Aesthetiography : the Next Milestone in the Confluence of Media Jayesh S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Immersive Realities for Learning and Performance “VR, AR, Mixed Reality & More in 2018"
Immersive Realities for Learning and Performance “VR, AR, Mixed Reality & More in 2018" An Updated Report from The MASIE Center Author: Bobby Carlton | Foreword: Elliott Masie May 23, 2018 Learning CONSORTIUM masie.com NOVEMBER 4 – 7, 2018 | ORLANDO, FL Lea “VR, AR, Mixed Reality & More in 2018" & More Reality AR, Mixed “VR, Immersive Realities Immersive masie.com for Learning and Performance Learning for r Author: Bobby Carlton | Foreword: Elliott Masie ning Foreword: An Updated Report from The MASIE Center CONSO “Boldly Go... Where the Learner Has Not Gone Before” R TIUM My good friend, actor George Takei, shared with me the excitement that the cast and crew felt when shooting Star Trek back in 1966. They were all excited by the possibility of a virtual and immersive reality. They imagined that they could scan a planet, a person, or an NOVEMBER 4 – 7, 2018 | ORLANDO, FL 2018 | ORLANDO, 4 – 7, NOVEMBER object and simulate, play with, or even destroy it (virtually) while May 23, 2018 being deeply immersed in the experience. And, they knew that someday this fiction would become reality. Ever since, I have been tracking, using, experimenting with, and researching the ever-changing and emerging worlds of virtual reality, augmented reality, mixed reality, and other immersive reality technologies and software. They keep getting better, though they still aren’t totally "there" yet. The challenge is to bridge the gap between their promise and actual use in workplaces to drive learning and performance. The good news is that in the past three years we have made major jumps forward. -
Morton Heilig, Through a Combination of Ingenuity, Determination, and Sheer Stubbornness, Was the First Person to Attempt to Create What We Now Call Virtual Reality
Morton Hei Iig "The [in em a of the Future" << 2 2 >> (1955) ;!fo11o11 Hdlir;. Sens<muna. Cuuri<S_) oJS1o11 Fi1lur. "Thus, individually and collectively, by thoroughly applying the methodology of art, the cinema of the future will become the first art form to reveal the new scientific world to man in the .full sensual vividness and dynamic vitality of his consciousness." 239 240 Horton Heilig << Morton Heilig, through a combination of ingenuity, determination, and sheer stubbornness, was the first person to attempt to create what we now call virtual reality. In the 1 950s it occurred to him that all the sensory splendor of life could be simulated with "reality machines." Heilig was a Hollywood cinematographer, and it was as an extension of cinema that he thought such a machine might be achieved. With his inclination, albeit amateur, toward the ontological aspirations of science, He ilig proposed that an artist's expressive powers would be enhanced by a scientific understanding of the senses and perception. His premise was sim ple but striking for its time: if an artist controlled the multisensory stimulation of the audience, he could provide them with the illusion and sensation of first person experience, of actually " being there." Inspired by short-Jived curiosities such as Cinerama and 3-D movies, it oc curred to Heilig that a logical extension of cinema would be to immerse the au dience in a fabricated world that engaged all the senses. He believed that by expanding cinema to involve not only sight and sound but also taste, touch, and smell, the traditional fourth wal l of film and theater would dissolve, transport ing the audience into an inhabitable, virtual world; a kind of "experience theater." Unable to find support in Hollywood for his extraordinary ideas, Heilig moved to Mexico City In 1954, finding himself in a fertile mix of artists, filmmakers, writers, and musicians. -
Hyperreality and Virtual Worlds: When the Virtual Is Real
sphera.ucam.edu ISSNe: 2695-5725 ● Número 19 ● Vol.II ● Año 2019 ● pp. 36-58 Hyperreality and virtual worlds: when the virtual is real Paulo M. Barroso, Polytechnic Institute of Viseu (Portugal) [email protected] Received: 12/11/19 ● Accepted: 10/12/19 ● Published: 19/12/19 How to reference this paper: Barroso, Paulo M. (2019). Hyperreality and virtual worlds: when the virtual is real, Sphera Publica, 2(19), 36‐58. Abstract This article questions what is hyperreality and underlines the role of the signs/images fostering the perception of a virtual world. It argues the potentiality of signs as artefacts. Starting from Agamben’s perspective regarding contemporary, the hyperreality is understood as a modern, visual and mass manifestation of the need for simulacra in a non-referential virtual world. How hyperreality, spectacle, simulation, and appearance emerge out of reality? What is authentic or real are issues raised using images and technological devices. The images are popular and amplify the effects of distraction and social alienation. The image is immediately absorbed, spectacular, attractive, a peculiar ready-to-think that eliminates or dilutes the concepts and produces a fast culture. Through a reflexive strategy, this article is conceptual (it has no case study or empirical work) and has the purpose of problematize the experience of hyperreality, which is reshaping and restructuring patterns of social life and social interdependence, and the ways we see, think, feel, act or just mean and interpret the reality. Keywords Hyperreality, image, real, virtual worlds, technology Barroso Hiperrealidad y mundos virtuales Hiperrealidad y mundos virtuales: cuando lo virtual es real Paulo M. -
