Proterozoic Assembly of North America: Insight from the Interactions of Deformation, Metamorphism and Magmatism in the Southwestern United States

Total Page:16

File Type:pdf, Size:1020Kb

Proterozoic Assembly of North America: Insight from the Interactions of Deformation, Metamorphism and Magmatism in the Southwestern United States PROTEROZOIC ASSEMBLY OF NORTH AMERICA: INSIGHT FROM THE INTERACTIONS OF DEFORMATION, METAMORPHISM AND MAGMATISM IN THE SOUTHWESTERN UNITED STATES A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Robert Alexander Hunter August 2013 © 2013 Robert Alexander Hunter PROTEROZOIC ASSEMBLY OF NORTH AMERICA: INSIGHT FROM THE INTERACTIONS OF DEFORMATION, METAMORPHISM AND MAGMATISM IN THE SOUTHWESTERN UNITED STATES Robert Alexander Hunter, Ph. D. Cornell University One of the major goals of the geoscience community is to develop an accurate tectonic history of North America. Understanding how our continent evolved through time has numerous implications for our ability to develop accurate models of the tectonic evolution of continents – how they form, deform, and break. The interactions of deformation, metamorphism, and plutonism, three fundamental geological processes at work throughout the evolution of continents, record information that can be used to better understand the mechanisms and events that have shaped our continent. This dissertation employs metamorphic petrology, structural geology, geochemistry and geothermobarometry to interrogate the interactions of deformation, metamorphism and plutonism on multiple scales across the southwest United States. On a microscope scale, this dissertation shows that deformation and metamorphism can work in a positive feedback loop, facilitated by solution mass transfer, to localize both deformation and metamorphism, producing areas of high strain that have more closely approached metamorphic equilibrium. This result informs our understanding of crustal behavior at mid-crustal depths during orogenesis. On the mountain range scale, this dissertation combines petrographic analysis, structural geology, geochemistry and geothermobarometry to show that metamorphism in the Tusas and Picuris Mountains of northern New Mexico is consistent with one metamorphic event following a pressure-temperature-time trajectory consistent with progressive loading during the formation of a fold and thrust belt. This result informs our understanding of the tectonic history of North America, and has implications for the petrogenesis of aluminosilicate triple-point rocks in the region. Finally, on a continental scale, this dissertation uses previously published geochronologic data to identify spatial patterns in the age of igneous bodies across the southwest United States. These results were used to characterize mesoproterozoic tectonism and develop a model for melt production of these plutons. This result informs not only our understanding of crustal growth and rejuvenation during orogeny, but also provides a comprehensive dataset and novel approach that may both be employed in future research. BIOGRAPHICAL SKETCH Robert Alexander (“Sander”) Hunter, born in Alexandria VA, was raised in Madison WI by his parents, Robert McKinley Hunter and Karen Fonda Stowe. He has one older sister, Lorien Rachel Hunter, who currently lives in Long Beach CA while she pursues her PhD in sociology. Robert completed his B.S. in geology at the University of Wisconsin, Madison. During his time there, he worked with Professor Basil Tikoff to determine the structural significance of magma conduits between plutonic intrusions in the Henry Mountains of Utah. After completing his B.S., Sander began working towards a PhD at Cornell University under professor Chris Andronicos. During his time at Cornell, Sander participated in the graduate student community by taking multiple roles, including president and faculty liaison in the department’s graduate organization, while also acting as treasurer of AAPG for a short period. He also helped to found a chapter of the Society for the Advancement of Native Americans and Chicanos in the Sciences at Cornell, where he again acted as treasurer. Outside the academic realm, Sander spent his time at Cornell exploring the nature surrounding the University. Through this outlet, he developed an interest in photography, entering several local contests, selling his prints and working as an event photographer. Sander has accepted position as a research scientist with Royal Dutch Shell in Houston, Texas, where he hopes to continue both academic research and amateur photography. i ACKNOWLEDGMENTS The list of people I wish to thank for helping me achieve my goals is quite long and extends back to a time long before my arrival at Cornell. However, first and foremost, I would like to thank my committee, Professors Christopher Andronicos, Robert Kay, and Karim-Aly Kassam. Professor Kassam, thank you for your willingness to teach me about human ecology. Each discussion with you pushed me to think in completely new ways and challenged me to see things from a different perspective. Professor Kay, thank you for always finding the time to meet with me. Your support throughout my time here, and particularly recently with Chris at another university, has been instrumental in getting me to where I am today. And finally, Chris, thank you. For everything. You took me in, quite literally, out of the cold, and helped me feel at home. And for that, I am endlessly grateful. My experience with you led me to Cornell, and since that time, you have worked hard to leave your boot print on my geological soul – in the best possible way. Chris, you have shared with me your passion for geology, as well as your endless knowledge on the subject. But my learning did not stop