molecules Article Complexes of CO2 with the Azoles: Tetrel Bonds, Hydrogen Bonds and Other Secondary Interactions Janet E. Del Bene 1,* ID , José Elguero 2 and Ibon Alkorta 2,* ID 1 Department of Chemistry, Youngstown State University, Youngstown, OH 44555, USA 2 Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain;
[email protected] * Correspondence:
[email protected] (J.E.D.B.);
[email protected] (I.A.); Tel.: +1-330-609-5593 (J.E.D.B.); +34-91-562-29-00 (I.A.) Academic Editor: Steve Scheiner Received: 31 March 2018; Accepted: 11 April 2018; Published: 14 April 2018 Abstract: Ab initio MP2/aug’-cc-pVTZ calculations have been performed to investigate the complexes of CO2 with the azoles pyrrole, pyrazole, imidazole, 1,2,3- and 1,2,4-triazole, tetrazole and pentazole. Three types of complexes have been found on the CO2:azole potential surfaces. These include ten complexes stabilized by tetrel bonds that have the azole molecule in the symmetry plane of the complex; seven tetrel-bonded complexes in which the CO2 molecule is perpendicular to the symmetry plane; and four hydrogen-bonded complexes. Eight of the planar complexes are stabilized by Nx···C tetrel bonds and by a secondary interaction involving an adjacent Ny-H bond and an O atom of CO2. The seven perpendicular CO2:azole complexes form between CO2 and two adjacent N atoms of the ring, both of which are electron-pair donors. In three of the four hydrogen-bonded complexes, the proton-donor Nz-H bond of the ring is bonded to two C-H bonds, thereby precluding the planar and perpendicular complexes.