Reflectionsreflections the Newsletter of the Popular Astronomy Club February 2020 President’S Corner FEBRUARY 2020 Mercury’S Disk

Total Page:16

File Type:pdf, Size:1020Kb

Reflectionsreflections the Newsletter of the Popular Astronomy Club February 2020 President’S Corner FEBRUARY 2020 Mercury’S Disk Affiliated with ReflectionsReflections The Newsletter of the Popular Astronomy Club February 2020 President’s Corner FEBRUARY 2020 Mercury’s disk. A bit higher in the sky, the planet Neptune is very much dim- Welcome to another edition of mer at magnitude 8. Binoculars or a “Reflections”, the telescope will be needed to see it. Final- universe’s best as- ly, follow the ecliptic up past Venus to tronomy newsletter. find Uranus, which at magnitude 5.8 is easier to find, but you will still want to Page Topic This issue has some 1-2 Presidents Corner great articles about use a pair of binoculars. A telescope will 3 Announcements/ astronomical events reveal Uranus’ diminutive pale blue disk. Info Alan Sheidler occurring during the 4-7 Contributions month of February. For starters, this If you happen to be an early riser, Feb- 8 Paul Castle ruary’s morning sky has some treats in Observatory Prog- month will be a great one for those of ect us who love to observe planets. During store for you. Saturn, Jupiter and Mars 9 NCRAL Messier the first half of the month, right after will be visible before sunrise. February’s Marathon/ 2020 sunset, the planet Mercury will be big event will be the occultation of Mars Sky Guide/ th about as high in the sky as it will be and by the moon on the 18 . If you have 2020 an ideal object for your telescope. never seen an occultation, you should Celestial Calendar put this on your calendar. Binoculars 10 Astronomy in Print While you are observing Mercury 11 First Light by (closest to the horizon), three other will help you see Mars as the moon ap- David Levy planets will also be visible, strung out proaches, but if you have a telescope, I 12 Upcoming Events like pearls on the ecliptic: Neptune, recommend you get it ready for this 13 Sign up Report Venus and Uranus. Venus, a dramati- event. 14 Astronomical cally bright naked eye object, will serve I have not yet observed the occultation Calendar of of a planet but I did observe the occulta- Events / The as a guidepost to finding the other plan- Planets ets dwelling nearby in the southwest- tion of the bright star Aldebaran on the 15-16 Sky views / Mars ern sky. If you have a clear horizon in (Continued on next page) Occultations that direction, draw an im- 17 Deep Sky Won aginary line between Venus ders 18-19 Astronomical and where the sun dipped League below the horizon. Follow 20 Spotlight: Messier this down and your eye will 41– the Little Bee- catch a fairly bright magni- hive tude -0.5 “star”, which will 21-22 Space Place Article in fact be the planet Mercu- 23-25 News links 26-27 Photographic ry. A pair of binoculars Experiment with might help you pick it out of the Orion Nebula the glare of early twilight. If 28 PAC Monthly you have a telescope, you Meeting might be able to discern (Continued in next column) 1 (Continued from previous page) could “see” a difference in the brightness of Betelgeuse between Popular th evening of October 18 , 2016. I’ve then and now. On the evening of Astronomy included a picture of this here. I re- January 20th, I took another picture Club call waiting and watching as the of Orion from my front yard. Unfor- Officers moon slowly lumbered toward Al- tunately, the camera settings were debaran and being amazed at being not the same so the images are not PRESIDENT - Alan Sheidler able to actually perceive the moon’s directly comparable, but neverthe- 3528 56th Street Court, Moline, IL, 61265 motion in real time, and then being less, we can compare the relative Phone: (309) 797-3120 even more amazed when all of a sud- brightness of the stars to each other den, Aldebaran simply “winked out” in each image. I’m including these VICE PRESIDENT – Dino Milani of existence as the moon swept past images here for you to examine 2317 29 1/2 Street, Rock Island, it. Because stars are so far away, yourself. What do you think? Is Be- IL, 61201 they actually have no discernable telgeuse noticeably dimmer now? It Phone: (309) 269-4735 angular size from our vantage point. might be the camera settings, but to Thus, the moon was able to cover it SECRETARY - Terry Dufek me it looks maybe a little bit dim- 2812 W. 65th Street, Davenport, in a mere fraction of a second. This mer and a lot less red in color. Does IA, 52806 Phone: (563) 386-3509 will not be the case with Mars how- that mean it’s getting ready to ex- ever. Mars will have