Synthesis and Characterization of Powders Calcium Phosphate for Biomedical Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How to Fortify Beverages with Calcium by Dr
Ingredients How to Fortify Beverages With Calcium by Dr. Gerhard Gerstner Along with current developments of the overall functional foods market, the use of minerals and especially calcium salts is expected to exhibit strong growth rates. In contrary to other functional ingredients, calcium is widely known as being beneficial for human health and there is no need to explain its nutritional ad- vantages to the customer. According to Leatherhead International, future trends include growing consumer concern regarding osteoporosis and bone health, leading to increased sales of calcium salts. The con- observation is seen as being one of tinuous market growth drives mineral the main factors causing osteo- Common calium sources salt suppliers to offer not only one porosis 2 .As a consequence, national for beverage fortification product but rather a range of different authorities all over the world have calcium salts and granulations to be recently reconsidered recommend- Table 1 shows a typical range of able to tune them to industrial cus- ations in order to take remedial calcium fortified beverages which tomers’ applications. This article measures against calcium deficiency have been seen in European and US discusses important nutritional, and accordingly, to reduce the risk of supermarkets recently. Practically technological as well as economical osteoporosis. In this respect, the US every type of beverage such as aspects of calcium in beverages with National Institute of Health (NIH) has mineral water, soy milk, energy drink, a focus on our company’s products increased the amounts of optimal nectar or juice does have a fortified Tricalcium Citrate, Calcium Gluconate daily calcium intake and defined product line already. -
5. POTENTIAL for HUMAN EXPOSURE 5.1 OVERVIEW White
WHITE PHOSPHORUS 157 5. POTENTIAL FOR HUMAN EXPOSURE 5.1 OVERVIEW White phosphorus can enter the environment from its production, use, accidental spills during loading and unloading for shipment, and accidental spills during transport. Hazardous wastes sites containing white phosphorus can also be a source of phosphorus in the environment. White phosphorus has been found in at least 77 of the 1,430 current or former EPA National Priorities List (NPL) hazardous waste sites (HazDat 1996). However, the number of sites evaluated for white phosphorus is not known. The frequency of these sites within the United States can be seen in Figure 5-l. The persistence of elemental phosphorus in the air is very short due to oxidation to phosphorus oxides and ultimately to phosphorus acids. However, the particulate phosphorus aerosol may be coated with a protective oxide layer that may prevent further oxidation and extend the lifetime of particulate phosphorus in air. Both wet and dry deposition remove unreacted elemental phosphorus and the degradation products from the air. Similarly, elemental phosphorus oxidizes and hydrolyzes in water and in soil. A small amount of elemental phosphorus is lost from soil and water by volatilization. Phosphorus is used as a fumigant in the storage of grain. Because of ease of application, pellets of aluminum or magnesium phosphide are commonly used (Garry et al. 1993). Phosphine, a highly toxic gas, is generated from phosphide. The rate of formation of phosphine (permissible exposure limit [PEL], 0.4 mg/m3) is dependent on the ambient temperature and humidity. Its release is rapid, and it is extremely fatal to the unprotected person (Garry et al. -
Tricalcium Phosphate Is Inappropriate As a Universal Selection Factor for Isolating and Testing Phosphate-Solubilizing Bacteria
