High-Power and High-Efficiency True Green Laser Diodes Pdf 285 KB

Total Page:16

File Type:pdf, Size:1020Kb

High-Power and High-Efficiency True Green Laser Diodes Pdf 285 KB ELECTRONICS High-Power and High-Efficiency True Green Laser Diodes Shimpei TAKAGI*, Masaki UENO, Koji KATAYAMA, Takatoshi IKEGAMI, Takao NAKAMURA and Katsunori YANASHIMA The authors demonstrated InGaN green laser diodes (LDs) that were grown on semipolar {2021} GaN substrate and achieved output power of over 100 mW in the spectral region beyond 530 nm. In the range of 525-532 nm, these LDs realized wall plug efficiencies as high as 7.0-8.9%, which exceed those reported for c-plane LDs. Moreover, the InGaN green LDs are expected to have a long lifetime of over 5,000 hours under auto power control of 50 mW at a case temperature of 55˚C. These results suggest that the InGaN green LDs grown on the {2021} plane are ideal as light sources for applications that require wavelengths of over 525 nm. Keywords: semipolar, GaN, green, semiconductor, laser 1. Introduction Although lasing wavelengths of 499 nm on a nonpolar m- plane(7) and 426 nm on a semipolar (1122) plane have been Recently, the development of InGaN-based green laser reported(8), both planes are subject to the problem of the diodes (LDs) has been the subject of extensive studies since crystalline quality of InGaN QWs. Under these circum- these lasers would find immediate application in red-green- stances, we have been investigating other novel planes, put- blue (RGB) laser projectors, enabling high color repro- ting priority on the crystalline quality rather than reducing ducibility, focus-free operation, and power saving at the the piezoelectric fields to zero, and have found out the su- same time. Although green lasers based on SHG*1 tech- periority of a {2021} plane. By fabricating LDs on this plane, nologies are already available, semiconductor LDs have ad- we have successfully demonstrated the world’s first true vantages in size, stability, and efficiency for commercial green pulsed operation at 531 nm in 2009(9), followed by application. CW operation at 520 nm(10) and lower threshold CW oper- 2 (11) It is known that two problems exist in achieving longer ation at 525 nm with Jth = 4.3 kA/cm . wavelength on InGaN-based green LDs. One is a decrease This time, in a joint development with Sony Corpora- in luminescent efficiency due to piezoelectric fields. Blue- tion, we have succeeded in the CW operation of InGaN violet LDs, which were the first InGaN-based LDs used in green LDs fabricated on semipolar {2021} GaN substrates Blue-ray players, employ (0001) plane (c -plane) GaN sub- with output power of over 100 mW in the spectral region strates. On the c -plane, large piezoelectric fields are cre- beyond 530 nm. We have also demonstrated the long-term ated in the direction of the c -axis due to a spontaneous reliability of these LDs at 55˚C. In this paper, we report on polarization caused by the asymmetry of the crystal as well the recent progress on development of the semipolar as the strain resulting from a lattice mismatch between the {2021} green LDs. InGaN active layer and the GaN substrate. These piezoelec- tric fields spatially separate an electron wave function and a hole wave function in the quantum wells (QWs) and re- duce luminescent efficiency. The second problem is In 2. Experiment compositional fluctuations with increasing In contents in the InGaN active layer caused by the immiscibility of InN First, we focus on the semipolar {2021} plane GaN sub- with GaN. Although these fluctuations improve lumines- strates we utilized. As shown in Fig. 1, this is a typical low- cent efficiency on blue LEDs*2 due to the localized car- index plane tilted at 75.1˚ to the c -plane towards the