"Physics Considerations for a Simulated Reality"
Physics considerations for a simulated reality Max Hodak 1 Why build a simulated reality? ined, but that of defining a suitable physics system. We conjecture that there is a relationship between Video games have a powerful natural appeal. Our the depth of a virtual world and the sophistication of physical world imposes harsh constraints: atoms are its underlying physics. difficult to work with compared to bits, and the Any non-trivial universe must contain informa- scarcity of both materials and the capacity to trans- tion, and we can phrase the central problem in world form them leads to a tough environment. By con- design as one of writing down the information that trast, video games can be anything we want them defines a universe; informally, we can state that a to be: players can fly, use magic, or even have their universe without information has zero depth. We can own planet, all the while exercising mental faculties start from a premise that information in any universe in just as satisfying a way as they would in our base is found in two forms: matter and its interactions. reality. As computer processing power continues to improve and the space of games we can build expands, a natural opportunity arises to build simulated real- 2 Naturalness ities that are as engaging and emotionally immersive as our base reality, but with fewer constraints and a Before we think about physics as it is usually under- greater capacity for easier creative expression. stood, let's briefly look at video game \physics" as Video game design is challenging on multiple lev- it exists today. -
Audio Challenges in Virtual and Augmented Reality Devices
Audio challenges in virtual and augmented reality devices Dr. Ivan Tashev Partner Software Architect Audio and Acoustics Research Group Microsoft Research Labs - Redmond In memoriam: Steven L. Grant Sep 15, 2016 IWAENC Audio challenges in virtual and augmented reality devices 2 In this talk • Devices for virtual and augmented reality • Binaural recording and playback • Head Related Functions and their personalization • Object-based rendering of spatial audio • Modal-based rendering of spatial audio • Conclusions Sep 15, 2016 IWAENC Audio challenges in virtual and augmented reality devices 3 Colleagues and contributors: Hannes Gamper David Johnston Ivan Tashev Mark R. P. Thomas Jens Ahrens Microsoft Research Microsoft Research Microsoft Research Dolby Laboratories Chalmers University, Sweden Sep 15, 2016 IWAENC Audio challenges in virtual and augmented reality devices 4 Devices for Augmented and Virtual Reality They both need good spatial audio Sep 15, 2016 IWAENC Audio challenges in virtual and augmented reality devices 5 Augmented vs. Virtual Reality • Augmented reality (AR) is a live direct or indirect view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics • Virtual reality (VR) is a computer technology that replicates an environment, real or imagined, and simulates a user's physical presence in a way that allows the user to interact with it. It artificially creates sensory experience, which can include sight, touch, hearing, etc. Sep -
Virtual and Augmented Reality
Virtual and Augmented Reality Virtual and Augmented Reality: An Educational Handbook By Zeynep Tacgin Virtual and Augmented Reality: An Educational Handbook By Zeynep Tacgin This book first published 2020 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2020 by Zeynep Tacgin All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-4813-9 ISBN (13): 978-1-5275-4813-8 TABLE OF CONTENTS List of Illustrations ................................................................................... x List of Tables ......................................................................................... xiv Preface ..................................................................................................... xv What is this book about? .................................................... xv What is this book not about? ............................................ xvi Who is this book for? ........................................................ xvii How is this book used? .................................................. xviii The specific contribution of this book ............................. xix Acknowledgements ........................................................... -