with geology. Over my time at Cornell, I’m pretty sure you taught me something about just about everything: from tarp science, to how to hang a bear bag and how to survive a thundersnow storm at 12,000 feet; from how to tell sillimanite from wollastonite to how to identify graded beds in an amphibolite facies grade pelitic schist. You have had my back every step of the way. Thank you. I would like to thank my fellow graduate students and friends. I never dreamt I would have such a great group of diverse, caring and fun friends. I would like to thank ii you all for the late night G-chat consultations, programming help, pizza Fridays and innumerable other fond memories. I would be remiss if I did not specifically thank a few of you specifically. First, I would like to thank my officemate Ruth Aronoff. From late night office dance party breaks and G-chatted words of support to a long list of inside jokes…I don’t know I would have done without you. Second, I would like to thank Greg Kirkpatrick and Scott Henderson. When the chips were down and I was in dire need of help, you guys never let me down. Finally, I would like to thank Kyle Trostle and Gregg McElwee. You two made sure I got out of the office to see the sun, at least for as long as it takes to walk to the Souvlaki House. You two are amazing friends. Thank you. The importance of my family to my success at Cornell cannot be overstated. Mom and Dad, I would like thank you for always believing in me, encouraging me, and giving me places to call home. To my sister Lorien, thank you. No matter what you were doing, or when I called, you have always been there for me, and have always cheered me on. And no, the “you’re a rock star” joke never gets old. Reaching back to my time before graduate school, I would like to think my undergraduate advisor, Professor Basil Tikoff, and my boss at the University of Wisconsin Madison Geology Museum, both of whom were instrumental in my success as an undergraduate, and both of whom helped me reach Cornell. Also from my time as an undergraduate, I would like thank Mercile Lee, whose grace, wisdom and belief in me saw me through some of my most difficult times. Finally, I would also like to thank the National Science Foundation and the Diversity Programs in Engineering here at Cornell, both of whom funded me during my quest for knowledge in the form of fellowships. iii TABLE OF CONTENTS BIOGRAPHICAL SKETCH ............................................................................................... i ACKNOWLEDGMENTS .................................................................................................. ii TABLE OF CONTENTS................................................................................................... iv LIST OF FIGURES ........................................................................................................... vi LIST OF TABLES............................................................................................................ vii 1. Introduction.................................................................................................................1 Research Question .......................................................................................................... 1 Why the southwest United States ................................................................................... 2 Dissertation Outline ........................................................................................................ 6 Dissertation Conclusions .............................................................................................. 14 References:.................................................................................................................... 17 2. Deformation assisted phase transformation: an example from the sillimanite-in isograd, Eolus batholith, Needle Mountains, Colorado, USA ............................................ 1 Abstract..........................................................................................................................
Recommended publications
  • The Proterozoic History of the Idaho Springs-Ralston Shear Zone: Evidence for a Widespread Ca
    THE PROTEROZOIC HISTORY OF THE IDAHO SPRINGS-RALSTON SHEAR ZONE: EVIDENCE FOR A WIDESPREAD CA. 1.4 GA OROGENIC EVENT IN CENTRAL COLORADO by Madison Lytle A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date _____________________________ Signed: __________________________________ Madison Lytle Signed: __________________________________ Dr. Yvette D. Kuiper Thesis Advisor Golden, Colorado Date _____________________________ Signed: _________________________________ Dr. M. Stephen Enders Department Head Department of Geology and Geological Engineering ii ABSTRACT The Idaho Springs-Ralston shear zone (IRSZ) is one of several Proterozoic NE-trending zones within the central-eastern Colorado Front Range. The zone is composed of multiple mylonitic strands of a few meters to several kilometers in width and is mapped from ~16 km NNW of Denver, CO to ~26 km to the SW (near Idaho Springs, CO). The IRSZ and other NE-trending zones have previously been interpreted as ~1.45 Ga reactivated shear zones, following a pre-existing crustal-scale weakness, such as a suture zone that formed at ~1.7 Ga. The interpreted suture zone was based on the presence of tectonic mélange at the St. Louis Lake shear zone, ~40 km NNW of the IRSZ, suggesting the presence of a subduction zone. New field data suggest that the IRSZ is not as extensive as previously interpreted. Additionally, a lack of pinch outs and offset of major units, as well as similar deformation histories and metamorphic conditions on either side suggest that the IRSZ did not form as a continental suture zone.