rier(1), they generate non-radiative defects on green LDs. m-axis, and both Ga and N atoms exist at the surface of this Moreover, these fluctuations increase the luminescence plane. While the piezoelectric fields on a nonpolar m-plane spectrum width and reduce the differential gain, leading and a semipolar (1122) plane reduce to zero, those on the to the increase of operating currents(2),(3). {2021} plane are one-third of those on the c -plane and ori- In spite of these problems, many groups have suc- ented in opposite direction. ceeded in lasing in the spectral range from the blue-green The semipolar {2021} plane GaN substrates were pro- to the green regions since 2009. Although the wavelength duced by HVPE*4. The substrates exhibit n-type conductivity over 500 nm was believed to be difficult to achieve on the and threading dislocation densities of less than 1 × 106 cm-2 (12). c -plane, CW*3 operation at 515 nm has been demonstrated The LD structures were grown by OMVPE*5. An n-type GaN at room temperature (RT) by improving the crystalline layer was grown directly on the GaN substrate, followed by quality of QWs(4),(5). More recently, a lasing wavelength of an n-type InAlGaN cladding layer, an n-type InGaN wave- 531 nm has also been reported(6). In addition, an approach guiding layer, an InGaN multiple QW active region, a p-type using a nonpolar or semipolar plane has been carried out AlGaN electron-blocking layer, a p-type InGaN waveguiding with the expectation of lowering the piezoelectric fields. layer, a p-type InAlGaN cladding layer, and a p-type GaN 102 · High-Power and High-Efficiency True Green Laser Diodes (a) (b) spectral region beyond 530 nm. The output power was 168 mW at 522.0 nm, 167 mW at 525.1 nm, 105 mW at 531.3 nm, Ga 107 mW at 532.1 nm, and 75 mW at 535.7 nm under CW op- N [0001] eration at RT. In our previous work, we reported on the ex- ceptionally low threshold current densities of these LDs in comparison with those of the c-plane LDs in the green spec- [1010] tral region of 520-530 nm. For practical application, how- (11) [1120] ever, the slope efficiencies needed to be improved . This time, we optimized the cavity length and mirror reflectivity, Fig. 1. (a) c-plane GaN substrate, (b) {2021} plane GaN substrate and succeeded in improving the slope efficiency fourfold while suppressing the increase of the threshold current. This improvement of the slope efficiency has led to the remark- able progress in the maximum output power. contact layer. The quaternary InAlGaN cladding layer lat- We now discuss the WPE*6 of semipolar {2021} and c- tice-matched to the GaN substrate is a key factor to high plane green LDs. As shown in Fig. 2 (b), in the green spectral crystalline quality. A ridge waveguide of 2-µm width was fab- region, our {2021} plane LDs clearly exhibit higher WPEs. ricated by conventional dry etching and photolithography The difference in the WPE between two crystal orientations techniques. The 500-µm-long cavities and mirror facets increases with increasing wavelength. This difference may were formed by cleaving. The front facets were coated with be attributed to the higher compositional homogeneity of dielectric mirrors of approximately 50% in reflectivity. In-rich InGaN QWs on the {2021} plane and the weaker piezoelectric fields. As discussed in the previous works, the narrow electroluminescence line width, uniform micro- scopic PL image, and abrupt interfaces of QWs indicated 3. Result the homogeneity of InGaN QWs grown on the {2021} plane(16). This is supported by other experimental results Figure 2 (a) compares the output power of different obtained by time-resolved photoluminescence measure- types of green LDs(13)-(15). The green LDs fabricated on the ments(17). The experimental results obtained in this work {2021} plane exhibit output power of over 100 mW in the indicate that the deterioration in the crystalline quality of the InGaN QWs with increasing In composition is inhibited by fabricating the InGaN QWs on the {2021} plane. In ad- dition, the improvement of the WPE has enabled CW las- (a) ing at 536.6 nm, as shown in Fig. 3, which is the longest 200 180 lasing wavelength by an InGaN LD, to the best of our 160 knowledge. 