Biol Fertil Soils (2013) 49:465–479 DOI 10.1007/s00374-012-0737-7 ORIGINAL PAPER Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure Yoav Bashan & Alexander A. Kamnev & Luz E. de-Bashan Received: 26 June 2012 /Revised: 16 August 2012 /Accepted: 30 August 2012 /Published online: 2 October 2012 # Springer-Verlag 2012 Abstract Literature analysis and chemical considerations Other compounds are also tested, but on a very small of biological phosphate solubilization have shown that the scale. These phosphates (P), mainly Fe-P, Al-P, and commonlyusedselectionfactor for this trait, tricalcium several Ca-P, are even less soluble than TCP in water. phosphate (TCP), is relatively weak and unreliable as a Because soils greatly vary by pH and several chemical universal selection factor for isolating and testing considerations, it appears that there is no metal-P com- phosphate-solubilizing bacteria (PSB) for enhancing plant pound that can serve as the universal selection factor for growth. Most publications describing isolation of PSB PSB. A practical approach is to use a combination of employed TCP. The use of TCP usually yields many (up two or three metal-P compounds together or in tandem, to several thousands per study) isolates “supposedly” PSB. according to the end use of these bacteria—Ca-P com- When these isolates are further tested for direct contribution pounds (including rock phosphates) for alkaline soils, of phosphorus to the plants, only a very few are true PSB. Fe-P and Al-P compounds for acidic soils, and phytates for soils rich in organic P. -
Rational Synthesis of P-Type Zinc Oxide Nanowire Arrays Using Simple Chemical Vapor Deposition
NANO LETTERS 2007 Rational Synthesis of p-Type Zinc Oxide Vol. 7, No. 2 Nanowire Arrays Using Simple Chemical 323-328 Vapor Deposition Bin Xiang,† Pengwei Wang,‡ Xingzheng Zhang,‡ Shadi. A. Dayeh,† David P. R. Aplin,† Cesare Soci,† Dapeng Yu,‡ and Deli Wang*,† Department of Electrical and Computer Engineering, UniVersity of California at San Diego, La Jolla, California 92093-0407, and Electron Microscopy Laboratory, School of Physics, Peking UniVersity, Beijing 100871, China Received October 13, 2006; Revised Manuscript Received December 8, 2006 ABSTRACT We report, for the first time, the synthesis of the high-quality p-type ZnO NWs using a simple chemical vapor deposition method, where phosphorus pentoxide has been used as the dopant source. Single-crystal phosphorus doped ZnO NWs have their growth axis along the 〈001〉 direction and form perfect vertical arrays on a-sapphire. P-type doping was confirmed by photoluminescence measurements at various temperatures and by studying the electrical transport in single NWs field-effect transistors. Comparisons of the low-temperature PL of unintentionally doped ZnO (n-type), as-grown phosphorus-doped ZnO, and annealed phosphorus-doped ZnO NWs show clear differences related to the presence of intragap donor and acceptor states. The electrical transport measurements of phosphorus-doped NW FETs indicate a transition from n-type to p-type conduction upon annealing at high temperature, in good agreement with the PL results. The synthesis of p-type ZnO NWs enables novel complementary ZnO NW devices and opens up enormous opportunities for nanoscale electronics, optoelectronics, and medicines. Zinc oxide (ZnO) is a wide direct band gap semiconductor synthesis of the high-quality p-type ZnO NWs using a simple (Eg ) 3.4 eV) that displays unique features such as large chemical vapor deposition (CVD) method using phosphorus 1 exciton binding energy (Eb ) 60 meV) and large piezo- pentoxide (P2O5) as the dopant source. -
Brochure-Product-Range.Pdf
PRODUCT RANGE 2015 edition ANSI Standard 60 NSF® CERTIFIED HALAL M ISLAMIC FOOD AND NUTRITION ® COUNCIL OF AMERICA Rue Joseph Wauters, 144 ISO 9001:2008 (Quality) / OHSAS 18001:2007 (Health/ B-4480 Engis Safety) / ISO 14001:2004 (Environment) / ISO 22000:2005 www.globulebleu.com (Food Safety) / FSSC 22000:2013 (Food Safety). Tel. +32 (0) 4 273 93 58 Our food grade phosphates are allergen free, GMO free, Fax. +32 (0) 4 275 68 36 BSE/TSE free. www.prayon.com mail. [email protected] Design by www.prayon.com PRODUCT RANGE | 11 TABLE OF CONTENTS HORTICULTURE APPLICATIONS HORTIPRAY® RANGE FOR HORTICULTURE* FOOD AND INDUSTRIAL APPLICATIONS PRODUCT NAME Bulk density P O pH N-NH Made 2 5 4 MONOAMMONIUM PHOSPHATE - NH4H2PO4 in 3 3 % 1% % Sodium orthophosphates ................................................................................... 