T Sin G Hu a U N Iv E Rsit Y

Total Page:16

File Type:pdf, Size:1020Kb

T Sin G Hu a U N Iv E Rsit Y NEWSLETTER July 2012 No. 3 Vol. 6 National | Tsing Hua | University Y T RSI E AL V ON I I T A N TSING HUA N ContENTS U st th 1 The 101 Anniversary of Tsing Hua and Her 56 Year in Taiwan 2 NTHU Honors Three Outstanding Alumni with the Distinguished Alumni Award 3 The Legacy of Tsing Hua Grandmasters 4 Nobel Laureates Inspired NTHU Audiences 5 Professors Rong-Long Pan and Yuh-Ju Sun Have Their Important Research Published in Nature 6 Farewell Class of 2012! 7 AEARU 30th BOD Meeting and 1st Distinguished Lecture Series in Nanjing University 8 NTHU Volunteer Group Goes to Malaysia This Summer 9 NTHU Placed On the Top Among Taiwanese Universities in Leiden World University Ranking a b THE 101ST ANNIVERSARY OF TSING a President Chen welcoming all guests and stating this year is the true 100th anniversary TH HUA AND HER 56 YEAR IN TAIWAN of Tsing Hua. b Distinguished guests gathered for the joyful occasion. he founding anniversary Hua in Beijing as well as the first Chinese Studies was established. Dr. of Tsing Hua is celebrated President of NTHU when it was Mei was instrumental in recruiting on April 29th this year. April re-established in Taiwan in l956. many grandmasters to join the T29th was the exact date when Tsing During his 24 years of service as Academy and made the Academy a Hua Academy started to operate in the President of Tsing Hua in Beijing key research institution specialized 1911, Beijing. Traditionally, NTHU and NTHU in Hsinchu, Dr. Mei laid a in the studies of Chinese literature, has adopted a policy to celebrate solid foundation for both institutes history of thought and philosophy. her founding anniversary on the last and led both of them to develop After reflecting on the glorious Sunday of April so that it would not and become the elite institutions on history, President Chen turned interfere with academic activities. both sides of the Taiwan Strait. All his attention to the recent President Lih J. Chen indicated that three Nobel laureates that Tsing Hua accomplishments that NTHU using 28 years as a cycle; it would had cultivated, Dr. Yung-Tseh Lee, has accumulated. NTHU has not take 7 years, on the average, to have Dr. Chen-Ning Yang and Dr. Tsung- only been ascending in the world the 29th of April to coincide with Dao Lee were studying on Tsing Hua rankings; our faculty members have a Sunday. Thus, April 29th of 2012 campus when President Mei was the also received numerous national and is actually the 100th anniversary of presiding president. Furthermore, international awards recognizing Tsing Hua. it was during Dr. Mei's term as their research accomplishments. President Chen indicated in his the Dean of address that this year also marks Academic the 50th anniversary of the passing Affairs that the of the late President Mei Yi-chi who world famous served as the President of Tsing Academy of c President Chen with the distinguish guests. d Cutting the birthday cake (from right to left, Dr. Way Kuo, Dr. Tien- Yien Li, President Chen, Chairman T. J. Tseng and Chairman Robert Tsai. c 1 |National Tsing Hua University |2012 Vol. 6 No.3 Many of their research results were they have excelled. awarded three of her alumni with the published in the most prestigious Chairman Tseng also reported on the 13th Distinguished Alumni Awards scientific journals such as Science, progress of the Alumni Gymnasium. to Dr. Tien-Yien Li, Dr. Zhong- Nature and Cell . President Chen Funded with the donations coming Ping Sun and Chairman Robert believes that while we have just from alumni in Taiwan and abroad, Tsai celebrating their outstanding witnessed the highest number of this multi-functional gym will soon achievements in their respective research articles published, by be completed in six months. It will fields. NTHU faculty members, in the most be another beautiful landmark on Last but not the least, a NTHU prestigious outlets this year, this our campus and a great symbol of World Expo was organized and trend will continue and increase in the loyalty and devotion of all alumni hosted by all international students the years to come. toward NTHU. who are currently studying on Mr. T. J. Tseng, Chairman of the On behalf of the class which campus. Twenty-nine nations were Unimicron Technology Corp. and graduated 40 years ago, President represented in the expo featuring a member of NTHU Alumnus Way Kuo of City University of Hong music, dance and theaters aiming at Association, indicated that the Kong took the podium and shared showcasing beautiful aspects of their growth of his alma mater over some of his memories of the fashion home cultures. the last year is phenomenal and and dining facilities on campus when astounding. Faculty members' he was