Nuclei. VII. a Catalog of Central Stellar
    TO APPEAR IN The Astrophysical Journal Supplement Series. Preprint typeset using LATEX style emulateapj v. 26/01/00 A SEARCH FOR “DWARF” SEYFERT NUCLEI. VII. A CATALOG OF CENTRAL STELLAR VELOCITY DISPERSIONS OF NEARBY GALAXIES LUIS C. HO The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 JENNY E. GREENE1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ ALEXEI V. FILIPPENKO Department of Astronomy, University of California, Berkeley, CA 94720-3411 AND WALLACE L. W. SARGENT Palomar Observatory, California Institute of Technology, MS 105-24, Pasadena, CA 91125 To appear in The Astrophysical Journal Supplement Series. ABSTRACT We present new central stellar velocity dispersion measurements for 428 galaxies in the Palomar spectroscopic survey of bright, northern galaxies. Of these, 142 have no previously published measurements, most being rela- −1 tively late-type systems with low velocity dispersions (∼<100kms ). We provide updates to a number of literature dispersions with large uncertainties. Our measurements are based on a direct pixel-fitting technique that can ac- commodate composite stellar populations by calculating an optimal linear combination of input stellar templates. The original Palomar survey data were taken under conditions that are not ideally suited for deriving stellar veloc- ity dispersions for galaxies with a wide range of Hubble types. We describe an effective strategy to circumvent this complication and demonstrate that we can still obtain reliable velocity dispersions for this sample of well-studied nearby galaxies. Subject headings: galaxies: active — galaxies: kinematics and dynamics — galaxies: nuclei — galaxies: Seyfert — galaxies: starburst — surveys 1. INTRODUCTION tors, apertures, observing strategies, and analysis techniques.
    [Show full text]
  • III. Characteristics of Group Central Radio Galaxies in the Local Universe
    MNRAS 489, 2488–2504 (2019) doi:10.1093/mnras/stz2082 Advance Access publication 2019 July 30 The complete local volume groups sample – III. Characteristics of group central radio galaxies in the Local Universe Konstantinos Kolokythas,1‹ Ewan O’Sullivan ,2 Huib Intema ,3,4 Somak Raychaudhury ,1,5,6 Arif Babul,7,8 Simona Giacintucci9 and Myriam Gitti10,11 1Inter-University Centre for Astronomy and Astrophysics, Pune University Campus, Ganeshkhind, Pune, Maharashtra 411007, India 2Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 3International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia 4 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands Downloaded from https://academic.oup.com/mnras/article/489/2/2488/5541074 by guest on 23 September 2021 5School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK 6Department of Physics, Presidency University, 86/1 College Street, Kolkata 700073, India 7Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1, Canada 8Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland 9Naval Research Laboratory, 4555 Overlook Avenue SW, Code 7213, Washington, DC 20375, USA 10Dipartimento di Fisica e Astronomia, Universita´ di Bologna, via Gobetti 93/2, 40129 Bologna, Italy 11INAF, Istituto di Radioastronomia di Bologna, via Gobetti 101, 40129 Bologna, Italy Accepted 2019 July 22. Received 2019 July 17; in original form 2019 May 31 ABSTRACT Using new 610 and 235 MHz observations from the giant metrewave radio telescope (GMRT) in combination with archival GMRT and very large array (VLA) survey data, we present the radio properties of the dominant early-type galaxies in the low-richness subsample of the complete local-volume groups sample (CLoGS; 27 galaxy groups) and provide results for the radio properties of the full CLoGS sample for the first time.
    [Show full text]