AB-Net Method of Protection from Projectiles (City, Military Base, Battle-Front, Etc.)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AI, Robots, and Swarms: Issues, Questions, and Recommended Studies
AI, Robots, and Swarms Issues, Questions, and Recommended Studies Andrew Ilachinski January 2017 Approved for Public Release; Distribution Unlimited. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution Approved for Public Release; Distribution Unlimited. Specific authority: N00014-11-D-0323. Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123. Photography Credits: http://www.darpa.mil/DDM_Gallery/Small_Gremlins_Web.jpg; http://4810-presscdn-0-38.pagely.netdna-cdn.com/wp-content/uploads/2015/01/ Robotics.jpg; http://i.kinja-img.com/gawker-edia/image/upload/18kxb5jw3e01ujpg.jpg Approved by: January 2017 Dr. David A. Broyles Special Activities and Innovation Operations Evaluation Group Copyright © 2017 CNA Abstract The military is on the cusp of a major technological revolution, in which warfare is conducted by unmanned and increasingly autonomous weapon systems. However, unlike the last “sea change,” during the Cold War, when advanced technologies were developed primarily by the Department of Defense (DoD), the key technology enablers today are being developed mostly in the commercial world. This study looks at the state-of-the-art of AI, machine-learning, and robot technologies, and their potential future military implications for autonomous (and semi-autonomous) weapon systems. While no one can predict how AI will evolve or predict its impact on the development of military autonomous systems, it is possible to anticipate many of the conceptual, technical, and operational challenges that DoD will face as it increasingly turns to AI-based technologies. -
AUTONOMY in WEAPON SYSTEMS
WORKING PAPER | FEBRUARY 2015 An Introduction to AUTONOMY in WEAPON SYSTEMS By: Paul Scharre and Michael C. Horowitz ABOUT CNAS WORKING PAPERS: Working Papers are designed to enable CNAS analysts to either engage a broader community-of- interest by disseminating preliminary research findings and policy ideas in advance of a project’s final report, or to highlight the work of an ongoing project that has the potential to make an immediate impact on a critical and time-sensitive issue. PROJECT ON ETHICAL AUTONOMY | WORKING PAPER About the Authors Michael C. Horowitz is an Adjunct Senior Fellow at CNAS and an Associate Professor of Political Science at the University of Pennsylvania. Paul Scharre is a Fellow and Director of the 20YY Warfare Initiative at CNAS. The Ethical Autonomy project is a joint endeavor of CNAS’ Technology and National Security Program and the 20YY Warfare Initiative, and is made possible by the generous support of the John D. and Catherine T. MacArthur Foundation. PREFACE Information technology is driving rapid increases in the autonomous capabilities of unmanned systems, from self-driving cars to factory robots, and increasingly autonomous unmanned systems will play a sig- nificant role in future conflicts as well. “Drones” have garnered headline attention because of the manner of their use, but drones are in fact remotely piloted by a human, with relatively little automation and with a person in control of any weapons use at all times. As future military systems incorporate greater autonomy, however, the way in which that autonomy is incorporated into weapon systems will raise challenging legal, moral, ethical, policy and strategic stability issues. -
T 80 Standard Tank
T80 STANDARD TANK The Soviet Army’s Last Armored Champion STEVEN J ZALOGA ILLUSTRATED BY TONY BRYAN © Osprey Publishing • www.ospreypublishing.com NEW VANGUARD • 152 T80 STANDARD TANK The Soviet Army’s Last Armored Champion STEVEN J ZALOGA ILLUSTRATED BY TONY BRYAN © Osprey Publishing • www.ospreypublishing.com CONTENTS INTRODUCTION 4 ORIGINS 4 • New Medium Tank for the 1980s • The Turbine Option • Obiekt 219 THE T80B 12 • Reactive Armor: the T-80BV SUPERTOUGH: THE T80U 19 • Back To The Diesel: the Kharkov T-80UD T80 AT THE CROSSROADS: THE SOVIET COLLAPSE 28 ACTIVE PROTECTION 35 THE UKRAINIAN T84 38 T80 FOLLOWON TANKS 43 • Specialized T-80 Derivatives FURTHER READING 46 GLOSSARY 47 INDEX 48 © Osprey Publishing • www.ospreypublishing.com T80 STANDARD TANK THE SOVIET ARMY’S LAST ARMORED