a student here at NTHU. researches are well-recognized He indicated that these memories world-wide and more importantly proved that even though technology students are brighter than ever as and society are changing rapidly, exemplified in all kinds of national the basic principles of an excellent and international competitions that university remain the same. These are the emphasis on the quality and an attitude to deal with issues directly and righteously. President Kuo also emphasized that in the minds of all graduates of NTHU, their love and devotion toward their alma mater will not only remain the same but will increase and deepen as time goes by. d During the ceremony, NTHU also 2012 Vol. 6 No.3 |National Tsing Hua University| 2 a b NTHU HonoRS THREE a Photo of the three distinguished alumni with OUTSTANDING ALUMNI WITH THE President Chen (from right to left: Mr. Robert Tsai, Dr. Tien-Yien Li, President Chen, and DISTINGUISHED ALUMNI AWARD Dr. Zhong-Ping Sun). b Dr. Li accepted the Certificate of Distinguished Alumnus. fter a yearlong consideration a rigorous scientist and inspires all alma mater and has made great and discussion at the his students to do the same. He said contribution towards developing Selection Committee, NTHU that being smarter than others is not NTHU's Department of Mathematics. Ahas recently announced and awarded a sufficient condition to success; to Dr. Zhong-Ping Sun received the 13th Distinguished Alumni Awards be able to understand the problem her Ph.D. in Materials Science to three outstanding entrepreneurs is much more conductive. He and Engineering from Cornell applauding their excellence and further stressed that his method of University after graduating from acknowledge the contributions they solving problems is to devote one NTHU's Department of Nuclear have made. They are: more minute than others, and that Engineering in 1974. She is currently Dr. Tien-Yien Li who is a graduate extra minute could be the very step the Vice President of Corporate of the Department of Mathematics needed on the road to success. He Planning at Taiwan Semiconductor and currently a Chair Professor often reminds his students to "do Manufacturing Company (TSMC). at Michigan State University. An it with all your heart; persist until Before joining TSMC, she served extremely accomplished applied the very end and never give up at IBM for 23 years as the General mathematician; he formulated the easily." Additionally, Dr. Li said that Manager of Taiwan Corporation "chaos" theory with Dr. Jim A. learning and doing research require Technology Group, which had Yorker and ushered in a new era for thorough understanding, especially brought her a spot in the Hall the scientific community with their in mathematics, because memorizing of Fame in the IBM Corporation research on the chaotic dynamical the logical process with scanty Technology Group. system. Moreover, Dr. Li, Dr. R. B. knowledge is useless, one should After graduation in 1980, she entered Kellogg and Dr. Yorker's method and look at a problem from different the top IBM Research Center in New theory on how to calculate Brower angles. York as a researcher, and discovered set point broadened the modern Aside from his busy schedule at that many research findings failed research on homotopy continuation Michigan State, Dr. Li has taken a to be materialized in the process of in algorithm. great deal of his time to promote product manufacturing. Eager to find With the motto of "live as if today computational science in Taiwan. a solution for such a gap between is the last day," Dr. Li made himself He is also passionate about his R&D and manufacturing, Dr. Sun 3 |National Tsing Hua University |2012 Vol. 6 No.3 c d asked to be transferred into the as the plans of manufacturing and c President Chen presenting Dr. Sun with the department of product development business development Certificate of Distinguished Alumnus. and later to the manufacturing sector Dr. Sun and her family share a strong d President Chen presenting Mr. Robert Tsai hoping to find solutions to fill such bond with NTHU. Her father and with the Certificate of Distinguished Alumnus. "gaps." siblings are all NTHU's alumni. She is In 1993, Dr. Sun voluntarily also a member of Club One Hundred and medium firms since 1997. He transferred to the marketing field. In and has made many generous believes to serve as a consultant 1996, she was asked to specialize in donations toward the development of to small enterprises at their early the sales of technologies developed NTHU over the years. stage of development is to give back by IBM Technology Group in the Mr. Robert Tsai is a graduate of the the support he received when he fields of microelectronics, hard Department of Chemical Engineering first started his own business.