03 g/cm lbs/ft indicative indicative indicative Water-soluble fertilisers. Sodium pyrophosphates .................................................................................... 04 HORTIPRAY® MAP Horticultural Grade 0.9 56 61 4.5 12 Sodium tripolyphosphates ................................................................................. 05 HORTIPRAY® MAP 12.60 Horticultural Grade 0.9 56 60 5 12.1 Water-soluble fertilisers; Sodium polyphosphates ..................................................................................... 06 HORTIPRAY® MAP anticalc Horticultural Grade 0.9 56 61 4.5 12 preventive action against clogging. Potassium orthophosphates ............................................................................. -
CHEMICAL STORAGE SEGREGATION GUIDELINES Incompatible Chemicals Should Always Be Handled and Stored So That They Do Not Accidentally Come in Contact with Each Other
Laboratory Safety Reminders January 2007 ♦ Mount Holyoke College – Environmental Health and Safety CHEMICAL STORAGE SEGREGATION GUIDELINES Incompatible chemicals should always be handled and stored so that they do not accidentally come in contact with each other. This list is not complete, nor are all compatibilities shown. These materials can react to produce excessive heat, harmful vapors, and/or other deadly reactions. Always know the hazards and incompatibilities of a chemical before using it. Chemicals Avoid Accidental Contact With Acetic acid Chromic acid, nitric acid, permanganates, peroxides Hydroxyl-containing compounds such as perchloric acid, Acetic anhydride ethylene glycol Concentrated nitric acid and sulfuric acid mixtures, peroxides (i.e. Acetone peracetic acid solution, hydrogen peroxide) Acetylene Chlorine, bromine, copper, silver, fluorine, mercury Alkali, alkaline earth and strongly electropositive metals (powered Carbon dioxide, carbon tetrachloride and other chlorinated aluminum, magnesium, sodium, hydrocarbons potassium) Mercury, chlorine, calcium hypochlorite, iodine, bromine, hydrogen Ammonia (anhydrous) fluoride Acids, metal powders, flammable liquids, chlorates, nitrates, sulfur, Ammonium nitrate finely divided organics, combustibles Aniline Nitric acid, hydrogen peroxide Arsenical compounds Any reducing agent Azides Acids Ammonia, acetylene, butadiene, butane, other petroleum gases, Bromine sodium carbide, turpentine, benzene, finely divided metals Calcium oxide Water Carbon activated Calcium hypochlorite, other -
Tricalcium Phosphate: an X-Ray Diffraction, Solid State NMR and ATR-FTIR Study
Journal of Functional Biomaterials Article Strontium and Zinc Substitution in β-Tricalcium Phosphate: An X-ray Diffraction, Solid State NMR and ATR-FTIR Study Elisa Boanini 1 , Massimo Gazzano 2,* , Carlo Nervi 3 , Michele R. Chierotti 3 , Katia Rubini 1, Roberto Gobetto 3 and Adriana Bigi 1 1 Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; [email protected] (E.B.); [email protected] (K.R.); [email protected] (A.B.) 2 ISOF-CNR, via Gobetti 101, 40129 Bologna, Italy 3 Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy; [email protected] (C.N.); [email protected] (M.R.C.); [email protected] (R.G.) * Correspondence: [email protected]; Tel.: +39-051-2099552 Received: 27 March 2019; Accepted: 28 April 2019; Published: 5 May 2019 Abstract: β-tricalcium phosphate (β-TCP) is one of the most common bioceramics, widely applied in bone cements and implants. Herein we synthesized β-TCP by solid state reaction in the presence of increasing amounts of two biologically active ions, namely strontium and zinc, in order to clarify the structural modifications induced by ionic substitution. The results of X-ray diffraction analysis indicate that zinc can substitute for calcium into a β-TCP structure up to about 10 at% inducing a reduction of the cell parameters, whereas the substitution occurs up to about 80 at% in the case of strontium, which provokes a linear increase of the lattice constants, and a slight modification into a more symmetric structure. -
Material Safety Data Sheet