    [Show full text]
  • GSA ROCKY MOUNTAIN/CORDILLERAN JOINT SECTION MEETING 15–17 May Double Tree by Hilton Hotel and Conference Center, Flagstaff, Arizona, USA
    Volume 50, Number 5 GSA ROCKY MOUNTAIN/CORDILLERAN JOINT SECTION MEETING 15–17 May Double Tree by Hilton Hotel and Conference Center, Flagstaff, Arizona, USA www.geosociety.org/rm-mtg Sunset Crater is a cinder cone located north of Flagstaff, Arizona, USA. Program 05-RM-cvr.indd 1 2/27/2018 4:17:06 PM Program Joint Meeting Rocky Mountain Section, 70th Meeting Cordilleran Section, 114th Meeting Flagstaff, Arizona, USA 15–17 May 2018 2018 Meeting Committee General Chair . Paul Umhoefer Rocky Mountain Co-Chair . Dennis Newell Technical Program Co-Chairs . Nancy Riggs, Ryan Crow, David Elliott Field Trip Co-Chairs . Mike Smith, Steven Semken Short Courses, Student Volunteer . Lisa Skinner Exhibits, Sponsorship . Stephen Reynolds GSA Rocky Mountain Section Officers for 2018–2019 Chair . Janet Dewey Vice Chair . Kevin Mahan Past Chair . Amy Ellwein Secretary/Treasurer . Shannon Mahan GSA Cordilleran Section Officers for 2018–2019 Chair . Susan Cashman Vice Chair . Michael Wells Past Chair . Kathleen Surpless Secretary/Treasurer . Calvin Barnes Sponors We thank our sponsors below for their generous support. School of Earth and Space Exploration - Arizona State University College of Engineering, Forestry, and Natural Sciences University of Arizona Geosciences (Arizona LaserChron Laboratory - ALC, Arizona Radiogenic Helium Dating Lab - ARHDL) School of Earth Sciences & Environmental Sustainability - Northern Arizona University Arizona Geological Survey - sponsorship of the banquet Prof . Stephen J Reynolds, author of Exploring Geology, Exploring Earth Science, and Exploring Physical Geography - sponsorship of the banquet NOTICE By registering for this meeting, you have acknowledged that you have read and will comply with the GSA Code of Conduct for Events (full code of conduct listed on page 31) .
    [Show full text]
  • Hydrogeologic Investigation of the Southern Taos Valley, Taos County, New Mexico
    NEW MEXICO BUREAU OF GEOLOGY AND MINERAL RESOURCES Hydrogeologic Investigation of the Southern Taos Valley, Taos County, New Mexico Peggy S. Johnson Paul W. Bauer Brigitte Felix Final Technical Report August 2016 (updated November 2016) Open-File Report 581 New Mexico Bureau of Geology and Mineral Resources A division of New Mexico Institute of Mining and Technology Socorro, NM 87801 (575) 835 5490 Fax (575) 835 6333 geoinfo.nmt.edu Hydrogeologic Investigation of the Southern Taos Valley, Taos County, New Mexico Peggy S. Johnson Paul W. Bauer Brigitte Felix Final Technical Report August 2016 (updated November 2016) Open-File Report 581 New Mexico Bureau of Geology and Mineral Resources PROJECT FUNDING Taos County New Mexico Bureau of Geology and Mineral Resources, Aquifer Mapping Program Healy Foundation The views and conclusions are those of the authors, and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the State of New Mexico. Cover photograph: View north down the Picuris piedmont in an area where Quaternary sand and gravel depos- its cover a complex system of buried Embudo faults and Picuris-Pecos faults. Proterozoic rocks of the Sangre de Cristo Mountains are on the right horizon, and isolated volcanoes of the Taos Plateau volcanic field in the Rio Grande rift are on the left horizon. The water well being drilled in the fall of 2015 penetrated 1200 feet of Santa Fe Group and Picuris Formation sedimentary rocks. Photograph by Paul Bauer NEW MEXICO BUREAU OF GEOLOGY AND MINERAL RESOURCES SOUTH TAOS VALLEY, TAOS COUNTY CONTENTS Proterozoic rocks ....................................................31 Executive Summary ............................................................
