Objective Satellite-Based Detection of Overshooting Tops Using Infrared Window Channel Brightness Temperature Gradients
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Soaring Weather
Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven contributions to meteorology. For example, soar tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft. -
American Meteorological Society Revised Manuscript Click Here to Download Manuscript (Non-Latex): JAMC-D-14-0252 Revision3.Docx
AMERICAN METEOROLOGICAL SOCIETY Journal of Applied Meteorology and Climatology EARLY ONLINE RELEASE This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it is being posted so soon after acceptance, it has not yet been copyedited, formatted, or processed by AMS Publications. This preliminary version of the manuscript may be downloaded, distributed, and cited, but please be aware that there will be visual differences and possibly some content differences between this version and the final published version. The DOI for this manuscript is doi: 10.1175/JAMC-D-14-0252.1 The final published version of this manuscript will replace the preliminary version at the above DOI once it is available. If you would like to cite this EOR in a separate work, please use the following full citation: Wang, Y., and B. Geerts, 2015: Vertical-plane dual-Doppler radar observations of cumulus toroidal circulations. J. Appl. Meteor. Climatol. doi:10.1175/JAMC-D-14- 0252.1, in press. © 2015 American Meteorological Society Revised manuscript Click here to download Manuscript (non-LaTeX): JAMC-D-14-0252_revision3.docx Vertical-plane dual-Doppler radar observations of cumulus toroidal circulations Yonggang Wang1, and Bart Geerts University of Wyoming Submitted to J. Appl. Meteor. Climat. October 2014 Revised version submitted in May 2015 1 Corresponding author address: Yonggang Wang, Department of Atmospheric Science, University of Wyoming, Laramie WY 82071, USA; email: [email protected] 1 Profiling dual-Doppler radar observations of cumulus toroidal circulations 2 3 Abstract 4 5 6 High-resolution vertical-plane dual-Doppler velocity data, collected by an airborne profiling 7 cloud radar in transects across non-precipitating orographic cumulus clouds, are used to examine 8 vortical circulations near cloud top. -
Manuscript Was Written Jointly by YL, CK, and MZ
A simplified method for the detection of convection using high resolution imagery from GOES-16 Yoonjin Lee1, Christian D. Kummerow1,2, Milija Zupanski2 1Department of Atmospheric Science, Colorado state university, Fort Collins, CO 80521, USA 5 2Cooperative Institute for Research in the Atmosphere, Colorado state university, Fort Collins, CO 80521, USA Correspondence to: Yoonjin Lee ([email protected]) Abstract. The ability to detect convective regions and adding heating in these regions is the most important skill in forecasting severe weather systems. Since radars are most directly related to precipitation and are available in high temporal resolution, their data are often used for both detecting convection and estimating latent heating. However, radar data are limited to land areas, 10 largely in developed nations, and early convection is not detectable from radars until drops become large enough to produce significant echoes. Visible and Infrared sensors on a geostationary satellite can provide data that are more sensitive to small droplets, but they also have shortcomings: their information is almost exclusively from the cloud top. Relatively new geostationary satellites, Geostationary Operational Environmental Satellites-16 and -17 (GOES-16 and GOES-17), along with Himawari-8, can make up for some of this lack of vertical information through the use of very high spatial and temporal 15 resolutions. This study develops two algorithms to detect convection at vertically growing clouds and mature convective clouds using 1-minute GOES-16 Advanced Baseline Imager (ABI) data. Two case studies are used to explain the two methods, followed by results applied to one month of data over the contiguous United States. -
Assessing and Improving Cloud-Height Based Parameterisations of Global Lightning Flash Rate, and Their Impact on Lightning-Produced Nox and Tropospheric Composition
https://doi.org/10.5194/acp-2020-885 Preprint. Discussion started: 2 October 2020 c Author(s) 2020. CC BY 4.0 License. Assessing and improving cloud-height based parameterisations of global lightning flash rate, and their impact on lightning-produced NOx and tropospheric composition 5 Ashok K. Luhar1, Ian E. Galbally1, Matthew T. Woodhouse1, and Nathan Luke Abraham2,3 1CSIRO Oceans and Atmosphere, Aspendale, 3195, Australia 2National Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge, UK 3Department of Chemistry, University of Cambridge, Cambridge, UK 10 Correspondence to: Ashok K. Luhar ([email protected]) Abstract. Although lightning-generated oxides of nitrogen (LNOx) account for only approximately 10% of the global NOx source, it has a disproportionately large impact on tropospheric photochemistry due to the