Material safety data sheet Product name: MSDS date created:Vitoss ™ Scaffold Manufacturer16 June 2021 Australian supplier New Zealand supplier Name: Address: DSM Biomedical Stryker Australia Stryker New Zealand 735 Pennsylvania Drive 8 Herbert St 511 Mt Wellington Highway Phone No: Exton, PA 19341 U.S.A St Leonards NSW Auckland, New Zealand 1060 Fax No: Australia 2065 +484 713-2100 +61 02 9467 1000 +64 09 573 1890 - +61 02 9467 1010 +64 09 573 1891 VITOSS™ SCAFFOLD 1. IDENTIFICATION OF THE MATERIAL AND SUPPLIER Product Name Vitoss™ Scaffold Synonym(s) BETA-TCP • CALCIUM PHOSPHATE • CALCIUM PHOSPHATE TRIBASIC • TCP • VITOSS SCAFFOLD Use(s) ORTHOPAEDIC APPLICATIONS Manufacturer Australian Supplier New Zealand Supplier Name: DSM Biomedical Stryker Australia Stryker New Zealand Address: 735 Pennsylvania Drive 8 Herbert St, 511 Mt Wellington Highway, Exton, PA 19341 U.S.A St Leonards, NSW, Auckland, Australia, 2065 New Zealand, 1060 Phone No: +484 713-2100 +61 02 9467 1000 +64 09 573 1890 Fax No: - +61 02 9467 1010 +64 09 573 1891 EMERGENCY - 13 11 26 0800 764 766 Contact Person: Nikin Desai, [email protected] 2. HAZARDS IDENTIFICATION CLASSIFIED AS HAZARDOUS ACCORDING TO HAZARDOUS SUBSTANCES [CLASSIFICATION] REGULATIONS 2001. NOT CLASSIFIED AS HAZARDOUS ACCORDING TO THE SAFEWORK AUSTRALIA CRITERIA. HSNO CLASSIFICATION 6.1E Substances that are acutely toxic. 9.1D Substances that are slightly harmful to the aquatic environment or are otherwise designed for biocidal action. HAZARD STATEMENT H303 May be harmful if swallowed. H401 Toxic to aquatic life. H402 Harmful to aquatic life. H413 May cause long lasting harmful effects to aquatic life. -
Stabilisation of Clayey Soil with Lime, Sodium Hydroxide, Aluminium
ISSN 2321 3361 © 2020 IJESC Research Article Volume 10 Issue No.5 Stabilisation of Clayey Soil with Lime, Sodium Hydroxide, Aluminium Oxide and Phosphorus Pentoxide Bhawna Sahay Assistant Professor Noida International University, India Abstract: Soil Stabilisation is a method to improve the geotechnical properties of soil such as bearing capacity, shear strength, plastic limit, liquid limit, etc. it is important before construction of any project whether it is buildings and pavement construction. There are numerous method available for stabilisation of soil but with chemical stabilisation is a quick method. Keywords: Stabilisation, bearing capacity, plastic limit, liquid limit. I. INTRODUCTION with water which results into a powerful compaction and giving higher density for same compaction effort. Clayey soil is originated from weathering and disintegration of rocks. It is generally classified as low compressible soil, medium compressible soil and highly compressible soil. The volume changes and shrinkage is a major problem occur in it. It is generally classified as highly plastic soil which depends on the mineral content of the soil. Stabilisation of soil with chemicals increase the strength of soil and improve the general properties of soil. Lime, sodium hydroxide, aluminium oxide and phosphorus pentoxide reacts vigorously with soil which interacts with the clay particles of soil and increases the resisting capacity of soil. II. CHEMICALS Lime: Calcium oxide or lime is available in white colour powder form, highly reactive in nature, modify all fine grained soil and improves the plasticity, moisture holding capacity, swell and shrinkage behaviour of soil and stability of soil. Aluminium Oxide Aluminium oxide is white coloured shining powder form which reacts with soil to form a sample little bit cool due to its affinity with water. -
Phosphorus Compounds
Phosphorus Compounds Table of Contents How to Cite This Article Phosphorus Compounds, Compounds of phosphorus play vital roles in the metabolism of both plants and animals. The energy "currency" of all living things, adenosine triphosphate (ATP), is probably the best-known organic phosphorus compound, but others are constituents of nervous tissue, cell membranes, and other tissues, as well as of many coenzymes. Phosphates also are key components of DNA and RNA, which carry genetic information in all organisms. Many phosphorus compounds are used in industrial processes. Most phosphorus compounds exhibit covalent properties. Ionic compounds, such as sodium 3− phosphide (Na3P), are few because the formation of P ions from P atoms requires a considerable