    [Show full text]
  • The Geology of New Mexico As Understood in 1912: an Essay for the Centennial of New Mexico Statehood Part 2 Barry S
    Celebrating New Mexico's Centennial The geology of New Mexico as understood in 1912: an essay for the centennial of New Mexico statehood Part 2 Barry S. Kues, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, [email protected] Introduction he first part of this contribution, presented in the February Here I first discuss contemporary ideas on two fundamental areas 2012 issue of New Mexico Geology, laid the groundwork for an of geologic thought—the accurate dating of rocks and the move- exploration of what geologists knew or surmised about the ment of continents through time—that were at the beginning of Tgeology of New Mexico as the territory transitioned into statehood paradigm shifts around 1912. Then I explore research trends and in 1912. Part 1 included an overview of the demographic, economic, the developing state of knowledge in stratigraphy and paleontol- social, cultural, and technological attributes of New Mexico and its ogy, two disciplines of geology that were essential in understand- people a century ago, and a discussion of important individuals, ing New Mexico’s rock record (some 84% of New Mexico’s surface institutions, and areas and methods of research—the geologic envi- area is covered by sediments or sedimentary rocks) and which were ronment, so to speak—that existed in the new state at that time. advancing rapidly through the first decade of the 20th century. The geologic time scale and age of rocks The geologic time scale familiar to geologists working in New The USGS did not adopt the Paleocene as the earliest epoch of the Mexico in 1912 was not greatly different from that used by modern Cenozoic until 1939.
    [Show full text]
  • Stratigraphic Nomenclature of Proterozoic Rocks, Northern New
    Stratigraphicnomenclature ol proterozoic rocks, northern NewMexico-revisions, redefinitions, andformalization byPaul W' Bauer, New MexicoBureau ol Minesancl Mineral Resources, Socono, NM 87801 , and Michaet L. Wiltiams,Department of Geology and Geography, Universityof Massachusetts, Amherst, MA 01003 Abstract lithotectonic nomenclature for the supra- Much of the exposed Proterozoic rock in crustal Precambrianrocks exposed in north- This paper proposes formal northern New Mexico can be assignedto one revisions of ern New Mexico. the lithostratigraphicnomenclature for some of four major lithologic assemblages:1) se- Early Proterozoic rocks in northern New quencesdominated by metamorphosedmafic volcanicrocks, ca 1,755-I,720 Ma in age;2) sequencesdominated by metamorphosed felsic volcanic rocks and immature clastic sedimentaryrocks, ca 1,700Ma and ca 1,500- tains, the Truchas Peaksarea, the Rio Mora- 1,650Ma in age;3)massive clean quartzite(s) and sequencesof interlayered pelitic schist and quartzite, 1,700-1,650Ma; and 4) intru- sive rocks that range widely in age and com- position (Robertsonet al., in press).Each of these is discussed separately.Table L sum- marizes both existing and proposed new no- Kiowa Mountain in the Tusas Mountains. menclature for stratified units. Several distinctive units are designated as of northern and central New Mexico, and formations: Big Rock Formation, Burned perhaps in parts of Arizona and southern Mafic metavolcanic sequences Mountain Formation, Marquenas Forma- Colorado (Burns and Wobus, 1.983;Wobus, tion, Clenwoody Formation. Extensive terrains dominated by amphi- The metase- 1985;Bauer and Williams, 1985;Grambling dimentary sequencepreviously bolite and mafic schist of igneous parenfage called the and Williams, 1985;Williams, Ortega Group is,renamedthe Hondo 1987).