140 Next, we focus on the device characteristics of our re- 120 cent semipolar {2021} green LDs. The temperature depen- 100 dences of light output power vs. current (L-I ) and voltage This work 80 vs. current (V-I ) for a typical green LD under CW opera- 60 c-plane tion are shown in Figs. 4 (a) and (b), respectively. The Output power (mW) power Output 40 Ref. 13 threshold current, threshold current density, and thresh- 20 semipolar old voltage at a case temperature (Tc) of 25˚C were 59 mA, Refs. 14 and 15 0 510 515 520 525 530 535 540 Wavelength (nm) (b) 10 8 6 This work 4 c-plane Intensity (arb. (arb. unit) Intensity 2 Ref. 13 Wall plug efficiency (%) plug Wall semipolar Refs. 14 and 15 0 510 515 520 525 530 535 540 525 530 535 540 545 550 Wavelength (nm) Wavelength (nm) Fig. 2. Dependence of (a) output power and (b) wall plug efficiency on lasing wavelength for three different types of InGaN green Fig. 3. Lasing spectrum of the {2021} plane LD under CW LDs operation at RT SEI TECHNICAL REVIEW · NUMBER 77 · OCTOBER 2013 · 103 (a) (a) 100 1 50 mW Tc: 25˚C 80 25˚C Tc: 40˚C 40°C Tc: 55˚C 60 60°C 70°C 40 80°C Output power (mW) Output 20 0 0 50 100 150 200 250 300 Normalized Intensity (arb. units) Current (mA) 0 -45 -30 -15 0 15 30 45 (b) 10 Horizontal Angle (deg.) (b) 8 1 2525˚C˚C 50 mW Tc: 25˚C 6 4040˚C˚C Tc: 40˚C 6060˚C˚C Tc: 55˚C Voltage (V) Voltage 4 70˚C 8080˚C˚C 2 0 050100150200250300 Current (mA) Normalized Intensity (arb.
Recommended publications
  • Simultaneous Intensity Profiling of Multiple Laser Beams Using the Bladecam-XHR Camera
    Simultaneous Intensity Profiling of Multiple Laser Beams Using the BladeCam-XHR Camera Shaun Pacheco College of Optical Sciences, University of Arizona Rongguang Liang College of Optical Sciences, University of Arizona Rocco Dragone Vice President of Engineering, DataRay, Inc. Real-Time Profiling of Multiple Laser Beams There are several applications where the parallel processing of multiple beams can significantly decrease the overall time needed for the process. Intensity profile measurements that can characterize each of those beams can lead to improvements in that application. If each beam had to be characterized individually, the process would be very time consuming, especially for large numbers of beams. This white paper describes how the BladeCam-XHR can be used to simultaneously measure the intensity profile measurements for multiple beams by measuring the diffraction pattern from a diffraction grating and the intensity profile from a 3x3 fiber array focused using a 0.5 NA objective. Diffraction Gratings Diffraction gratings are periodic optical components that diffract an incident beam into several outgoing beams. The grating profile determines both the angle of the diffracted beam modes and the efficiency of light sent into each of those modes. Grating fabrication errors or a change in the incident wavelength can significantly change the performance of a diffraction grating. The BladeCam- XHR, Figure 1, can be used to measure the point spread function (PSF) of each mode, the relative efficiency of each mode and the spacing between diffraction modes. Figure 1 BladeCam-XHR Using the BladeCam-XHR for Diffraction Grating Evaluation The profiling mode in the DataRay software can be used to evaluate the performance of a diffraction grating.