Recommended publications
  • Optical Trapping of Objects Is Among the Most Exciting Applications of a Laser
    Reg. No: 2016/23/P/ST3/02156; Principal Investigator: dr inż. Paweł Karpiński Optical trapping of objects is among the most exciting applications of a laser. Started by Arthur Ashkin in 1970s it brought manifold of intriguing discoveries in physics, chemistry and biology. Among the most exciting applications in physics one can point out the laser induced cooling and realization of Bose-Einstein condensation in atomic vapors (Nobel prize in 1997 for Stephen Chou, Claude Cohen-Tannoudji and William Daniel Phillips). In chemistry and biology one can mention a single molecule force spectroscopy, with studies of a single DNA being the one of the most recognizable achievements. More than 30 years after realization of the first optical tweezers there are still a lot of exciting effects and basic studies realized today. The nonequilibrium thermodynamics and Brownian motion of single particle trapped with highly intense laser light is not fully described and its understanding may potentially lead to very interesting new discoveries such as microscopic engines with efficiency higher than the Carnot engine. In standard optical tweezers a single Gaussian laser beam is used to trap and manipulate objects. The degree of control of optical forces can be greatly increased by controlling both the key parameters of the beam and the particles. The alignment and light induced motion of a particle can be better controlled in an optical trap when beam shape, phase or polarization are not trivial, e.g. using cylindrical vector beams known also as structured light. Three dimensional vector structure of an optical field can carry momentum, spin and orbital angular momentum which might be transferred from light to the trapped object.
    [Show full text]
  • World's Leading Scientists and Technologists to Gather at the Global
    MEDIA RELEASE WORLD’S LEADING SCIENTISTS AND TECHNOLOGISTS TO GATHER AT THE GLOBAL YOUNG SCIENTISTS SUMMIT 2021 Summit will host 21 eminent scientists including Nobel Laureates, who will engage and share first-hand insights in science and research with over 500 young scientists from 30 countries 6 JANUARY 2021, SINGAPORE – The National Research Foundation Singapore (NRF) will host the ninth edition of the Global Young Scientists Summit (GYSS), which will see the gathering of the world’s foremost scientists and technologists engage and inspire aspiring young scientists. Held virtually from 12 to 15 January 2021, the eminent scientists will also discuss the latest advances in research and how they can be used to develop solutions to address major global challenges. The Summit will be graced by Singapore’s Deputy Prime Minister and Chairman of NRF, Mr Heng Swee Keat, who will deliver the opening address. The GYSS is a multi-disciplinary event covering the disciplines of chemistry, physics, biology, mathematics, computer science, and engineering. During the event, luminary scientists and technologists will share details of their discoveries by delivering plenary addresses, participating in panel discussions, and engaging with the young scientists in small group discussions. They will also provide mentorship to over 500 young researchers from more than 30 countries. Star-studded panel speaking on a wide range of subjects and issues This year, the GYSS sees 21 speakers, the highest number since the start of the Summit, of whom 17 are speaking at the Summit for the first time. The list includes Nobel Laureates, Fields Medallists, Millennium Technology Prize and the Turing Award winners.