amount of energy. Similarly, P5+ ions do not exist due to the very high ionization energies involved. The chemistry of phosphorus in forming compounds generally is similar to that of carbon and nitrogen. Phosphine Phosphine, PH3, is a very toxic gas with a garliclike odor. When inhaled it can cause restlessness, followed by tremors, fatigue, drowsiness, nausea, and often severe gastric pain. In most cases recovery occurs without aftereffects, but some cases may result in coma or convulsions and even death. Phosphine can be readily prepared by reacting calcium or aluminum phosphide with dilute acid. On a large scale, PH3 is obtained by action of sodium hydroxide on white phosphorus; − hypophosphite (H2PO 2) is also formed. Pure phosphine is not spontaneously flammable. It is readily oxidized by air when ignited, and explosive mixtures may be formed. Phosphine is sparingly soluble in water, and an aqueous solution of PH3 is neither acidic nor basic. -
Examples of Hazardous Chemicals
Examples of Hazardous Chemicals A-Acids Liquids 1 Acetic acid 64-19-7 2 Acetic anhydride 108-24-7 3 Butyric acid 107-92-6 4 Chromosulfuric acid 14489-25-9 5 Formic acid 64-18-6 6 Hydrobromic acid 10035-10-6 7 Hydrochloric acid 7647-01-0 8 Hydrofluoric acid 7664-39-3 9 Lactic acid 50-21-5 10 Nitric acid 7697-37-2 11 Perchloric acid 7601-90-3 12 Phenol solution (carbolic acid) 108-95-2 13 Phosphoric acid 7664-38-2 14 Propionic acid 79-09-4 15 Sulfuric acid 7664-93-9 16 Trifluoroacetic acid 76-05-1 Solids 17 Benzoic acid 65-85-0 18 Cacodylic acid 75-60-5 19 Maleic acid 110-16-7 20 Oxalic acid 144-62-7 21 Periodic acid 10450-60-9 22 Salicylic acid 69-72-7 23 Tannic acid 1401-55-4 24 Trichloroacetic acid 76-03-9 B-Corrosive Materials Liquids 25 Ammonium hydroxide 1336-21-6 26 Cresol 1319-77-3 27 Hydrazine 302-01-2 28 Morpholine 110-91-8 29 Potassium hydroxide solution 1310-58-3 30 Sodium hydroxide solution 1310-73-2 Solids 31 Aluminum sulfate 10043-01-3 32 Calcium hydroxide 1305-62-0 33 Chromic trioxide 1333-82-0 34 Ferric chloride 7705-08-0 35 Ferrous sulfate 7720-78-7 36 Iodine 7553-56-2 37 Phosphorus pentoxide 1314-56-3 38 Potassium dichromate 7778-50-9 39 Potassium hydroxide 1310-58-3 40 Sodium hydroxide 1310-73-2 C-Cyrogenic Materials 41 Nitrogen, refrigerated liquid 7727-37-9 42 Carbon dioxide, solid 124-38-9 D-Gases 43 Compressed air 44 Germane 7782-65-2 45 Helium 7440-59-7 46 Hydrogen 1333-74-0 47 Mixtures of N2, O2, CO2 48 Oxygen, 100% 7782-44-7 49 Propane 74-98-6 50 Silane 7803-62-5 51 Sulfur dioxide 7446-09-5 E-Flammable Liquids -
Chromic Acid, Nitric Acid, Hydroxyl Compounds, Ethylene Glycol
Acetic acid - Chromic acid, nitric acid, hydroxyl compounds, ethylene glycol, perchloric acid, peroxides, permanganates, ammonium nitrate Acetic anhydride - Hydroxyl-containing compounds such as ethylene glycol, perchloric acid Acetone - Concentrated nitric and sulfuric acid mixtures Acetaldehyde - Acetic acid, acetic anhydride Acetylene - Chlorine, bromine, copper, fluorine, silver, mercury Acrolein - Ammonia(aqueous), any alkali or amine, strong oxidizing agents Alkali and alkaline earth metals (such as powdered aluminum or magnesium, calcium, lithium, sodium, potassium) - Water, carbon tetrachloride or other chlorinated hydrocarbons, carbon dioxide, halogens. Aluminum metal - Ammonium nitrate, antimony trichloride, bromate Ammonia (anhydrous) - Mercury (in manometers, for example), chlorine, calcium hypochlorite, iodine, bromine, hydrofluoric acid (anhydrous) Ammonium nitrate - Acids, powdered metals, flammable liquids, chlorates, nitrites, sulfur, finely divided organic combustible materials Aniline - Nitric acid, hydrogen peroxide, strong acids, oxidizers Arsenic materials - Any reducing agent Azides – Acids Bromine - Ammonia, acetylene, butadiene, butane, methane, propane (or other petroleum gases), hydrogen, sodium carbide, benzene, finely divided metals, turpentine Calcium oxide – Water Carbon (activated) - Calcium hypochlorite, all oxidizing agents Carbon tetrachloride – Sodium Chlorates - Ammonium salts, acids, powdered metals, sulfur, finely divided organic or combustible materials Chromic acid and chromium trioxide - Acetic