CHAMPION INTRODUCTION The T-80 tank was meant to be the ultimate Soviet main battle tank (MBT), entering the Soviet arsenal around the same time as the new NATO- generation American M1 Abrams, British Challenger, and German Leopard 2. It was not a new design, but rather an evolutionary reconsideration of the T-64A tank. In the event, the T-80 proved to be deeply troubled, offering modest advances over the existing T-64A and T-72 tanks, yet being considerably more costly due to the use of a powerful but thirsty gas-turbine engine. After the fall of the Soviet Union in 1991, there was fierce competition between surviving tank plants to win the contracts for a standard tank for the new Russian Army, and the rival T-90 was selected as the next Russian tank. -
MAPPING the DEVELOPMENT of AUTONOMY in WEAPON SYSTEMS Vincent Boulanin and Maaike Verbruggen
MAPPING THE DEVELOPMENT OF AUTONOMY IN WEAPON SYSTEMS vincent boulanin and maaike verbruggen MAPPING THE DEVELOPMENT OF AUTONOMY IN WEAPON SYSTEMS vincent boulanin and maaike verbruggen November 2017 STOCKHOLM INTERNATIONAL PEACE RESEARCH INSTITUTE SIPRI is an independent international institute dedicated to research into conflict, armaments, arms control and disarmament. Established in 1966, SIPRI provides data, analysis and recommendations, based on open sources, to policymakers, researchers, media and the interested public. The Governing Board is not responsible for the views expressed in the publications of the Institute. GOVERNING BOARD Ambassador Jan Eliasson, Chair (Sweden) Dr Dewi Fortuna Anwar (Indonesia) Dr Vladimir Baranovsky (Russia) Ambassador Lakhdar Brahimi (Algeria) Espen Barth Eide (Norway) Ambassador Wolfgang Ischinger (Germany) Dr Radha Kumar (India) The Director DIRECTOR Dan Smith (United Kingdom) Signalistgatan 9 SE-169 72 Solna, Sweden Telephone: +46 8 655 97 00 Email: [email protected] Internet: www.sipri.org © SIPRI 2017 Contents Acknowledgements v About the authors v Executive summary vii Abbreviations x 1. Introduction 1 I. Background and objective 1 II. Approach and methodology 1 III. Outline 2 Figure 1.1. A comprehensive approach to mapping the development of autonomy 2 in weapon systems 2. What are the technological foundations of autonomy? 5 I. Introduction 5 II. Searching for a definition: what is autonomy? 5 III. Unravelling the machinery 7 IV. Creating autonomy 12 V. Conclusions 18 Box 2.1. Existing definitions of autonomous weapon systems 8 Box 2.2. Machine-learning methods 16 Box 2.3. Deep learning 17 Figure 2.1. Anatomy of autonomy: reactive and deliberative systems 10 Figure 2.2. -
AUTONOMY in WEAPON SYSTEMS
WORKING PAPER | FEBRUARY 2015 An Introduction to AUTONOMY in WEAPON SYSTEMS By: Paul Scharre and Michael C. Horowitz ABOUT CNAS WORKING PAPERS: Working Papers are designed to enable CNAS analysts to either engage a broader community-of- interest by disseminating preliminary research findings and policy ideas in advance of a project’s final report, or to highlight the work of an ongoing project that has the potential to make an immediate impact on a critical and time-sensitive issue. PROJECT ON ETHICAL AUTONOMY | WORKING PAPER About the Authors Michael C. Horowitz is an Adjunct Senior Fellow at CNAS and an Associate Professor of Political Science at the University of Pennsylvania. Paul Scharre is a Fellow and Director of the 20YY Warfare Initiative at CNAS. The Ethical Autonomy project is a joint endeavor of CNAS’ Technology and National Security Program and the 20YY Warfare Initiative, and is made possible by the generous support of the John D. and Catherine T. MacArthur Foundation. PREFACE Information technology is driving rapid increases in the autonomous capabilities of unmanned systems, from self-driving cars to factory robots, and increasingly autonomous unmanned systems will play a sig- nificant role in future conflicts as well. “Drones” have garnered headline attention because of the manner of their use, but drones are in fact remotely piloted by a human, with relatively little automation and with a person in control of any weapons use at all times. As future military systems incorporate greater autonomy, however, the way in which that autonomy is incorporated into weapon systems will raise challenging legal, moral, ethical, policy and strategic stability issues. -