    [Show full text]
  • Eindhoven University of Technology BACHELOR Creating Rydberg
    Eindhoven University of Technology BACHELOR Creating Rydberg crystals in ultra-cold gases using stimulated Raman adiabatic passage schemes Plantz, N.W.M.; van der Wurff, E.C.I. Award date: 2012 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Eindhoven University of Technology Department of Applied Physics Coherence and Quantum Technology group CQT 2012-08 Creating Rydberg crystals in ultra-cold gases using Stimulated Raman Adiabatic Passage Schemes N.W.M. Plantz & E.C.I. van der Wurff July 2012 Supervisors: ir. R.M.W. van Bijnen dr. ir. S.J.J.M.F. Kokkelmans dr. ir. E.J.D. Vredenbregt Abstract This report is the result of a bachelor internship of two applied physics students.
    [Show full text]
  • Chad Orzel Graduated from the Whitney Point Central School District in 1989 As Valedictorian of His Class
    Chad R Orzel Alumnus Inducted June 15, 2013 Chad Orzel graduated from the Whitney Point Central School District in 1989 as valedictorian of his class. He went on to study physics at Williams College in Massachusetts, and earned his Ph. D. in Chemical Physics from the University of Maryland, College Park under Nobel Laureate William Daniel Phillips. Chad is an Associate Professor in the Department of Physics and Astronomy at Union College where he teaches and researches atomic physics and quantum optics. Chad's passion for science and physics transcends the classroom. He wants every person to be able to understand the principles of physics and realize their relevance to everyday life. He has written two books, How to Teach Physics to Your Dog, and How to Teach Relativity to Your Dog, in which he explains those concepts through conversations with his dog, Emmy. Chad has authored and co-authored many articles which have appeared in scientific journals and publications. He has presented at conferences and been invited to speak nationally and internationally on a variety of physics related topics. Chad feels that beyond a collection of facts, science is an approach to the world. Several years ago Chad shared the importance of "Thinking Like a Scientist" with Whitney Point's then graduating seniors. He emphasized that most problems in the world can be solved by applying the scientific process. He maintains the world would be a better place if more people thought scientifically because science is an empowering and optimistic approach to the world. It turns, "I don't know," into "I don't know...yet." He is currently working on his third book entitled How to Think Like a Scientist, to further explain this tenet.
    [Show full text]
  • Frontiers of Quantum and Mesoscopic Thermodynamics 14 - 20 July 2019, Prague, Czech Republic
    Frontiers of Quantum and Mesoscopic Thermodynamics 14 - 20 July 2019, Prague, Czech Republic Under the auspicies of Ing. Miloš Zeman President of the Czech Republic Jaroslav Kubera President of the Senate of the Parliament of the Czech Republic Milan Štˇech Vice-President of the Senate of the Parliament of the Czech Republic Prof. RNDr. Eva Zažímalová, CSc. President of the Czech Academy of Sciences Dominik Cardinal Duka OP Archbishop of Prague Supported by • Committee on Education, Science, Culture, Human Rights and Petitions of the Senate of the Parliament of the Czech Republic • Institute of Physics, the Czech Academy of Sciences • Department of Physics, Texas A&M University, USA • Institute for Theoretical Physics, University of Amsterdam, The Netherlands • College of Engineering and Science, University of Detroit Mercy, USA • Quantum Optics Lab at the BRIC, Baylor University, USA • Institut de Physique Théorique, CEA/CNRS Saclay, France Topics • Non-equilibrium quantum phenomena • Foundations of quantum physics • Quantum measurement, entanglement and coherence • Dissipation, dephasing, noise and decoherence • Many body physics, quantum field theory • Quantum statistical physics and thermodynamics • Quantum optics • Quantum simulations • Physics of quantum information and computing • Topological states of quantum matter, quantum phase transitions • Macroscopic quantum behavior • Cold atoms and molecules, Bose-Einstein condensates • Mesoscopic, nano-electromechanical and nano-optical systems • Biological systems, molecular motors and