    [Show full text]
  • Applications of Laser Spectroscopy Constitute a Vast Field, Which Is Difficult to Spectroscopy Cover Comprehensively in a Review
    LASERS & OPTICS 151 many cases non-destructively. A variety of beam manipulation schemes are avail­ able for the irradiation of samples either directly or after preparation. The unique properties of laser radiation in terms of coherence, intensity and directionality permit remote chemical sensing, where the analytical equipment and the sample are separated by large distances, even of several kilometres. Absorption, and in particular differential absorption, can be utilised in long-path measurements, whereas elastic and inelastic backscatter- ing as well as fluorescence can be used for range-resolved radar-like measure­ ments (LIDAR: light detection and rang­ ing). Laser light can also be efficiently transported in optical fibres to remotely located measurement sites. Various prop­ erties of the fibre itself influence the laser light propagating through the fibre, thus Applications of Laser forming a basis for fibre optic sensors. Applications of laser spectroscopy constitute a vast field, which is difficult to Spectroscopy cover comprehensively in a review. Rather than attempting such a review, examples from a variety of fields are cho­ Costas Fotakis sen for illustrating the power of applied University of Crete, Greece laser spectroscopy. Sune Svanberg Lund Institute of Technology, Sweden Applications in Analytical Chemistry Laser spectroscopy is making a major impact in many traditional fields of ana­ As the new millennium approaches the Above The Italian research vessel Urania, carrying a lytical spectroscopy. For instance, opto- know how in the field of laser-matter Swedish laser radar system, which has sailed under the galvanic spectroscopy on analytical smoky plumes of Sicilian volcanos in Italy measuring the interactions has matured to the stage of sulphur dioxide content flames increases the sensitivity of enabling several exciting real life applica­ absorption and emission flame spec­ tions.
    [Show full text]
  • Hair Reduction by Laser
    Ames Locations To Eldora, Iowa Falls, McFarland Clinic North Ames Story City, Urgent Care Webster City Treatment McFarland Clinic (3815 Stange Rd.) Bloomington Road McFarland Clinic Physical Therapy - Somerset West Ames e. (2707 Stange Rd., Suite 102) 24th Street Av f e. Duf Av You should not use any Accutane (a prescribed oral US 69 Ontario Street 13th Street Grand 13th Street acne medication) or gold medications (for arthritis) McFarland Clinic (1215 Duff) MGMC - North Addition for six months prior to a treatment. You should William R. Bliss Cancer Center 12th Street Stange Road . e. Mary Greeley Medical Center (MGMC) McFarland Eye Center not use retinoids (e.g. Retin A, Fifferin, Differin, Av (1111 Duff Ave.) (1128 Duff) e. 11th Street Ramp Av McFarland Family Avita, Tazorac), alpha-hydroxy acid moisturizers, Medicine East Hyland St Medical Arts Building (1018 Duff) To Boone, Carroll I-35 bleaching creams (hydroquinone) or chemical peels Iowa State (1015 Duff) Jefferson N. Dakota Marshall University for two weeks prior to a treatment. Do not pluck the Lincoln Way Lincoln Way Express Care Express Care hairs, wax or use depilatories or electrolysis for six e. (3800 Lincoln Way) (640 Lincoln Way) weeks prior to a treatment. Av McFarland Clinic West Ames Hy-Vee (3600 Lincoln Way) Hy-Vee e. Av ff You may be asked to shave the area prior to your S. Dakota To Nevada, Du first treatment appointment. You may also be Marshalltown prescribed a topical anesthetic (numbing) cream to Highway 30 help reduce any discomfort the laser may cause. Blvd University First Treatment: The laser will be used to treat the N areas by your dermatologist or one of the trained Oakwood Road Airport Road dermatology staff.
    [Show full text]
  • Laser Pointer Safety About Laser Pointers Laser Pointers Are Completely Safe When Properly Used As a Visual Or Instructional Aid
    Harvard University Radiation Safety Services Laser Pointer Safety About Laser Pointers Laser pointers are completely safe when properly used as a visual or instructional aid. However, they can cause serious eye damage when used improperly. There have been enough documented injuries from laser pointers to trigger a warning from the Food and Drug Administration (Alerts and Safety Notifications). Before deciding to use a laser pointer, presenters are reminded to consider alternate methods of calling attention to specific items. Most presentation software packages offer screen pointer options with the same features, but without the laser hazard. Selecting a Safe Laser Pointer 1) Choose low power lasers (Class 2) Whenever possible, select a Class 2 laser pointer because of the lower risk of eye damage. 2) Choose red-orange lasers (633 to 650 nm wavelength, choose closer to 635 nm) The National Institute of Standards and Technology (NIST) researchers found that some green laser pointers can emit harmful levels of infrared radiation. The green laser pointers create green light beam in a three step process. A standard laser diode first generates near infrared light with a wavelength of 808nm, and pumps it into a ND:YVO4 crystal that converts the 808 nm light into infrared with a wavelength of 1064 nm. The 1064 nm light passes into a frequency doubling crystal that emits green light at a wavelength of 532nm finally. In most units, a combination of coatings and filters keeps all the infrared energy confined. But the researchers found that really inexpensive green lasers can lack an infrared filter altogether. One tested unit was so flawed that it released nine times more infrared energy than green light.