a definite size plode? What do you think? TREASURER – Dale Hachtel and should require some time (15 Keep looking up! 1617 Elm Shore Drive, Port Byron seconds or so?) to be “eclipsed”. I IL, 61275 want to see this, so I am hoping for Alan Sheidler Phone: (614) 935-5748 clear weather. Stay ALCOR – Roy E. Gustafson tuned to your email as 11 Deer Run Road, Orion, IL, we will be putting out 61273 information closer to the Phone: (309)526-3592 time of the occultation. I can hardly wait! DIRECTOR OF OBSERVATORIES - Rusty Case 2123 W. 16th Street, Davenport, Finally, I would like to IA, 52804 discuss Betelgeuse. Phone: (563) 349-2444 There has been a lot of social media reports PAST PRESIDENT - about how much this Wayland Bauer bright star in Orion has 3256 Pleasant Drive, Bettendorf, dimmed so dramatically IA., 52722 Phone: (563) 332-4032 of late. There also has been a lot of hubbub NEWSLETTER EDITOR - about this massive star Terry Dufek going supernova at any 2812 W. 65th Street, Davenport, minute—and I would IA, 52806 love to see that happen Phone: (563) 386-3509 too, but, I went back into Contact for Information my archive of astro- or questions here: photos and found an popularastronomy- image of Orion from [email protected] 2012. I was curious if I (Continued in next column) 2 ANNOUNCEMENTS / INFO READY FOR MEMBERSHIP ORTO RENEW? Thank you Click Here LOOKING FOR OLDER ISSUES OF REFLECTIONS ForFor PAC Renewing Documents and NEWSLETTER? use “EnrollmentDave Smith Form ” OR Click HERE use last page in October Reflections HISTORY OF PAC? Click HERE SUBMISSIONS If you have an article or photos to submit or Popular Astronomy Club items of interest, we encourage you to send on Facebook? them in by the 25th of the month. Links to Click HERE stories are welcome also. Thank you! Astronomical League Observing Programs The Astronomical League provides many different Observing Programs. These Observing Programs are designed to provide a direction for your obser- vations and to provide a goal. The Observing Pro- grams have certificates and pins to recognize the observers’ accomplishments and for demon- strating their observing skills with a variety of in- struments and objects CLICK HERE! Click Here MORE NCRAL VISION 2020 INFORMATION HERE! 3 CONTRIBUTIONS 4 CONTRIBUTIONS Stop abbreviating 2020. Police say it leaves you open to fraud and can cost you big! Link to Story HERE BBC’s The Sky At Night Guide to Comets Asteroids CLICK HERE FOR LINK TO YOU TUBE 5 Sun, it is summer for that hemisphere. When the CONTRIBUTIONS Earth's axis points away, winter can be expected. Since the tilt of the axis is 23 112 degrees, the north Editors Note: The following two pages are some of pole never points directly at the Sun, but on the the notes from Wayland Bauer’s presentation at summer solstice it points as close as it can, and on the January 2020 meeting on Seasons the winter solstice as far as it can. Midway between these two times, in spring and autumn, the spin axis Standards: The Seasons of the Earth points 90 degrees away from the Sun. Seasons are major divisions of the year. The Earth's This means that on this date, day and night have tropical and subtropical regions experience two sea- about the same length: 12 hours each, more or less. sons (wet, or monsoon, and dry), while its polar and temperate regions experience four (spring, summer, Why should this tilt of the Earth's axis matter to our autumn, and winter). climate? To understand this, take a piece of paper and a flashlight. Shine the light from the flashlight Astronomical seasons change on the days the Earth straight onto the paper, so you see an illuminated is tilted closest or furthest from the sun (solstices), circle. All the light from the flashlight is in that cir- and those on which the sun is directly over the cle. Now slowly tilt the paper, so the circle elon- equator (equinoxes). In the northern hemisphere: gates into an ellipse. All the light is still in that el- Astronomical spring begins on the spring equi- lipse, but the ellipse is spread out over more paper. nox . The densify of light drops. ln other words, the Astronomical summer begins on the summer amount of light per square centimeter drops (the solstice number of square centimeters increases, while the Astronomical autumn begins on the autumnal total amount of light stays the same). equinox . Astronomical winter begins on the winter sol- The same is true on the Earth. When the Sun is stice overhead, the light is falling straight on you, and so Meteorologists use whole months to identify sea- more light (and more heat) hit each square centime- sons (meteorological seasons). In the northern hem- ter of the ground.