    [Show full text]
  • Center for History of Physics Newsletter, Spring 2008
    One Physics Ellipse, College Park, MD 20740-3843, CENTER FOR HISTORY OF PHYSICS NIELS BOHR LIBRARY & ARCHIVES Tel. 301-209-3165 Vol. XL, Number 1 Spring 2008 AAS Working Group Acts to Preserve Astronomical Heritage By Stephen McCluskey mong the physical sciences, astronomy has a long tradition A of constructing centers of teaching and research–in a word, observatories. The heritage of these centers survives in their physical structures and instruments; in the scientific data recorded in their observing logs, photographic plates, and instrumental records of various kinds; and more commonly in the published and unpublished records of astronomers and of the observatories at which they worked. These records have continuing value for both historical and scientific research. In January 2007 the American Astronomical Society (AAS) formed a working group to develop and disseminate procedures, criteria, and priorities for identifying, designating, and preserving structures, instruments, and records so that they will continue to be available for astronomical and historical research, for the teaching of astronomy, and for outreach to the general public. The scope of this charge is quite broad, encompassing astronomical structures ranging from archaeoastronomical sites to modern observatories; papers of individual astronomers, observatories and professional journals; observing records; and astronomical instruments themselves. Reflecting this wide scope, the members of the working group include historians of astronomy, practicing astronomers and observatory directors, and specialists Oak Ridge National Laboratory; Santa encounters tight security during in astronomical instruments, archives, and archaeology. a wartime visit to Oak Ridge. Many more images recently donated by the Digital Photo Archive, Department of Energy appear on page 13 and The first item on the working group’s agenda was to determine through out this newsletter.
    [Show full text]
  • The Importance of Light in Our Lives1 an Overview of the Fascinating History and Current Relevance of Optics and Photonics
    The Importance of Light in our Lives1 An overview of the fascinating history and current relevance of Optics and Photonics Lecture Notes Jesus´ Mirapeix Serrano Photonics Engineering Group University of Cantabria Translation by Karen Louise Murphy 1This subject is included in the University of Cantabria’s Senior Program. Figure 0. Nobel Prize Winner Shuji Nakamura, inventor of blue LED, during his lecture at the ISLiST UIMP Summer School, in Santander (June 2017). Source: Photonic Engineering Group of the University of Cantabria. The Importance of Light in our Lives Mirapeix Serrano, Jes us´ Oc 2018 Jes us´ Mirapeix Serrano. This work is available under a Creative Commons license. https://creativecommons.org/licenses/by-nc-sa/4.0/ University of Cantabria 39005 Santander The Importance of Light in our Lives Course Structure his course is divided into 8 chapters and aims to provide an introduction to the main T concepts of optics and photonics: from the use of the first magnifying glasses to the use of laser in a multitude of present-day devices and applications. Chapter 1: The Historical Evolution of Optics and Photonics With reference to the discoveries of key personalities such as Archimedes, Newton or Eins- tein, this chapter traces the fascinating history of the evolution of Optics through to Photo- nics, with the invention of the omnipresent laser and optical fiber. Chapter 2: What is Light? Waves and Particles This chapter aims to provide a clear and simple explanation of one of the “mysteries” that have most greatly concerned and occupied hundreds of scientists throughout the centuries: What is Light? Is it a wave or a particle? .