Cranfield University by Mubarak Al-Jaberi The
CRANFIELD UNIVERSITY BY MUBARAK AL-JABERI THE VULNERABILITY OF LASER WARNING SYSTEMS AGAINST GUIDED WEAPONS BASED ON LOW POWER LASERS THE DEPARTMENT OF AEROSPACE, POWER & SENSORS PhD THESIS CRANFIELD UNIVERSITY COLLEGE OF MANAGEMENT & TECHNOLOGY THE DEPARTMENT OF AEROSPACE, POWER & SENSORS PhD THESIS BY MUBARAK AL-JABERI THE VULNERABILITY OF LASER WARNING SYSTEMS AGAINST GUIDED WEAPONS BASED ON LOW POWER LASERS SUPERVISOR: Dr. MARK RICHARDSON HEAD OF ELECTRO-OPTICS GROUP JAN 2006 © Cranfield University, 2006 All rights reserved ii DEDICATION DEDICATED WITH GREAT LOVE, THOUGHTS AND PRAYERS TO MY FATHER AND MOTHER, WHO HAVE ALWAYS SUPPORTED ME DURING MY LIFE WITH THEIR ADVICE AND PRAYERS AND EVERYTHING THAT I NEED. MAY ALLAH BLESS THEM BOTH. ALSO DEDICATED WITH LOVE AND GRATITUDE TO MY LOVELY WIFE, SONS AND DAUGHTER. iii ACKNOWLEDGEMENTS First, I would like to express my deep appreciation and thanks to Dr. Mark Richardson, my supervisor during this research. His professionalism, experience, sense of humour, and encouragement were major factors in the successful completion of this work. He was always available when ever I face a problem to guide me through difficult situations. He spent a great time in reviewing my research and offer valuable guidance, insight, critical comments, and advice. I am also deeply indebted, grateful and appreciative to the organisations and individuals who gave their time to help, advise and support this research project, in particular: • Professor Richard Ordmonroyd, Head of Communications Departments. • Dr. John Coath • Dr. Robin Jenkin • General Saeed Mohammed Khalef Al Rumithy (Chief of ADM & Manpower) • Col. Mohammed Ali Al Nuemi • Maj. Saeed Almansouri • Let. -
Active Protective Systems: Impregnable Armor Or Simply Enhanced Survivability?
Elements of the Arena Active Protection System include ring of explosive panels at lower margin of turret ring and radar on turret roof. Active Protective Systems: Impregnable Armor or Simply Enhanced Survivability? by Captain Tom J. Meyer are employed by many armies world- ergy (KE) tank-fired munitions. A sys- wide. They currently do not pose a sig- tem that can defeat modern antitank nificant threat to our forces, but as these weapons increases survivability for tank- Why Develop Active Protective systems proliferate and technology im- on-tank duels. Systems (APS)? proves, this picture may change radi- • ATGM production, lethality and pro- cally. liferation has far outpaced armor protec- Your task force’s mission is to attack In the context of armored vehicles, ac- tion. This, coupled with advances in top- along Axis Mustang to seize OBJ Patton tive protection is a defensive system de- attack ATGMs and munitions launched and destroy elements of the 152nd MRR signed to intercept, destroy, or confuse by aerial platforms at ranges that far ex- in order to gain depth for the defense attacking enemy munitions. Active pro- ceed that of direct support (DS) air de- and prevent the enemy from attacking tection systems can be broken into two fense systems, have multiplied the threat into 2nd BCT’s northern flank. Your categories, “active” or “hard kill” sys- to the armor force. company team attacks with steady mo- tems and “countermeasure” or “soft kill” mentum and sets its support-by-fire posi- systems. An active or hard kill system • tions. You observe the enemy in his BPs engages and destroys enemy missiles or Latest-generation main battle tanks that your S2 had accurately templated, projectiles before they impact their in- (MBT) stand at around 60-70 tons, and and order your Bradleys to target their tended target. -
Security & Defence European
