Seismic imaging using earthquakes and implications for earth systems 123* 2 3 3 3 Huaiyu Yuan , Mike Dentith , Ruth Murdie , Simon Johnson and Klaus Gessner * Currently in a week-long meeting in San Francisco. 1 2 3
[email protected] CCFS, Macquarie University; CET-UWA; GSWA Email
[email protected] for questions. Or spend a good 15 mintues reading it through! 1. Lithosphere control of the mineral systems and seismic imaging 6. Capricorn passive source project How giant magma-related ore systems form is vigorously debated. One view, displayed below, argues ascending magmas pick up ore-forming compo- The Capricorn orogen is a major tectonic unit that recorded the assembly of the Yil- nents (diamonds, gold) during their passage through the mantle lithosphere (Griffin et al., Nature Geoscience, 2013): e.g. garn and Pilbara cratons and the Proterozoic terranes to form the West Australian (a) diamonds, formed deep from metasomatically introduced carbon zones, are brought to surface in magmas that take advantage of lithospheric scale craton (a; e.g. Johnson et al. 2013). Numerous mineral deposit types have been rec- weak zones; and ognized throughout the orogen, and recent studies (Johnson et al. 2013; Aitken et (b) Au- and Cu-rich deposits are found in the back-arc and the mantle wedge, which are associated with low-degree and hi-degree melting, respectively. al. 2013) have illustrated the connection between known mineral deposits and the crustal scale fault systems and corresponding crustal blocks (b). In all cases lithospheric scale weak zones facilitate the movement of metal-bearing fluids to the surface.