    [Show full text]
  • Arihant Phy Handbook
    Telegram @neetquestionpaper Telegram @aiimsneetshortnotes1 [26000+Members] www.aiimsneetshortnotes.com Telegram @neetquestionpaper Telegram @aiimsneetshortnotes1 [26000+Members] hand book KEY NOTES TERMS DEFINITIONS FORMULAE Physics Highly Useful for Class XI & XII Students, Engineering & Medical Entrances and Other Competitions www.aiimsneetshortnotes.com Telegram @neetquestionpaper Telegram @aiimsneetshortnotes1 [26000+Members] www.aiimsneetshortnotes.com Telegram @neetquestionpaper Telegram @aiimsneetshortnotes1 [26000+Members] hand book KEY NOTES TERMS DEFINITIONS FORMULAE Physics Highly Useful for Class XI & XII Students, Engineering & Medical Entrances and Other Competitions Keshav Mohan Supported by Mansi Garg Manish Dangwal ARIHANT PRAKASHAN, (SERIES) MEERUT www.aiimsneetshortnotes.com Telegram @neetquestionpaper Telegram @aiimsneetshortnotes1 [26000+Members] Arihant Prakashan (Series), Meerut All Rights Reserved © Publisher No part of this publication may be re-produced, stored in a retrieval system or distributed in any form or by any means, electronic, mechanical, photocopying, recording, scanning, web or otherwise without the written permission of the publisher. Arihant has obtained all the information in this book from the sources believed to be reliable and true. However, Arihant or its editors or authors or illustrators don’t take any responsibility for the absolute accuracy of any information published and the damages or loss suffered there upon. All disputes subject to Meerut (UP) jurisdiction only. Administrative & Production Offices Regd. Office ‘Ramchhaya’ 4577/15, Agarwal Road, Darya Ganj, New Delhi -110002 Tele: 011- 47630600, 43518550; Fax: 011- 23280316 Head Office Kalindi, TP Nagar, Meerut (UP) - 250002 Tele: 0121-2401479, 2512970, 4004199; Fax: 0121-2401648 Sales & Support Offices Agra, Ahmedabad, Bengaluru, Bareilly, Chennai, Delhi, Guwahati, Hyderabad, Jaipur, Jhansi, Kolkata, Lucknow, Meerut, Nagpur & Pune ISBN : 978-93-13196-48-8 Published by Arihant Publications (India) Ltd.
    [Show full text]
  • Contributions of Civilizations to International Prizes
    CONTRIBUTIONS OF CIVILIZATIONS TO INTERNATIONAL PRIZES Split of Nobel prizes and Fields medals by civilization : PHYSICS .......................................................................................................................................................................... 1 CHEMISTRY .................................................................................................................................................................... 2 PHYSIOLOGY / MEDECINE .............................................................................................................................................. 3 LITERATURE ................................................................................................................................................................... 4 ECONOMY ...................................................................................................................................................................... 5 MATHEMATICS (Fields) .................................................................................................................................................. 5 PHYSICS Occidental / Judeo-christian (198) Alekseï Abrikossov / Zhores Alferov / Hannes Alfvén / Eric Allin Cornell / Luis Walter Alvarez / Carl David Anderson / Philip Warren Anderson / EdWard Victor Appleton / ArthUr Ashkin / John Bardeen / Barry C. Barish / Nikolay Basov / Henri BecqUerel / Johannes Georg Bednorz / Hans Bethe / Gerd Binnig / Patrick Blackett / Felix Bloch / Nicolaas Bloembergen
    [Show full text]
  • Conference Booklet
    THE PONTIFICAL ACADEMY OF SCIENCES PLENARY SESSION ON SCIENCE and SUSTAINABILITY Impacts of Scientific Knowledge and Technology on Human Society and its Environment 25-29 NOVEMBER 2016 • CASINA PIO IV • VATICAN CITY he climate is a common good, belonging to all and meant for all. At the global level, it Tis a complex system linked to many of the essential conditions for human life. A very solid scientific consensus indicates that we are presently witnessing a disturbing warming “ of the climatic system. In recent decades this warming has been accompanied by a constant rise in the sea level and, it would appear, by an increase of extreme weather events, even if a scientifically determinable cause cannot be assigned to each particular phenomenon. Humanity is called to recognize the need for changes of lifestyle, production and consumption, in order to combat this warming or at least the human causes which produce or aggravate it. It is true that there are other factors (such as volcanic activity, variations in the earth’s orbit and axis, the solar cycle), yet a number of scientific studies indicate that most global warming in recent decades is due to the great concentration of greenhouse gases (carbon dioxide, methane, nitrogen oxides and others) released mainly as a result of human activity. As these gases build up in the atmosphere, they hamper the escape of heat produced by sunlight at the earth’s surface. The problem is aggravated by a model of development based on the intensive use of fossil fuels, which is at the heart of the worldwide energy system.