conducive conditions in the tropical upper troposphere where lightning is mostly discharged. In most global composition models, lightning flash rates used to calculate LNOx are expressed in terms of convective cloud-top height via the Price and Rind (1992) (PR92) 15 parameterisations for land and ocean. We conduct a critical assessment of flash-rate parameterisations that are based on cloud-top height and validate them within the ACCESS-UKCA global chemistry-climate model using the LIS/OTD satellite data. While the PR92 parameterisation for land yields satisfactory predictions, the oceanic parameterisation underestimates the observed flash-rate density severely, yielding a global average of 0.33 flashes s-1 compared to the observed 9.16 -1 flashes s over the ocean and leading to LNOx being underestimated proportionally. We formulate new/alternative flash-rate 20 parameterisations following Boccippio’s (2002) scaling relationships between thunderstorm electrical generator power and storm geometry coupled with available data. -
Cloud-Base Height Derived from a Ground-Based Infrared Sensor and a Comparison with a Collocated Cloud Radar
VOLUME 35 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY APRIL 2018 Cloud-Base Height Derived from a Ground-Based Infrared Sensor and a Comparison with a Collocated Cloud Radar ZHE WANG Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, CMA Key Laboratory for Aerosol–Cloud–Precipitation, and School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, and Training Center, China Meteorological Administration, Beijing, China ZHENHUI WANG Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, CMA Key Laboratory for Aerosol–Cloud–Precipitation, and School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China XIAOZHONG CAO,JIAJIA MAO,FA TAO, AND SHUZHEN HU Atmosphere Observation Test Bed, and Meteorological Observation Center, China Meteorological Administration, Beijing, China (Manuscript received 12 June 2017, in final form 31 October 2017) ABSTRACT An improved algorithm to calculate cloud-base height (CBH) from infrared temperature sensor (IRT) observations that accompany a microwave radiometer was described, the results of which were compared with the CBHs derived from ground-based millimeter-wavelength cloud radar reflectivity data. The results were superior to the original CBH product of IRT and closer to the cloud radar data, which could be used as a reference for comparative analysis and synergistic cloud measurements. Based on the data obtained by these two kinds of instruments for the same period (January–December 2016) from the Beijing Nanjiao Weather Observatory, the results showed that the consistency of cloud detection was good and that the consistency rate between the two datasets was 81.6%. The correlation coefficient between the two CBH datasets reached 0.62, based on 73 545 samples, and the average difference was 0.1 km. -
METAR/SPECI Reporting Changes for Snow Pellets (GS) and Hail (GR)
U.S. DEPARTMENT OF TRANSPORTATION N JO 7900.11 NOTICE FEDERAL AVIATION ADMINISTRATION Effective Date: Air Traffic Organization Policy September 1, 2018 Cancellation Date: September 1, 2019 SUBJ: METAR/SPECI Reporting Changes for Snow Pellets (GS) and Hail (GR) 1. Purpose of this Notice. This Notice coincides with a revision to the Federal Meteorological Handbook (FMH-1) that was effective on November 30, 2017. The Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM) approved the changes to the reporting requirements of small hail and snow pellets in weather observations (METAR/SPECI) to assist commercial operators in deicing operations. 2. Audience. This order applies to all FAA and FAA-contract weather observers, Limited Aviation Weather Reporting Stations (LAWRS) personnel, and Non-Federal Observation (NF- OBS) Program personnel. 3. Where can I Find This Notice? This order is available on the FAA Web site at http://faa.gov/air_traffic/publications and http://employees.faa.gov/tools_resources/orders_notices/. 4. Cancellation. This notice will be cancelled with the publication of the next available change to FAA Order 7900.5D. 5. Procedures/Responsibilities/Action. This Notice amends the following paragraphs and tables in FAA Order 7900.5. Table 3-2: Remarks Section of Observation Remarks Section of Observation Element Paragraph Brief Description METAR SPECI Volcanic eruptions must be reported whenever first noted. Pre-eruption activity must not be reported. (Use Volcanic Eruptions 14.20 X X PIREPs to report pre-eruption activity.) Encode volcanic eruptions as described in Chapter 14. Distribution: Electronic 1 Initiated By: AJT-2 09/01/2018 N JO 7900.11 Remarks Section of Observation Element Paragraph Brief Description METAR SPECI Whenever tornadoes, funnel clouds, or waterspouts begin, are in progress, end, or disappear from sight, the event should be described directly after the "RMK" element. -
Äikesega) Kaasnevad Ohtlikud Ilmanähtused