    [Show full text]
  • Solid State Laser
    SOLID STATE LASER Edited by Amin H. Al-Khursan Solid State Laser Edited by Amin H. Al-Khursan Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2012 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Iva Simcic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team First published February, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Solid State Laser, Edited by Amin H.
    [Show full text]
  • Section 5: Optical Amplifiers
    SECTION 5: OPTICAL AMPLIFIERS 1 OPTICAL AMPLIFIERS S In order to transmit signals over long distances (>100 km) it is necessary to compensate for attenuation losses within the fiber. S Initially this was accomplished with an optoelectronic module consisting of an optical receiver, a regeneration and equalization system, and an optical transmitter to send the data. S Although functional this arrangement is limited by the optical to electrical and electrical to optical conversions. Fiber Fiber OE OE Rx Tx Electronic Amp Optical Equalization Signal Optical Regeneration Out Signal In S Several types of optical amplifiers have since been demonstrated to replace the OE – electronic regeneration systems. S These systems eliminate the need for E-O and O-E conversions. S This is one of the main reasons for the success of today’s optical communications systems. 2 OPTICAL AMPLIFIERS The general form of an optical amplifier: PUMP Power Amplified Weak Fiber Signal Signal Fiber Optical AMP Medium Optical Signal Optical Out Signal In Some types of OAs that have been demonstrated include: S Semiconductor optical amplifiers (SOAs) S Fiber Raman and Brillouin amplifiers S Rare earth doped fiber amplifiers (erbium – EDFA 1500 nm, praseodymium – PDFA 1300 nm) The most practical optical amplifiers to date include the SOA and EDFA types. New pumping methods and materials are also improving the performance of Raman amplifiers. 3 Characteristics of SOA types: S Polarization dependent – require polarization maintaining fiber S Relatively high gain ~20 dB S Output saturation power 5-10 dBm S Large BW S Can operate at 800, 1300, and 1500 nm wavelength regions.
    [Show full text]
  • Development of High-Power Optical Amplifier
    Development of High-Power Optical Amplifier by Yoshio Tashiro *, Satoshi Koyanagi *2, Keiichi Aiso *3, Kanji Tanaka * and Shu Namiki * With the development of the D-WDM (Dense Wavelength Division-Multiplex) ABSTRACT transmission technology together with its practical applications in recent years, optical amplifiers --in particular EDFA (Erbium-Doped Fiber Amplifier)-- used in these transmis- sion systems are required to have ever higher performance. In this report, a high-power EDFA is presented which has achieved a high signal output of 1.5 W. The EDFA uses a set of high power pumping light sources in which the outputs of semiconductor laser diodes in the 1480-nm range are multiplexed over three wavelengths. 1. INTRODUCTION lasers 5) of high-power at 1064 nm for example --which is pumped by GaAs semiconductor lasers at 800 nm-- as a With the development of the D-WDM transmission tech- pumping light source, thereby compensating for the low nology together with its practical applications in recent quantum conversion efficiency. What is more, intensive years, optical amplifiers --in particular the EDFA which is research 6) is going on to obtain higher outputs, in which finding wide applications- used in these transmission sys- high-power semiconductor lasers 4) at 980 nm in multi- tems are required to have higher power. This is because, mode are employed to pump a double-clad fiber. The fiber as the total power of optical signal increases due to the has a core co-doped with Er and Yb together with the first- increase in multiplexing signals, so does the power of the and second-clad layers, such that the first clad supports EDFA necessary to obtain the same level of optical gain.