    [Show full text]
  • 24 August 2013 Seminar Held
    PROCEEDINGS OF THE NOBEL PRIZE SEMINAR 2012 (NPS 2012) 0 Organized by School of Chemistry Editor: Dr. Nabakrushna Behera Lecturer, School of Chemistry, S.U. (E-mail: [email protected]) 24 August 2013 Seminar Held Sambalpur University Jyoti Vihar-768 019 Odisha Organizing Secretary: Dr. N. K. Behera, School of Chemistry, S.U., Jyoti Vihar, 768 019, Odisha. Dr. S. C. Jamir Governor, Odisha Raj Bhawan Bhubaneswar-751 008 August 13, 2013 EMSSSEM I am glad to know that the School of Chemistry, Sambalpur University, like previous years is organizing a Seminar on "Nobel Prize" on August 24, 2013. The Nobel Prize instituted on the lines of its mentor and founder Alfred Nobel's last will to establish a series of prizes for those who confer the “greatest benefit on mankind’ is widely regarded as the most coveted international award given in recognition to excellent work done in the fields of Physics, Chemistry, Physiology or Medicine, Literature, and Peace. The Prize since its introduction in 1901 has a very impressive list of winners and each of them has their own story of success. It is heartening that a seminar is being organized annually focusing on the Nobel Prize winning work of the Nobel laureates of that particular year. The initiative is indeed laudable as it will help teachers as well as students a lot in knowing more about the works of illustrious recipients and drawing inspiration to excel and work for the betterment of mankind. I am sure the proceeding to be brought out on the occasion will be highly enlightening.
    [Show full text]
  • [1] Is a French Physicist Who Was Awarded the 2012 Nobel Prize for Physics Jointly with David J
    First raw from left to right William Esco Moerner (born June 24, 1953) is an American physical chemist and chemical physicist with current work in the biophysics and imaging of single molecules. He is credited with achieving the first optical detection and spectroscopy of a single molecule in condensed phases, along with his postdoc, Lothar Kador.[1][2] Optical study of single molecules has subsequently become a widely used single-molecule experiment in chemistry, physics and biology.[3] In 2014 he was awarded the Nobel Prize in Chemistry.[4][5] Takaaki Kajita (䬘 ኦ ᵇᒍ Kajita Takaaki?, born 9 March 1959) is a Japanese physicist, known for neutrino experiments at the Kamiokande and its successor, Super-Kamiokande. In 2015, he was awarded the Nobel Prize in Physics jointly with Canadian physicist Arthur B. McDonald. Serge Haroche (born 11 September 1944)[1] is a French physicist who was awarded the 2012 Nobel Prize for Physics jointly with David J. Wineland for "ground- breaking experimental methods that enable measuring and manipulation of individual quantum systems", a study of the particle of light, the photon.[2][3][4] This and his other works developed laser spectroscopy. Since 2001, Haroche is a Professor at the Collège de France and holds the Chair of Quantum Physics. In 1971 he defended his doctoral thesis in physics at the University of Paris VI, his research has been conducted under the direction of Claude Cohen-Tannoudji.[5] ,עדה יונת :Ada E. Yonath (Hebrew pronounced [ˈada joˈnat]) (born 22 June 1939)[1] is an Israeli crystallographer best known for her pioneering work on the structure of the ribosome.
    [Show full text]