TALLINNA TEHNIKAÜLIKOOL Eesti Mereakadeemia Merenduskeskus Veeteede lektoraat Raldo Täll RÜNKSAJUPILVEDEGA KAASNEVAD OHTLIKUD ILMANÄHTUSED LÄÄNEMEREL Lõputöö Juhendajad: Jüri Kamenik Lia Pahapill Tallinn 2016 SISUKORD SISUKORD ................................................................................................................................ 2 SÕNASTIK ................................................................................................................................ 4 SISSEJUHATUS ........................................................................................................................ 6 1. RÜNKSAJUPILVED JA ÄIKE ............................................................................................. 8 1.1. Äikese tekkimine ja areng ............................................................................................. 10 1.1.1. Äikese arengustaadiumid ........................................................................................ 11 1.2. Äikeste klassifikatsioon ................................................................................................. 14 1.2.1. Sünoptilise olukorra põhine liigitus ........................................................................ 14 1.2.2. Äikese seos tsüklonitega ......................................................................................... 15 1.2.3. Organiseerumispõhine liigitus ................................................................................ 16 2. RÜNKSAJUPILVEDEGA (ÄIKESEGA) KAASNEVAD OHTLIKUD ILMANÄHTUSED -
Session 8.Pdf
MARTIN SETVÁK [email protected] CZECH HYDROMETEOROLOGICAL INSTITUTE ČESKÝ HYDROMETEOROLOGICKÝ ÚSTAV http://www.chmi.cz http://www.setvak.cz Anticipated benefits of improved temporal and spatial resolution (with focus on deep convective clouds) EUMeTrain Event Week on MTG-I Satellite, 7 – 11 November 2016 Martin Setvák version: 2016-11-11 Introduction The most significant impact of improved spatial resolution and shorter scan interval: observations (detection, monitoring, nowcasting, …) and studies of short-lived and small scale features or phenomena e.g. fires, valley fog, shallow convection, and tops of deep convective clouds (storms) – namely their overshooting tops Martin Setvák Introduction The most significant impact of improved spatial resolution and shorter scan interval: observations (detection, monitoring, nowcasting, …) and studies of short-lived and small scale features or phenomena e.g. fires, valley fog, shallow convection, and tops of deep convective clouds (storms) – namely their overshooting tops geometrical properties and characteristics (visible and near-IR bands), cloud microphysics, cloud-top brightness temperature (BT) Martin Setvák Overshooting tops definition and appearance OVERSHOOTING TOP (anvil dome, penetrating top): A domelike protrusion above a cumulonimbus anvil, representing the intrusion of an updraft through its equilibrium level (level of neutral buoyancy). It is usually a transient feature because the rising parcel's momentum acquired during its buoyant ascent carries it past the point where it is -
Severe Weather in the United States
Module 18: Severe Thunderstorms in the United States Tuscaloosa, Alabama May 18, 2011 Dan Koopman 2011 What is “Severe Weather”? Any meteorological condition that has potential to cause damage, serious social disruption, or loss of human life. American Meteorological Society: In general, any destructive storm, but usually applied to severe local storms in particular, that is, intense thunderstorms, hailstorms, and tornadoes. Three Stages of Thunderstorm Development Stage 1: Cumulus • A warm parcel of air begins ascending vertically into the atmosphere. • In an unstable environment, the parcel will continue to rise as long as it is warmer than the air around it. • Billowing, puffy Cumulus Congestus Clouds continue to build in towers. Stage 2: Mature • At a certain altitude, the parcel is no longer warmer than its environment. It is unable to rise any further and develops the distinctive “Anvil” shape as seen in this figure. • In cases of particularly strong updrafts, the vertical velocity of the updraft may be sufficient to penetrate this altitude causing an “overshooting top” to develop above the flat top of the anvil. Stage 3: Dissipating • Convective inflow shut off by strong downdrafts, no more cloud droplet formation, downdrafts continue and gradually weaken until light precipitation rains out • Water droplets aloft being to coalesce until they are too heavy to support and begin to fall to the surface, strengthening the downdraft. Basic Ingredients for Thunderstorms • Moisture • Unstable Air • Forcing Mechanism Moisture Thunderstorms development generally requires dewpoints > 50°F Unstable Air Stable is resistant to change. When the air is stable, even if a parcel of air is lifted above its original position (say by a mountain for example), its temperature will always remain cooler than its environment, meaning that it will resist upwards movement. -
Flash Flooding