    [Show full text]
  • Challenges and Opportunities for Brackish
    CHALLENGES AND OPPORTUNITIES FOR BRACKISH GROUNDWATER- RESOURCE DEVELOPMENT IN NEW MEXICO—PREDICTION HYDRO-SCIENCE FROM AN OCTOGENARIAN HYDROGEOLOGIST’S PERSPECTIVE Introduction to Part-2 of Invited Presentations on Desalination Science/Technology (Mike Hightower, SNL) and New Mexico’s Brackish Groundwater Resources to the Urban Land Institute-New Mexico Section, April 28, 2016 John W. Hawley, Ph.D., Emeritus Senior Environmental Geologist, N.M. Bureau of Geology & Mineral Resources, NMIMT Visiting Senior Hydrogeologist, N.M. Water Resources Research Institute, NMSU dba HAWLEY GEOMATTERS [email protected] P.O. Box 4370, Albuquerque, NM 87196-4370; Phone (o) 505-255-4847, (c) 505-263-6921 PREFACE This informal “white paper” introduces a pptx presentation on “Challenges and Opportunities for Brackish Groundwater-Resource Development in New Mexico,” and includes representative slides and an expanded list of background references. Most illustrations with a GoogleTMearth base have been designed by Baird Swanson of Swanson Geoscience, LLC; and all hydrogeologic maps and cross sections were initially created by HAWLEY GEOMATTERS for the N.M. Water Resources Research Institute Transboundary Aquifer Assessment Project (TAAP). Since exposure to water-based realities in our dryland-culture can be a bit depressing, I’ll try to keep my remarks as optimistic and moist as possible. Also, since bad-news bearers have often met bad ends throughout history, it’s prudent to avoid doom and gloom scenarios whenever I can. So, emphasis here will be on places where de-watered aquifer spaces can be replenished through timely application of state-of-the-art Aquifer Storage & Recovery (ASR) technology. Professional observations and opinions on the interlinkage of land, water, and energy resources reflects an early career in the New Mexico-West Texas region as a research geologist for the Soil Survey Investigations Division of the USDA Soil Conservation Service (SCS-now NRCS), with field headquarters at NMSU-Las Cruces (1962-1971), Texas Tech University-Lubbock (1971- 1974), N.M.
    [Show full text]
  • Evaluating the Shinumo-Sespe Drainage Connection: Arguments Against the “Old” (70–17 Ma) Grand Canyon Models for Colorado GEOSPHERE, V
    Research Paper THEMED ISSUE: CRevolution 2: Origin and Evolution of the Colorado River System II GEOSPHERE Evaluating the Shinumo-Sespe drainage connection: Arguments against the “old” (70–17 Ma) Grand Canyon models for Colorado GEOSPHERE, v. 16, no. 6 Plateau drainage evolution https://doi.org/10.1130/GES02265.1 Karl E. Karlstrom1, Carl E. Jacobson2,3, Kurt E. Sundell4, Athena Eyster5, Ron Blakey6, Raymond V. Ingersoll7, Jacob A. Mulder8, Richard A. Young9, 18 figures; 1 table; 1 set of supplemental files L. Sue Beard10, Mark E. Holland11, David L. Shuster12,13, Carmen Winn1, and Laura Crossey1 1Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA CORRESPONDENCE: [email protected] 2Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011-3212, USA 3Department of Earth and Space Sciences, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383, USA 4Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA CITATION: Karlstrom, K.E., Jacobson, C.E., Sun dell, 5Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA K.E., Eyster, A., Blakey, R., Ingersoll, R.V., Mulder, 6Colorado Plateau Geosystems, Phoenix, Arizona 85032, USA J.A., Young, R.A., Beard, L.S., Holland, M.E., Shus- 7Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California 90095-1567, USA ter, D.L., Winn, C., and Crossey, L., 2020, Evaluating 8School of
    [Show full text]
  • Do Proterozoic Metamorphic Rocks in Northern New Mexico Record One
    Bucknell University Bucknell Digital Commons Honors Theses Student Theses 2016 Do Proterozoic Metamorphic Rocks in Northern New Mexico Record One Metamorphic Event At 1.4 Ga, or Two Overprinting Events At 1.65 GA and 1.4 GA Sara Vivienne Stotter Bucknell University, [email protected] Follow this and additional works at: https://digitalcommons.bucknell.edu/honors_theses Recommended Citation Stotter, Sara Vivienne, "Do Proterozoic Metamorphic Rocks in Northern New Mexico Record One Metamorphic Event At 1.4 Ga, or Two Overprinting Events At 1.65 GA and 1.4 GA" (2016). Honors Theses. 355. https://digitalcommons.bucknell.edu/honors_theses/355 This Honors Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in Honors Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact [email protected]. iv ACKNOWLEDGEMENTS I would first like to thank my thesis advisor, Dr. Chris Daniel, for his unwavering guidance, encouragement, patience, and support throughout the course of my research project. Sophomore year, when I first started doing work with Dr. Daniel, I never imagined that I would accomplish and learn so much, and I am truly grateful for his insight and mentoring. He always pushed me to do my best, and continually challenged me to think critically which allowed me to reach my goals and excel beyond them. I would also like to thank Dr. Mary Beth Gray for her kind words and endless motivation that kept me going even in the most stressful of times.