Recommended publications
  • The Desert Sky Observer
    Desert Sky Observer Volume 32 Antelope Valley Astronomy Club Newsletter February 2012 Up-Coming Events February 10: Club Meeting* February 11: Moon Walk @ Prime Desert Woodlands February 13: Executive Board Meeting @ Don’s house February 18: Telescope Night and Star Party @ Devil's Punchbowl * Monthly meetings are held at the S.A.G.E. Planetarium on the Cactus School campus in Palmdale, the second Friday of each month. The meeting location is at the northeast corner of Avenue R and 20th Street East. Meetings start at 7 p.m. and are open to the public. Please note that food and drink are not allowed in the planetarium President Don Bryden Well I gave a star party and no one showed up! Not that I can blame them – it was raining and windy and cold – it even hailed! Still I dragged out the scope and got it ready to go. Briefly, between the clouds I looked at Jupiter and it was quite a treat. The Galilean moons were all tight to the planet either coming from just in front or behind. It gave a bejeweled look like a large ruby surrounded by four small diamonds. Even with the winds and clouds the sky was surprisingly steady and I went as high as 260x with ease, exposing the shadow of Europa transiting the planet. But soon more clouds came and inside we had a nice fire so I put the Artist's rendering DVD “400 Years of the Telescope” on and settled in for the night. My daughter had a few friends over after a skating party that afternoon and later when I went out for one more look they came out to see what was up.
    [Show full text]
  • MESSIER 13 RA(2000) : 16H 41M 42S DEC(2000): +36° 27'
    MESSIER 13 RA(2000) : 16h 41m 42s DEC(2000): +36° 27’ 41” BASIC INFORMATION OBJECT TYPE: Globular Cluster CONSTELLATION: Hercules BEST VIEW: Late July DISCOVERY: Edmond Halley, 1714 DISTANCE: 25,100 ly DIAMETER: 145 ly APPARENT MAGNITUDE: +5.8 APPARENT DIMENSIONS: 20’ Starry Night FOV: 1.00 Lyra FOV: 60.00 Libra MESSIER 6 (Butterfly Cluster) RA(2000) : 17Ophiuchus h 40m 20s DEC(2000): -32° 15’ 12” M6 Sagitta Serpens Cauda Vulpecula Scutum Scorpius Aquila M6 FOV: 5.00 Telrad Delphinus Norma Sagittarius Corona Australis Ara Equuleus M6 Triangulum Australe BASIC INFORMATION OBJECT TYPE: Open Cluster Telescopium CONSTELLATION: Scorpius Capricornus BEST VIEW: August DISCOVERY: Giovanni Batista Hodierna, c. 1654 DISTANCE: 1600 ly MicroscopiumDIAMETER: 12 – 25 ly Pavo APPARENT MAGNITUDE: +4.2 APPARENT DIMENSIONS: 25’ – 54’ AGE: 50 – 100 million years Telrad Indus MESSIER 7 (Ptolemy’s Cluster) RA(2000) : 17h 53m 51s DEC(2000): -34° 47’ 36” BASIC INFORMATION OBJECT TYPE: Open Cluster CONSTELLATION: Scorpius BEST VIEW: August DISCOVERY: Claudius Ptolemy, 130 A.D. DISTANCE: 900 – 1000 ly DIAMETER: 20 – 25 ly APPARENT MAGNITUDE: +3.3 APPARENT DIMENSIONS: 80’ AGE: ~220 million years FOV:Starry 1.00Night FOV: 60.00 Hercules Libra MESSIER 8 (THE LAGOON NEBULA) RA(2000) : 18h 03m 37s DEC(2000): -24° 23’ 12” Lyra M8 Ophiuchus Serpens Cauda Cygnus Scorpius Sagitta M8 FOV: 5.00 Scutum Telrad Vulpecula Aquila Ara Corona Australis Sagittarius Delphinus M8 BASIC INFORMATION Telescopium OBJECT TYPE: Star Forming Region CONSTELLATION: Sagittarius Equuleus BEST
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Winter Constellations
    Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great ​ ​ hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar ​ ​ ​ nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. ​ ​ 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming ​ “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the ​ Orion Nebula.