Toward Interconnected Virtual Reality: Opportunities, Challenges, and Enablers Ejder Bastug, Mehdi Bennis, Muriel Médard, Merouane Debbah
Toward Interconnected Virtual Reality: Opportunities, Challenges, and Enablers Ejder Bastug, Mehdi Bennis, Muriel Médard, Merouane Debbah To cite this version: Ejder Bastug, Mehdi Bennis, Muriel Médard, Merouane Debbah. Toward Interconnected Virtual Reality: Opportunities, Challenges, and Enablers. IEEE Communications Magazine, Institute of Electrical and Electronics Engineers, 2017, 55 (6), pp.110 - 117. 10.1109/MCOM.2017.1601089. hal-01781856 HAL Id: hal-01781856 https://hal-centralesupelec.archives-ouvertes.fr/hal-01781856 Submitted on 18 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Towards Interconnected Virtual Reality: Opportunities, Challenges and Enablers Ejder Ba¸stug˘;⊗, Mehdi Bennisy, Muriel Médard, and Mérouane Debbah⊗;◦ Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA ⊗Large Networks and Systems Group (LANEAS), CentraleSupélec, Université Paris-Saclay, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette, France yCentre for Wireless Communications, University of Oulu, Finland ◦Mathematical and Algorithmic Sciences Lab, Huawei France R&D, Paris, France {ejder, medard}@mit.edu, [email protected].fi, [email protected] Abstract Just recently, the concept of augmented and virtual reality (AR/VR) over wireless has taken the entire 5G ecosystem by storm spurring an unprecedented interest from both academia, industry and others. -
Virtual and Augmented Reality in Marketing
Virtual and Augmented Reality in Marketing Laura Håkansson Thesis Tietojenkäsittelyn Koulutusohjelma 2018 Authors Group Laura Håkansson HETI15KIM The title of your thesis Number of Virtual and Augmented Reality in Marketing pages and appendices 56 Supervisors Heikki Hietala This thesis serves as an introduction to Virtual and Augmented Reality and explains how these two different technologies can be used in marketing. I work in marketing and have been following the evolvement of both VR and AR for a few years now. I was personally very curious to learn about how these have been implemented in marketing in the past, and what they will look like in the future, and if there are any reoccurring themes, for both VR and AR, that work best with a specific product or service. I spent a year reading the latest news and articles about various VR/AR marketing campaigns, and about the updates on these technologies that kept coming almost monthly. I also participated in different VR/AR-themed events in Helsinki to try out headsets and new AR apps, and to listen to the experts view on the potential of VR and AR. I wanted to create clear guidelines on which technology to use and how, depending on the product or service being marketed, but realized during my research that this was not possible. VR and AR are still in development, but evolving at a very fast pace, and right now it’s important to just bravely test them out without worrying about failing. I give plenty of examples in this thesis that will hopefully encourage marketers to start experimenting now, because we will see some really advanced VR and AR/MR in a few years, and those with the most experience will have great advantage in the marketing field. -
Virtual Reality: Principles and Applications Frédéric Mérienne
Virtual Reality: Principles and Applications Frédéric Mérienne To cite this version: Frédéric Mérienne. Virtual Reality: Principles and Applications. Encyclopedia of Computer Science and Technology, Taylor and Francis, pp.1-11, 2017, 10.1081/E-ECST2-140000194. hal-01728062 HAL Id: hal-01728062 https://hal.archives-ouvertes.fr/hal-01728062 Submitted on 9 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Virtual Reality: Principles and Applications Fre´de´ric Merienne Le2i, Arts et Metiers, France Abstract Virtual reality aims at immersing a user in a virtual environment. Dedicated virtual reality technologies of human–computer interaction enable to make the link between the user and a virtual environment in capturing the user’s motion, acting on his senses as well as computing the virtual experience in real-time. The immersion in virtual environment is evaluated through the user’s perception and reaction. Virtual reality is used in a large variety of application domains which need multisensory interaction and navigation facilities. Virtual prototyping is also used in the industry to improve design process. INTRODUCTION digital representation in the design process of the object. The principle and main issues of virtual prototyping are Virtual reality is widely used in different application exposed. -
History of Virtual Reality