    [Show full text]
  • Terahertz-Time Domain Spectrometer with 90 Db Peak Dynamic Range
    J Infrared Milli Terahz Waves DOI 10.1007/s10762-014-0085-9 Terahertz-time domain spectrometer with 90 dB peak dynamic range N. Vieweg & F. Rettich & A. Deninger & H. Roehle & R. Dietz & T. Göbel & M. Schell Received: 24 January 2014 /Accepted: 12 June 2014 # The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Many time-domain terahertz applications require systems with high bandwidth, high signal-to-noise ratio and fast measurement speed. In this paper we present a terahertz time-domain spectrometer based on 1550 nm fiber laser technology and InGaAs photocon- ductive switches. The delay stage offers both a high scanning speed of up to 60 traces / s and a flexible adjustment of the measurement range from 15 ps – 200 ps. Owing to a precise reconstruction of the time axis, the system achieves a high dynamic range: a single pulse trace of 50 ps is acquired in only 44 ms, and transformed into a spectrum with a peak dynamic range of 60 dB. With 1000 averages, the dynamic range increases to 90 dB and the measurement time still remains well below one minute. We demonstrate the suitability of the system for spectroscopic measurements and terahertz imaging. Keywords terahertz time domain spectroscopy. femtosecond fiber laser. InGaAs photoconductive switches . terahertz imaging 1 Introduction Terahertz waves feature unique properties: like microwaves, terahertz radiation passes through a plethora of non-conducting materials, including paper, cardboard, plastics, wood, ceramics and glass-fiber composites [1]. In contrast to microwaves, terahertz waves have a smaller wavelength and thus offer sub-millimeter spatial resolution.
    [Show full text]
  • Optically Pumped Semiconductor Lasers Power
    Optically Pumped Semiconductor Lasers Power. Precision. Performance. – based on semiconductor lasers Superior Reliability & Performance History of a Breakthrough History of a Breakthrough For more than a decade, solid-state lasers have been replacing legacy gas lasers in application after application. Even solid-state lasers, with their reputation for reliability and performance, have had limitations as it relates to accessible wave- lengths and power ranges. In the late 1990’s Coherent identified the capabilities of a novel concept for a semiconductor based platform that would overcome these limitations. Investing in fundamental developments and creating an IP position, Coherent pioneered this concept and introduced the Optically Pumped Semiconductor Laser (OPSL). In 2001, the first commercial OPSL became available as a technology breakthrough. Since their beginnings, OPSLs were considered the technology of choice in a variety of applications that require true CW output – from the UV to Visible and IR. OPSL technology enables us to improve many applications that were previously limited by the fixed wavelength and power of other laser technologies. Today, with OPSL technology, you no longer have to work around the closest fit wavelength. With OPSLs, you can find the best wavelength to fit your application. OPSL Advantages and Benefits Optically Pumped Semiconductor Laser Wavelength Scalability: Responding to the need for a broad range of wavelengths in many laser applications, OPSLs with their unique wavelength flexibility, are different from any other solid-state based laser. The fundamental near-IR output wavelength is determined by the structure of the InGaAs (semiconductor) gain chip, and can be set anywhere between 920 nm and 1154 nm, yielding frequency-doubled and tripled output between 355 nm and 577 nm.