a 8.90 D 14974 E D European & Security ES & Defence 1/2020 International Security and Defence Journal ISSN 1617-7983 • Armoured Vehicles www.euro-sd.com • • Surviving the City Fight • Australia's Armour Renaissance • The Return of the 6x6 AFV • Polish Fleet Modernisation • Light Tactical Mobility Platforms • Turret Options January 2020 • UK AFV Programmes • Vehicle Protection Politics · Armed Forces · Procurement · Technology WHEN SLOW AND STEADY ISN’T AN OPTION. OSHKOSH DEFENSE® JLTV BUILT LIGHT. BUILT RIGHT. Never-before-achieved speed, power and protected mobility to maneuver within combat formations. oshkoshdefense.com ©2020 OSHKOSH DEFENSE, LLC An Oshkosh Corporation Company Oshkosh Defense and the Oshkosh Defense logo are registered trademarks of Oshkosh Defense, LLC, Oshkosh, WI, USA JLTV_P2C-1_2019-EU-1 OSHK_2020_JLTV_Phs2C_EuroSecDfnc_FullPg.indd 1 12/5/19 11:48 AM Editorial My New Armoured Vehicle is a Camel A camel, remarked the British designer Alec Issigonis, is a horse designed by committee. Given that the requirements of modern armoured vehicles are driven by so many conflict- ing factors, perhaps they are the defence establishment’s own camels. Mobility, protection and firepower as core requirements are by no means confined to Main Battle Tanks, but the emergence of uninformed, or “claimed” national industrial strategic capabilities; the tightening of budgets; the growth of “zero-casualty” politics; and the ability to destroy an enemy at drone’s length all impact global demand for vehicles with the full suite of capa- bilities now available. That “full suite” costs space and manoeuvrability, as crews of 4x4 vehicles in combat have, historically, sometimes found to their detriment. -
The Future Combat System: Minimizing Risk While Maximizing Capability
The Future Combat System: Minimizing Risk While Maximizing Capability USAWC Strategy Research Project by Colonel Brian R. Zahn, USA May 2000 Working Paper 00 – 2 The views expressed in this academic research paper are those of the author and do not necessarily reflect the official policy or position of the U.S. Government, the Department of Defense, or any of its agencies. ABSTRACT AUTHOR: Colonel Brian R. Zahn TITLE: The Future Combat System: Minimizing Risk While Maximizing Capability FORMAT: Strategy Research Project DATE: 24 April 2000 PAGES: 45 CLASSIFICATION: Unclassified This paper examines some of the technological candidates that are potential enablers of the Army Transformation to the future Objective Force. The paper highlights the technological risk associated with the Future Combat System program and offers an alternative acquisition strategy to minimize risk while maximizing potential capability. The paper examines lethality technologies such as the electromagnetic gun, electrothermal chemical gun, missile-in-a- box, and compact kinetic energy missile. Survivability candidates include passive armors, reactive armors, and active protection systems. The paper also examines the wheeled versus tracked debate. The paper concludes by recommending some of the technologies for further development under a parallel acquisition strategy. 2 TABLE OF CONTENTS ABSTRACT.......................................................................................................................................................................III -
Moscow Defense Brief 2/2007
CONTENTS Industrial Policy #2(8), 2007 The Russian Aviation Industry: From European Option PUBLISHER to National Strategy 2 Center for Russian Defence Procurement in 2007 4 Analysis of Strategies and Russia’s Space Program in 2006: Some Progress but Technologies No Clear Direction 9 CAST Director & Publisher Ruslan Pukhov War And People Advisory Editor Konstantin Makienko Russian Anti-Armour Weapons and Israeli Tanks in Lebanon 13 Editor-in-Chief Ilya Nevorotov Arms Trade Researcher Ruslan Aliev Russia on the Arms Market in 2006 16 Researcher Alexey Pokolyavin Researcher International Cooperation Dmitry Vasiliev The Multipolarity Trap: How Russia Should Make Friends… Researcher and With Whom? 20 Polina Temerina Military-Technical Relations between Russia and North Editorial Office Korea: Past, Present and Future 25 Leninsky prospect, 45, suite 480 Moscow, Russia 119334 phone: +7 495 135 1378 fax: +7 495 775 0418 Our Authors 27 http://www.mdb.cast.ru/ To subscribe contact phone: +7 495 135 1378 or e-mail: [email protected] Moscow Defense Brief is published by the Centre for Analysis of Strategies and Technologies All rights reserved. No part of this publication may be reproduced in any form or by any means, electronic, mechanical or photocopying, recording or otherwise, without reference to Moscow Defense Brief. Please note that, while the Publisher has taken all reasonable care in the compilation of this publication, the Publisher cannot accept responsibility for any errors or omissions in this publication or for any loss arising therefrom. Authors’ opinions do not necessary reflect those of the Publisher or Editor Computer design & pre-press: ZEBRA-GROUP www.zebra-group.ru The editorial team would like to thank Simon Saradzhyan, News Editor, The Moscow Times, for his insightful guidance and generous advice The editorial team would like to thank Howard Gethin for his contributions in editing and proof-reading Cover photo: Il-96-300 - The flagship of Russia’s civil aircraft industry. -