    [Show full text]
  • 1 PATTERNS of MONTOYA GROUP DEPOSITION, DIAGENESIS, and RESERVOIR DEVELOPMENT in the PERMIAN BASIN Rebecca H. Jones ABSTRACT
    PATTERNS OF MONTOYA GROUP DEPOSITION, DIAGENESIS, AND RESERVOIR DEVELOPMENT IN THE PERMIAN BASIN Rebecca H. Jones ABSTRACT Rocks composing both the Montoya (Upper Ordovician) and Fusselman (Lower Silurian) Formations were deposited during the global climate transition from greenhouse conditions to unusually short-lived icehouse conditions on a broad, shallow-water platform. The Montoya and the Fusselman also share many reservoir characteristics and have historically been grouped together in terms of production and plays. Recently, however, the Montoya has garnered attention on its own, with new gas production in the Permian Basin and increased interest in global Ordovician climate. Recent outcrop work has yielded new lithologic and biostratigraphic constraints and an interpretation of four third-order Montoya sequences within Sloss’s second-order Tippecanoe I sequence. The Montoya Group comprises the Upham, Aleman, and Cutter Formations, from oldest to youngest. The Upham contains a basal, irregularly present sandstone member called the Cable Canyon. The boundary between the Montoya and the Fusselman is readily definable where a thin shale called the Sylvan is present but can be difficult to discern where the Sylvan is absent. Montoya rocks were deposited from the latest Chatfieldian to the end of the Richmondian stage of the late Mohawkian and Cincinnatian series (North American) of the Upper Ordovician. Montoya reservoir quality is generally better in the northern part of the Permian Basin where it is primarily dolomite compared to limestone Montoya reservoirs in the south. Reservoir quality is also better in the lower part of the unit compared to the upper, owing to a predominance of porous and permeable subtidal ooid grainstones and skeletal packstones in the former and peritidal facies in the latter.
    [Show full text]
  • Age and Isotopic Evidence from Glacial Igneous Clasts, and Links With
    $FFHSWHG0DQXVFULSW 3URWHUR]RLFFUXVWDOHYROXWLRQRIFHQWUDO(DVW$QWDUFWLFD$JHDQGLVRWRSLFHYL GHQFHIURPJODFLDOLJQHRXVFODVWVDQGOLQNVZLWK$XVWUDOLDDQG/DXUHQWLD -RKQ:*RRGJH&0DUN)DQQLQJ&KULVWRSKHU0)LVKHU-HIIUH\'9HUYRRUW 3,, 6 ; '2, KWWSG[GRLRUJMSUHFDPUHV 5HIHUHQFH 35(&$0 7RDSSHDULQ Precambrian Research 5HFHLYHG'DWH )HEUXDU\ 5HYLVHG'DWH -XO\ $FFHSWHG'DWH -XO\ 3OHDVHFLWHWKLVDUWLFOHDV-:*RRGJH&0DUN)DQQLQJ&0)LVKHU-'9HUYRRUW3URWHUR]RLFFUXVWDOHYROXWLRQ RIFHQWUDO(DVW$QWDUFWLFD$JHDQGLVRWRSLFHYLGHQFHIURPJODFLDOLJQHRXVFODVWVDQGOLQNVZLWK$XVWUDOLDDQG /DXUHQWLDPrecambrian Research GRLKWWSG[GRLRUJMSUHFDPUHV 7KLVLVD3')ILOHRIDQXQHGLWHGPDQXVFULSWWKDWKDVEHHQDFFHSWHGIRUSXEOLFDWLRQ$VDVHUYLFHWRRXUFXVWRPHUV ZHDUHSURYLGLQJWKLVHDUO\YHUVLRQRIWKHPDQXVFULSW7KHPDQXVFULSWZLOOXQGHUJRFRS\HGLWLQJW\SHVHWWLQJDQG UHYLHZRIWKHUHVXOWLQJSURRIEHIRUHLWLVSXEOLVKHGLQLWVILQDOIRUP3OHDVHQRWHWKDWGXULQJWKHSURGXFWLRQSURFHVV HUURUVPD\EHGLVFRYHUHGZKLFKFRXOGDIIHFWWKHFRQWHQWDQGDOOOHJDOGLVFODLPHUVWKDWDSSO\WRWKHMRXUQDOSHUWDLQ Proterozoic crustal evolution of central East Antarctica: Age and isotopic evidence from glacial igneous clasts, and links with Australia and Laurentia John W. Goodge 1*, C. Mark Fanning2, Christopher M. Fisher3† and Jeffrey D. Vervoort3 1 Department of Earth and Environmental Sciences, University of Minnesota, Duluth, MN 55812 USA (correspondence: [email protected]) 2 Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 Australia ([email protected]) 3 School of the Environment, Washington State University, Pullman, WA 99164, USA ([email protected],
    [Show full text]
  • (U-Th)/He Thermochronology of the Santa Impact Crater (New
    Zircon U-Pb and (U-Th)/He thermochronology of the Santa Impact Crater (New Mexico, USA): evidence for a Paleozoic asteroid breakup? Rayssa Martins Pimentel Department of Geological Sciences, University of Colorado Boulder Defended April 4, 2018 Thesis Advisor Stephen J. Mojzsis Committee Members Stephen J. Mojzsis, Department of Geological Sciences Nigel M. Kelly, Department of Geological Sciences Nick Schneider, Astrophysical and Planetary Sciences Brian Hynek, Department of Geological Sciences Abstract The age of the Santa Fe Impact Structure (SFIS) is poorly constrained. Here, I examine the employability of the U-Th/He system in zircon and apatite extracted from shatter cones of the SFIS – some of Which Were previously analyzed for their U-Pb ages – to better constrain the age of this impact structure, Which lacks a preserved melt sheet, and has a complex, post-impact tectonic and thermal history. To achieve this, zircon and apatite grains Were separated from shatter cone samples. Grains were selected to span a range of apparent radiation damage to access a range of He retentivities. Where possible, grains preserving planar fractures (PFs) Were also included. U-Th/He dates from apatite predominantly record cooling from Laramide burial (c. 60 Ma), correlating With published apatite fission track dates. In contrast, U- Th/He dates from zircon have a Wider range (334.87 ± 13.56 Ma to 7.88 ± 0.22 Ma) and shoW a pronounced negative correlation With effective uranium content. The preservation of dates (n=3) that are older than the age of Laramide resetting in apatite demonstrates that loW eU zircons are promising candidates for both recording and preserving the age of the impact.
    [Show full text]
  • And Picuris (1.45 Ga) Orogenies Karl E
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/67 U-Pb Monazite and 40Ar/39Ar data supporting polyphase tectonism in the Manzano Mountains: a record of both the Mazatzal (1.66-1.60 Ga) and Picuris (1.45 Ga) Orogenies Karl E. Karlstrom, Michael L. Williams, Matthew T. Heizler, Mark E. Holland, Tyler A. Grambling, and Jeff M. Amato, 2016, pp. 177-184 in: Guidebook 67 - Geology of the Belen Area, Frey, Bonnie A.; Karlstrom, Karl E. ; Lucas, Spencer G.; Williams, Shannon; Ziegler, Kate; McLemore, Virginia; Ulmer-Scholle, Dana S., New Mexico Geological Society 67th Annual Fall Field Conference Guidebook, 512 p. This is one of many related papers that were included in the 2016 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico.
    [Show full text]