    [Show full text]
  • Observer Page 2 of 14
    AAAssstttrrrooonnnooomyyy CCCllluuubbb ooofff TTTuuulllsssaaa OOOOOObbbbbbsssssseeeeeerrrrrrvvvvvveeeeeerrrrrr October 2009 Messier 15 Jean-Dominique Maraldi discovered M15 on September 7, 1746. He described it as 'A nebulous star, fairly bright and composed of many stars'. Charles Messier, who cataloged it on June 3, 1764, and Johann Bode couldn't make this out and described it as 'nebula without stars,' so that it remained to William Herschel in 1783 to resolve this fine star cluster. M15 was the first globular cluster in which a planetary nebula, Pease 1 or K 648 ("K" for "Kuster"), could be identified (Pease 1928, on photographic plates taken at Mt. Wilson in 1927). M15 can be found extremely easily: First find the 2nd magnitude star Epsilon Pegasi, and Theta Pegasi SE of it. Follow the line from Theta over Epsilon and find M15 3 1/2 deg W and 2 1/4 deg N of Epsilon. A 6th magnitude star is about 20' away to the East; another one of magnitude 7.5 is about 5' to the NNE. With its apparent visual brightness of magnitude 6.2, M15 is about at the limit of visibility for the naked eye under very good conditions. The slightest optical aid, opera glass or small binoculars, reveals it as a round nebulous object. It appears as a round mottled nebula in 4-inch telescopes, with at best the very brightest stars visible, but otherwise unresolved in a fine star field. Be sure to catch & log M15 this month! Inside This Issue: Important ACT Upcoming Dates: October Calendar - - - - - - p2 Misc. News - - - - - - - - - - p6 ACT Monthly Meeting @ Bass Pro - Fri, Oct.
    [Show full text]
  • What Has Hubble Learned from Star Clusters? Visual Notes
    Hubblecast 69: What has Hubble learned from star clusters? Visual notes 00:00 [Narrator] 1. Star clusters hang like sparkling firework displays in the sky, making them favourite observational targets for astronomers. Hubble has observed its fair share of these cosmic baubles, imaging and studying them to explore their secrets. This new image from Hubble shows a globular cluster known as Messier 15. As well as containing over 100 000 old stars, this cluster hosts something dark and mysterious at its heart. 00:39 2. Intro 01:0 [Narrator] 3. Star clusters are some of the most beautiful objects in our skies. Hubble has viewed many of these over the years — but it is not all style over substance. These clusters are incredibly useful to the astronomers studying them. What can they tell us about our Universe? 01:24 [Narrator] 4. There are two main types of star cluster: open, and globular. Most stars, including the Sun, are thought to have formed within open star clusters — groups of thousands of stars loosely bound together by gravity, destined to be spread throughout their host galaxy once the cluster matures and most of its gas disperses. Globular clusters are different; they are huge balls of old stars that orbit the centres of galaxies. Many of them were once little galaxies, cannibalised by their larger companions over the history of the Universe. 02:16 [Narrator] 5. Hubble has explored many globular clusters. The Milky Way alone has over 150 of these starry satellites, and Hubble’s sharp vision can resolve the individual stars.
    [Show full text]
  • February 14, 2015 7:00Pm at the Herrett Center for Arts & Science Colleagues, College of Southern Idaho
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Saturday, February 14, 2015 7:00pm at the Herrett Center for Arts & Science Colleagues, College of Southern Idaho. Public Star Party Follows at the It’s that time of year when obstacles appear in the sky. In particular, this year is Centennial Obs. loaded with fog. It got in the way of letting us see the dance of the Jovian moons late last month, and it’s hindered our views of other unique shows. Still, members Club Officers reported finding enough of a clear sky to let us see Comet Lovejoy, and some great photos by members are popping up on the Facebook page. Robert Mayer, President This month, however, is a great opportunity to see the benefit of something [email protected] getting in the way. Our own Chris Anderson of the Herrett Center has been using 208-312-1203 the Centennial Observatory’s scope to do work on occultation’s, particularly with asteroids. This month’s MVAS meeting on Feb. 14th will give him the stage to Terry Wofford, Vice President show us just how this all works. [email protected] The following weekend may also be the time the weather allows us to resume 208-308-1821 MVAS-only star parties. Feb. 21 is a great window for a possible star party; we’ll announce the location if the weather permits. However, if we don’t get that Gary Leavitt, Secretary window, we’ll fall back on what has become a MVAS tradition: Planetarium night [email protected] at the Herrett Center.