Defeating Modern Armor and Protection Systems
Proceedings of the 2019 Hypervelocity Impact Symposium HVIS2019 April 14 - 19, 2019, Destin, FL, USA HVIS2019-050 Downloaded from http://asmedigitalcollection.asme.org/hvis/proceedings-pdf/HVIS2019/883556/V001T03A004/6551083/v001t03a004-hvis2019-050.pdf by guest on 24 September 2021 Defeating Modern Armor and Protection Systems Markus Graswald *, Raphael Gutser, Jakob Breiner, Florian Grabner, Timo Lehmann, and Andrea Oelerich ** TDW GmbH, Hagenauer Forst 27, 86529 Schrobenhausen, Germany ** WTD 91, Schießplatz 1, 49716 Meppen, Germany Abstract An open source research and vulnerability study of main battle tanks and their protections systems revealed that current anti-tank weapons may not be suited to defeat modern threats. One example is the novel T-14 tank being developed and tested in the Russian army with its combined hard-kill and soft-kill active protection system AFGANIT / SHTORA, its new reactive armor MALACHIT as well as improved multi-component passive armor. Additionally, modern active protection systems currently developed in, e.g., Israel, the United States, and Germany feature also multi-sensor and multi-effector systems with drastically improved detection and intercept ranges, short system reaction times as well as protection against multiple threats attacking simultaneously and / or from similar directions. While known effectors and concepts may overcome fielded active protections systems, they are probably not suited in defeating such modern and even future systems. Countermeasures relying on high engagement velocities through improved kinetic energy projectiles or hypervelocity penetrators may provide a potential solution. Another promising concept generates directed, far-distance electromagnetic effects defeating sensors and communications systems of modern main battle tanks. After such a mission kill, a following salvo attack through an anti-tank or modern multi-role weapon will eventually lead to a catastrophic kill. -
Worldwide Equipment Guide
OPFOR WORLDWIDE EQUIPMENT GUIDE TRADOC DCSINT Threat Support Directorate DISTRIBUTION RESTRICTION: Approved for public release; distribution unlimited. Worldwide Equipment Guide Introduction This Worldwide Equipment Guide (WEG) serves as an interim guide for use in training, simulations, and modeling until the publication of FM 100-65, Capabilities-Based Opposing Force: Worldwide Equipment Guide. The WEG is designed for use with the FM 100-60 series of capabilities-based opposing force field manuals. It provides the basic characteristics of selected equipment and weapons systems readily available to the capabilities-based OPFOR, and generally listed in either FM 100-61, Armor- and Mechanized-Based Opposing Force: Organization Guide or FM 100-63, Infantry-Based Opposing Force: Organization Guide. Selected weapons systems and equipment are included in the categories of infantry weapons, infantry vehicles, reconnais- sance vehicles, tanks/assault vehicles, antitank, artillery, air defense, engineer and logistic systems, and rotary-wing aircraft. The pages in this WEG are designed for insertion into loose-leaf notebooks. Since this guide does not include all possible OPFOR systems identified in the OPFOR field manuals, equipment sheets covering additional systems not contained in this initial issue will be published periodically. Systems selected will be keyed directly to the baseline equipment contained in the 100-60 series and substitute systems found in the appropriate substitution matrix. The WEG is scheduled for eventual publication on the worldwide web for use by authorized government or- ganizations. WORLDWIDE OPFOR EQUIPMENT Due to the proliferation of weapons through sales and resale, wartime capture, and li- censed or unlicensed production of major end items, distinctions between equipment as friendly or OPFOR have blurred.