History of Virtual Reality Reading: 3D User Interfaces: Theory and Practice (2nd Edition), Ch. 2 Evan Suma Rosenberg | CSCI 5619 | Fall 2020 This course content is offered under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license. 1838 – Wheatstone Stereoscope The Wheatstone stereoscope used angled mirrors (A) to reflect stereoscopic drawings (E) towards the viewer’s eyes. 1849 – Brewster Stereoscope P. Hoberman, D. Krum, E. Suma, and M. Bolas. Immersive training games for smartphone-based head mounted displays. IEEE Virtual Reality, 2012. 1903 – Parallax Barrier 1929 – Link Flight Simulator Edward Link developed a mechanical flight simulator for training. Simulator was instrument-only (flying blind with no visuals). 1956 – Sensorama Morton Heilig’s Sensorama was an immersive multisensory experience that combined 3D film, stereo sound, vibration, wind, and even smell. 1960 – Telesphere Mask The first head-mounted display (HMD) was patented by Heilig in 1960. 1965 – The Ultimate Display • 3D Display: “A display connected to a digital computer gives us a chance to gain familiarity with concepts not realizable in the physical world. It is a looking glass into a mathematical wonderland.” • Motion Tracking: “The computer can easily sense the positions of almost any of our body muscles.” • Haptics: “The ultimate display would, of course, be a room within which the computer can control the existence of matter. A chair displayed in such a room would be good enough to sit in. Handcuffs displayed in such a room would be confining, and a bullet displayed in such a room would be fatal.” 1968 - Sword of Damocles First virtual reality head-mounted display system, created by Ivan Sutherland and Bob Sproull. -
Improving the Management of an Air Campaign with Virtual Reality
Improving the Management of an Air Campaign with Virtual Reality JAMES E. HAYWOOD, Major, USAF School of Advanced Airpower Studies THESIS PRESENTED TO THE FACULTY OF THE SCHOOL OF ADVANCED AIRPOWER STUDIES, MAXWELL AIR FORCE BASE, ALABAMA, FOR COMPLETION OF GRADUATION REQUIREMENTS, ACADEMIC YEAR 1994–95. Air University Press Maxwell Air Force Base, Alabama March 1996 Disclaimer The author produced this paper in a Department of Defense school environment in the interest of academic freedom and the advancement of national defense-related concepts. The views expressed in this publication are those of the author and do not reflect the official policy or position of the Department of Defense or the United States government. This publication has been reviewed by security and policy review authorities and is cleared for public release. ii Contents Chapter Page DISCLAIMER . ii ABSTRACT . v ABOUT THE AUTHOR . vii ACKNOWLEDGMENTS . ix 1 INTRODUCTION . 1 Notes . 3 2 THE TECHNOLOGY OF VIRTUAL REALITY . 5 The Human-Computer Interface . 6 Types of Virtual Realities . 7 Virtual Reality Component Technologies . 8 Technological Challenges . 10 Notes . 12 3 BATTLE MANAGEMENT OF AN AIR CAMPAIGN . 15 Structure and Organization for Theater Air Battle Management . 15 Functions of the Air Operations Center . 17 Elements of the Theater Air Control System . 18 Data Required for Air Battle Management . 19 Notes . 21 4 MANAGING AN AIR CAMPAIGN WITH VIRTUAL REALITY . 23 Operational Considerations . 24 Technical Considerations . 30 Notes . 30 5 CONCLUSION . 33 Notes . 34 BIBLIOGRAPHY . 35 iii Illustrations Figure Page 1 Conventional (A) versus VR (B) User Interfaces . 7 2 Air Operations Center Organization . 17 3 Elements of the Theater Air Control System . -
A Interação De Ferramentas Lean Com a Realidade Aumentada - Estudo Exploratório
UNIVERSIDADE DA BEIRA INTERIOR Faculdade de Engenharia A interação de ferramentas Lean com a Realidade Aumentada - Estudo Exploratório Hugo Meireles Dantas Gonçalves Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial (2º ciclo de estudos) Orientador: Prof. Doutor Fernando Manuel Bigares Charrua Santos Covilhã, Outubro de 2016 ii Dedicatória À minha mãe. iii iv Agradecimentos Aos meus irmãos de curso pela ajuda e companheirismo durante esta jornada que agora termina. Aos irmãos de Engenharia Eletromecânica e aos de Engenharia e Gestão Industrial. Incluindo as infiltradas de Gestão. Aos meus amigos de Leça da Palmeira pela compreensão pelas minhas falhas e ausências ao longo destes últimos anos. Ao meu orientador, Prof. Doutor Fernando Manuel Bigares Charrua Santos, pela sua compreensão, orientação e disponibilidade. À minha família pelo apoio. Por fim agradeço à mulher da minha vida. À minha mãe, por acreditar em mim em todas as alturas. Por nunca condicionar as minhas escolhas. Agradeço por me proporcionar tudo o que sou e que tenho. Por todo o esforço que fiz para que pudesse agora concluir este ciclo. Muito obrigado. v vi Resumo O Lean Manufacturing é uma filosofia de gestão industrial. Esta incorpora diferentes metodologias que têm como objetivo identificar e eliminar todos os desperdícios que existam numa empresa melhorando a organização e a competitividade. Este teve a sua origem no japão do pós segunda guerra mundial devido à necessidade de competir em mercados a milhares de quilómetros de distância e para isso era essencial produzir bem, à primeira e de forma célere. A Realidade Aumentada é uma tecnologia recente que tem vindo a ser cada vez mais explorada e publicitada.