    [Show full text]
  • LULI2000 User Guide
    LULI2000 User Guide March 2021 1 Your proposal on the LULI2000 facility has just been approved. As Principal Investigator (PI), a number of actions are under your responsibility and engage your liability. You will find in this guide all the necessary information required to ensure the success of your experiment. The different steps It is important to follow the following instructions to prepare your experimental campaign in the most efficient manner possible. First meeting « - 6 months» First contact between the users and the support teams (mechanics, optics, laser, targets, instrumentation and experimental assistance), this meeting is organized by the person in charge of the LULI2000 experimental rooms. It could be done by videoconference but it is recommended to come on site, especially if you are not familiar with the facilities. It allows the PI presenting the objectives of the experiment and its set-up (laser parameters, diagnostics, instrumentation, targets). This first meeting initiates CAD and mechanics studies. Second meeting « - 4 months» This meeting definitively sets the experimental set-up and the list of participants in order to launch all the procedures to access the LULI2000 restrictive areas of LULI2000 (ZRR). CAD validation «- 3 months » A meeting is not mandatory; the PI (or the LULI host) has just to validate the CAD drawings with the Mechanical Engineering support group (BEM). Such a validation authorizes to order manufacturing of the required mechanical elements and have them delivered well in advance for control and assembly. Debriefing and reporting It is important to debrief as soon as possible (even at the end of the experimental campaign) in order to collect valuable information on how to improve experimental processes (especially if a continuation campaign is scheduled), underline positive or negative features, etc.
    [Show full text]
  • 5 an Overview of Laser Diode Characteristics
    An Overview of Laser Diode Characteristics # 5 For application assistance or additional information on our products or services you can contact us at: ILX Lightwave Corporation 31950 Frontage Road, Bozeman, MT 59715 Phone: 406-556-2481 800-459-9459 Fax: 406-586-9405 Email: [email protected] To obtain contact information for our international distributors and product repair centers or for fast access to product information, technical support, LabVIEW drivers, and our comprehensive library of technical and application information, visit our website at: www.ilxlightwave.com Copyright 2005 ILX Lightwave Corporation, All Rights Reserved Rev01.063005 Measuring Diode Laser Characteristics Diode Lasers Approach Ubiquity, But They Still Can Be Frustrating To Work With By Tyll Hertsens Diode lasers have been called “wonderful little attempt at real-time equivalent-circuit mod- devices.” They are small and effi cient. They eling, mostly during device modulation. The can be directly modulated and tuned. These last two categories of Table 1 represent devices affect us daily with better clarity in our topics of other articles, for other authors. telephone system, higher fi delity in the music we play at home, and a host of other, less Electrical Characteristics obvious ways. The L/I Curve. The most common of the diode laser characteristics is the L/I curve But diode lasers can be frustrating to work (Figure 1). It plots the drive current applied with. The same family of characteristics that to the laser against the output light intensity. permit wide areas of application also make This curve is used to determine the laser’s diode lasers diffi cult to control.
    [Show full text]
  • Concepts for Compact Solid-State Lasers in the Visible and UV
    Concepts for Compact Solid-State Lasers in the Visible and UV Sandra Johansson Doctoral Thesis Department of Applied Physics Royal Institute of Technology Stockholm, Sweden 2006 Concepts for Compact Solid-State Lasers in the Visible and UV Sandra Johansson ISBN 91-7178-539-6 ISBN 978-91-7178-539-8 © 2006 by Sandra Johansson Doktorsavhandling vid Kungliga Tekniska Högskolan TRITA-FYS 2006:72 ISSN 0280-316X ISRN KTH/FYS/--06:72--SE Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen i fysik, fredagen den 15 december 2006, kl. 10.00, Sal FB55, AlbaNova, Roslagstullsbacken 21, Stockholm. Avhandlingen kommer att försvaras på engelska. Laser Physics Department of Applied Physics Royal Institute of Technology SE-106 91 Stockholm, Sweden Cover: Second harmonic generation in periodically poled KTiOPO4. Printed by Universitetsservice US-AB, Stockholm, 2006. Johansson, Sandra Concepts for Compact Solid-State Lasers in the Visible and UV Laser Physics, Department of Applied Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden ISBN 91-7178-539-6, 978-91-7178-539-8, TRITA-FYS 2006:72, ISSN 0280-316X, ISRN KTH/FYS/--06:72--SE Abstract In many fields, scientific or industrial, optical devices that can be tailored in terms of spectral qualities and output power depending on the application in question are attractive. Nonlinear optics in combination with powerful laser sources provide a tool to achieve essentially any wavelength in the electromagnetic spectrum, and the advancement of material technology during the last decade has opened up new possibilities in terms of realising such devices.
    [Show full text]