NationalNational OceanicOceanic andand AtmosphericAtmospheric AdministrationAdministration (NOAA)(NOAA) NationalNational WeatherWeather ServiceService (NWS)(NWS) PresentsPresents SevereSevere WeatherWeather ObserverObserver andand SafetySafety TrainingTraining 20052005 Severe Weather Spotter Line 1-888-668-3344 Spotter Reports E-mail: www.crh.noaa.gov/espotter Homepage Address: www.crh.noaa.gov/iwx 2 GoalsGoals ofof thethe TrainingTraining You will learn: • Definitions of important weather terms and severe weather criteria • How thunderstorms develop and why some become severe • How to correctly identify cloud features that may or may not be associated with severe weather • What information the observer is to report and how to report it • Ways to receive weather information before and during severe weather events • Observer Safety! 3 WFOWFO NorthernNorthern IndianaIndiana (WFO(WFO IWX)IWX) CountyCounty WarningWarning andand ForecastForecast AreaArea (CWFA)(CWFA) Work with public, state and local officials Dedicated team of highly trained professionals 24 hours a day/7 days a week Prepare forecasts and warnings for 2.3 million people in 37 counties 4 SKYWARNSKYWARN (Severe(Severe Weather)Weather) ObserversObservers Why Are You Critical to NWS Operations? • Help overcome Doppler Radar limitations • Provide ground truth which can be correlated with radar signatures prior to, during, and after severe weather • Ground truth reports in warnings heighten public awareness and allow us to have confidence in our warning decisions 5 SKYWARNSKYWARN (Severe(Severe Weather)Weather) ObserversObservers Why Are You Critical to NWS Operations? • The NWS receives hundreds of reports of “False” or “Mis-Identified” funnel clouds and tornadoes each year • We strongly rely on the “2 out of 3” Rule before issuing a warning. Of the following, we like to have 2 out of 3 present before sending out a warning. -
Chapter 12 the Synoptic Code
Amendment no i ~ October 1994 CHAPTER 12 THE SYNOPTIC CODE - DETAILED DESCRIPTION 12.1 GENERAL. Detailed coding instructions for each element of each group of the Synoptic code are given below. The instructions often include reference to entries on the Surface Weather Record Form 63—2322. In most cases, the observerwill findthat the preparation ofthe Synoptic message is simplifiedifthe appropriate entries forlines andcolumns I to 42aon Form 63—2322 are completedbefore preparing the coded fl message. Observers may find that Form63—9028, Tables forSynoptic Code, will assistthem in encoding the synoptic report. 12.1 .1 Complete instructions for recording the observed data on Form 63—2322 are given in Chapter 13. 12.2 SECTION 0 12.2.1 Group MIMIMJMJ This group is inserted by the commmunications computer in the message header foridentification of synoptic bulletinsand is encoded AAXX for synoptic reports from land stations. It is the first group of the second line of the message header. (M1M1M~M~ is encoded BBXX forsy- noptic reports from ship stations.) 12.2.2 Group YYGGIW This groupis insertedby the communicationscomputer as the second group of the second line of the message header of a synoptic bulletin originating from a land station. 12.2.2.1 YY — Day of the month (UTC). 12.2.2.2 GG — Hour of the observation (UTC). 12.2.2.3 i~ — Wind indicator, showing the units of wind speed and whether the wind speed is measured or estimated. The communications computer will insert the figure 4 fori~, atCanadian land stations. Observers on ships will have the o ption of specifying a3 or 4, depending on whether or not the ships are equipped with anemometers. -
Glossary of Severe Weather Terms
Glossary of Severe Weather Terms -A- Anvil The flat, spreading top of a cloud, often shaped like an anvil. Thunderstorm anvils may spread hundreds of miles downwind from the thunderstorm itself, and sometimes may spread upwind. Anvil Dome A large overshooting top or penetrating top. -B- Back-building Thunderstorm A thunderstorm in which new development takes place on the upwind side (usually the west or southwest side), such that the storm seems to remain stationary or propagate in a backward direction. Back-sheared Anvil [Slang], a thunderstorm anvil which spreads upwind, against the flow aloft. A back-sheared anvil often implies a very strong updraft and a high severe weather potential. Beaver ('s) Tail [Slang], a particular type of inflow band with a relatively broad, flat appearance suggestive of a beaver's tail. It is attached to a supercell's general updraft and is oriented roughly parallel to the pseudo-warm front, i.e., usually east to west or southeast to northwest. As with any inflow band, cloud elements move toward the updraft, i.e., toward the west or northwest. Its size and shape change as the strength of the inflow changes. Spotters should note the distinction between a beaver tail and a tail cloud. A "true" tail cloud typically is attached to the wall cloud and has a cloud base at about the same level as the wall cloud itself. A beaver tail, on the other hand, is not attached to the wall cloud and has a cloud base at about the same height as the updraft base (which by definition is higher than the wall cloud).