Augmented Reality

Total Page:16

File Type:pdf, Size:1020Kb

Augmented Reality 10/02/2018 MAV - V1 - February 2018 1 • What is MAV - mixed, augmented and virtual reality. • Brief history of virtual and augmented reality. • Benefits of mixed reality in education. • Some examples of where MAV is being used in CQUniversity. • Future directions for MAV in CQUniversity. • Some easy ways to implement MAV in the classroom. • Hands on with some virtual and augmented reality. 10/02/2018 MAV - V1 - February 2018 2 MAV - mixed, augmented and virtual reality • Augmented Reality - direct or indirect view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics or GPS data. • Virtual Reality - immersive multimedia or computer- simulated reality, replicates an environment that simulates a physical presence in places in the real world or an imagined world, allowing the user to interact in that world. • Mixed Reality - is the merging of real and virtual worlds to produce new environments and visualizations where physical and digital objects co-exist and interact in real time. 10/02/2018 MAV - V1 - February 2018 3 10/02/2018 MAV - V1 - February 2018 4 • 360 Video – immersive video recordings of a real-world scene, where the view in every direction is recorded at the same time. • During playback the viewer has control of the viewing direction and can also be used with virtual reality devices; e.g. Google Cardboard. 10/02/2018 MAV - V1 - February 2018 5 • Although considered an “emerging technology” the use of virtual and augmented reality can be traced back as far as 1838. 10/02/2018 MAV - V1 - February 2018 6 • 1838 – Stereoscopic photos & viewers • In 1838 Charles Wheatstone’s research demonstrated that the brain processes the different two-dimensional images from each eye into a single object of three dimensions. Viewing two side by side stereoscopic images or photos through a stereoscope gave the user a sense of depth and immersion. • The later development of the popular View-Master stereoscope (patented 1939), was used for “virtual tourism”. • 1838 : The stereoscope (Charles Wheatstone) • 1849 : The lenticular stereoscope (David Brewster) • 1939 : The View-Master (William Gruber) 10/02/2018 MAV - V1 - February 2018 7 • The design principles of the Stereoscope is used today for the popular Google Cardboard and low budget VR head mounted displays for mobile phones. Early stereoscopic photo 1838 : The stereoscope (Charles Wheatstone) 1849 : The lenticular stereoscope (David Brewster) 1939 : The View-Master (William Gruber) 10/02/2018 MAV - V1 - February 2018 8 1950s – Morton Heilig’s Sensorama • In the mid 1950s cinematographer Morton Heilig developed the Sensorama (patented 1962) which was an arcade-style theatre cabinet that would stimulate all the senses, not just sight and sound. It featured stereo speakers, a stereoscopic 3D display, fans, smell generators and a vibrating chair. • The Sensorama was intended to fully immerse the individual in the film. He also created six short films for his invention all of which he shot, produced and edited himself. • The Sensorama films were titled, Motorcycle, Belly Dancer, Dune Buggy, helicopter, A date with Sabina and I’m a coca cola bottle! 10/02/2018 MAV - V1 - February 2018 9 1950s – Morton Heilig’s Sensorama 10/02/2018 MAV - V1 - February 2018 10 1960 – The first VR Head Mounted Display • Morton Heilig’s next invention was the Telesphere Mask (patented 1960) and was the first example of a head-mounted display (HMD), albeit for the non-interactive film medium without any motion tracking. The headset provided stereoscopic 3D and wide vision with stereo sound. 10/02/2018 MAV - V1 - February 2018 11 1961 Headsight – First motion tracking HMD • In 1961, the Headsight was developed the first precursor to the HMD as we know it today – the Headsight. It incorporated a video screen for each eye and a magnetic motion tracking system, which was linked to a closed circuit camera. • The Headsight was not actually developed for virtual reality applications (the term didn’t exist then), but to allow for immersive remote viewing of dangerous situations by the military. Head movements would move a remote camera, allowing the user to naturally look around the environment. • Headsight was the first step in the evolution of the VR head mounted display but it lacked the integration of computer and image generation. 10/02/2018 MAV - V1 - February 2018 12 1965 – The Ultimate display by Ivan Sutherland Ivan Sutherland described the “Ultimate Display” concept that could simulate reality to the point where one could not tell the difference from actual reality. His concept included: • A virtual world viewed through a HMD and appeared realistic through augmented 3D sound and tactile feedback. • Computer hardware to create the virtual word and maintain it in real time. • The ability for users to interact with objects in the virtual world in a realistic way “The ultimate display would, of course, be a room within which the computer can control the existence of matter. A chair displayed in such a room would be good enough to sit in. Handcuffs displayed in such a room would be confining, and a bullet displayed in such a room would be fatal. With appropriate programming such a display could literally be the Wonderland into which Alice walked.” – Ivan Sutherland This paper would become a core blueprint for the concepts that encompass virtual reality today. 