    [Show full text]
  • Central Coast Astronomy Virtual Star Party January 16Th 7Pm Pacific
    Central Coast Astronomy Virtual Star Party January 16th 7pm Pacific Welcome to our Virtual Star Gazing session! We’ll be focusing on objects you can see with binoculars or a small telescope, so after our session, you can simply walk outside, look up, and understand what you’re looking at. CCAS President Aurora Lipper and astronomer Kent Wallace will bring you a virtual “tour of the night sky” where you can discover, learn, and ask questions as we go along! All you need is an internet connection. You can use an iPad, laptop, computer or cell phone. When 7pm on Saturday night rolls around, click the link on our website to join our class. CentralCoastAstronomy.org/stargaze Before our session starts: Step 1: Download your free map of the night sky: SkyMaps.com They have it available for Northern and Southern hemispheres. Step 2: Print out this document and use it to take notes during our time on Saturday. This document highlights the objects we will focus on in our session together. Celestial Objects: Moon: The moon is 3 days past new, which is really good for star gazing. Be sure to look at the moon tonight with your naked eyes and/or binoculars! Mercury is rising into the western sky and may be a good target near the end of the month. Mars is up high but is shrinking in size as the weeks progress. *Image credit: all astrophotography images are courtesy of NASA unless otherwise noted. All planetarium images are courtesy of Stellarium. Central Coast Astronomy CentralCoastAstronomy.org Page 1 Main Focus for the Session: 1.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Komplexní Studium Otevřené Hvězdokupy NGC 2281. Diplomová Práce
    MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV TEORETICKÉ FYZIKY A ASTROFYZIKY Diplomová práce BRNO 2016 JAROSLAV VELČOVSKÝ MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV TEORETICKÉ FYZIKY A ASTROFYZIKY Komplexní studium otevřené hvězdokupy NGC 2281 Diplomová práce Jaroslav Velčovský Vedoucí práce: RNDr. Jan Janík, Ph.D. Brno 2016 Bibliografický záznam Autor: Bc. Jaroslav Velčovský Přírodovědecká fakulta, Masarykova univerzita Ústav teoretické fyziky a astrofyziky Název práce: Komplexní studium otevřené hvězdokupy NGC 2281 Studijní program: Fyzika Studijní obor: Teoretická fyzika a astrofyzika Vedoucí práce: RNDr. Jan Janík, Ph.D. Akademický rok: 2015/16 Počet stran: xi + 90 Klíčová slova: Otevřená hvězdokupa; NGC 2281; Astrometrie; CCD fotometrie; Spektroskopie; Komplexní studie Bibliographic Entry Author: Bc. Jaroslav Velčovský Faculty of Science, Masaryk University Department of Theoretical Physics and Astrophysics Title of Thesis: Complex study of the open cluster NGC 2281 Degree Programme: Physics Field of Study: Theoretical physics and astrophysics Supervisor: RNDr. Jan Janík, Ph.D. Academic Year: 2015/16 Number of Pages: xi + 90 Keywords: Open cluster; NGC 2281; Astrometry; CCD photometry; Spectroscopy; Complex study Abstrakt Tato diplomová práce se věnuje komplexní studii otevřené hvězdokupy NGC 2281. Práce obsahuje několik tradičních i neobvyklých metod pro studii otevřených hvězdokup. V práci je kladen důraz na komplexnost propojením dílčích výsledků. Pomocí převzatých astrometrických dat byl proveden morfologický a dynamický rozbor hvězdokupy. Z naměřených spektroskopických dat byly určeny některé obecné parametry pro celou hvězdokupu. Za použití vlastní absolutní CCD fotometrie a výsledků z astro- metrické a spektroskopické studie byly nalezeny zbylé parametry hvězdokupy. Nalezené parametry byly porovnány s hodnotami z předchozích studií. Abstract This diploma thesis deals with complex study of the open cluster NGC 2281.
    [Show full text]
  • Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
    Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,
    [Show full text]
  • SAC's 110 Best of the NGC
    SAC's 110 Best of the NGC by Paul Dickson Version: 1.4 | March 26, 1997 Copyright °c 1996, by Paul Dickson. All rights reserved If you purchased this book from Paul Dickson directly, please ignore this form. I already have most of this information. Why Should You Register This Book? Please register your copy of this book. I have done two book, SAC's 110 Best of the NGC and the Messier Logbook. In the works for late 1997 is a four volume set for the Herschel 400. q I am a beginner and I bought this book to get start with deep-sky observing. q I am an intermediate observer. I bought this book to observe these objects again. q I am an advance observer. I bought this book to add to my collect and/or re-observe these objects again. The book I'm registering is: q SAC's 110 Best of the NGC q Messier Logbook q I would like to purchase a copy of Herschel 400 book when it becomes available. Club Name: __________________________________________ Your Name: __________________________________________ Address: ____________________________________________ City: __________________ State: ____ Zip Code: _________ Mail this to: or E-mail it to: Paul Dickson 7714 N 36th Ave [email protected] Phoenix, AZ 85051-6401 After Observing the Messier Catalog, Try this Observing List: SAC's 110 Best of the NGC [email protected] http://www.seds.org/pub/info/newsletters/sacnews/html/sac.110.best.ngc.html SAC's 110 Best of the NGC is an observing list of some of the best objects after those in the Messier Catalog.
    [Show full text]