10/02/2018 MAV - V1 - February 2018 13 1968 – Sword of Damocles • In 1968 Ivan Sutherland and his student Bob Sproull created the first VR / AR head mounted display (Sword of Damocles) that was connected to a computer and not a camera. • It was a large and scary looking contraption that was too heavy for any user to comfortably wear and was suspended from the ceiling (hence its name). • The user would also need to be strapped into the device. The computer generated graphics were very primitive wireframe rooms and objects. 10/02/2018 MAV - V1 - February 2018 14 1987 – Virtual reality the name was born • Even after all of this development in virtual reality, there still wasn’t an all- encompassing term to describe the field. This all changed in 1987 when Jaron Lanier, founder of the visual programming lab (VPL), coined (or according to some, popularised) the term “virtual reality”. The research area now had a name. • Through his company VPL Research, Jaron developed a range of virtual reality gear including the Dataglove (along with Tom Zimmerman) and the EyePhone head mounted display. • They were the first company to sell Virtual Reality goggles (EyePhone 1 $9400; EyePhone HRX $49,000) and gloves ($9000). A major development in the area of virtual reality haptics. 10/02/2018 MAV - V1 - February 2018 15 • 1995 – VFX1 Headgear • 2011 – iPhone Virtual Reality Viewer • 2013 – Tactical Haptics VR Motion Controller • 2014 – Google Cardboard • 2015 – Samsung Gear VR • 2016 – Oculus Rift • 2016 – HTC Vive • 2016 – Sony Play Station VR 10/02/2018 MAV - V1 - February 2018 16 • Virtual and augmented reality are often associated with gaming. • VR, AR and MVR offer many opportunities in education. 10/02/2018 MAV - V1 - February 2018 17 Both virtual and augmented reality can support traditional educational methods through: • Offering an active rather than passive experience. • Delivering an immersive experience without distractions. • Increasing students' engagement through engaging interactive material. • Providing a hands-on approach that aids with retention. • Helping students to understand complex subjects and theories. • Giving students the opportunity to experience situations that are “rare events” that they may not otherwise experience. 10/02/2018 MAV - V1 - February 2018 18 Both virtual and augmented reality can support traditional educational methods through: • Letting students experience hazardous environments in a safe way. • Reducing apprehension and embarrassment, which otherwise impede experimentation in activities like role-playing. • Providing a level of visualizations that are not possible in the traditional classroom. • Creating a uniform and equal learning experience between distance and campus based students. 10/02/2018 MAV - V1 - February 2018 19 10/02/2018 MAV - V1 - February 2018 20 10/02/2018 MAV - V1 - February 2018 21 Augmented Reality in Human Anatomy Atlas 2018 Edition for Apple's iOS 11 creates a transformative learning experience that enables students to visualise gross anatomy and microanatomy as they would in a lab room with cadavers or specimens. 10/02/2018 MAV - V1 - February 2018 22 10/02/2018 MAV - V1 - February 2018 23 Plane Finder AR Sky Guide AR Galileo AR 10/02/2018 MAV - V1 - February 2018 24 • The Blippar app lets users look at real-world objects enhanced with text and digital graphics through their smartphone camera, making real-world images into digital experiences 10/02/2018 MAV - V1 - February 2018 25 • Microsoft HoloLens is a pair of mixed reality smart glasses developed and manufactured by Microsoft that create immersive simulations anywhere. 10/02/2018 MAV - V1 - February 2018 26 10/02/2018 MAV - V1 - February 2018 27 10/02/2018 MAV - V1 - February 2018 28 • The free Cardboard Camera app lets you use a smartphone to make 360 images that can be used in a virtual reality viewer like Google Cardboard. 10/02/2018 MAV - V1 - February 2018 29 • An entry level VR experience that delivers amazing results. • All that is required: • An iOS or Android smart phone. • Free “FullDive” app from the app store. • Hand controllers that can be printed • $5 Google Cardboard device • The “FullDive” app, turns the phone into a VR device with access to a wide range of VR content. • CQUniversity has put together a MAV team. • Creating a coordinated approach across the University. • Scalable AR and VR content from distance students to VR labs. • About to commence a Community of Practice. • Main priority of MAV in CQUniversity is where it can add to education through engaging content.
Recommended publications
  • Immersive Realities for Learning and Performance “VR, AR, Mixed Reality & More in 2018"
    Immersive Realities for Learning and Performance “VR, AR, Mixed Reality & More in 2018" An Updated Report from The MASIE Center Author: Bobby Carlton | Foreword: Elliott Masie May 23, 2018 Learning CONSORTIUM masie.com NOVEMBER 4 – 7, 2018 | ORLANDO, FL Lea “VR, AR, Mixed Reality & More in 2018" & More Reality AR, Mixed “VR, Immersive Realities Immersive masie.com for Learning and Performance Learning for r Author: Bobby Carlton | Foreword: Elliott Masie ning Foreword: An Updated Report from The MASIE Center CONSO “Boldly Go... Where the Learner Has Not Gone Before” R TIUM My good friend, actor George Takei, shared with me the excitement that the cast and crew felt when shooting Star Trek back in 1966. They were all excited by the possibility of a virtual and immersive reality. They imagined that they could scan a planet, a person, or an NOVEMBER 4 – 7, 2018 | ORLANDO, FL 2018 | ORLANDO, 4 – 7, NOVEMBER object and simulate, play with, or even destroy it (virtually) while May 23, 2018 being deeply immersed in the experience. And, they knew that someday this fiction would become reality. Ever since, I have been tracking, using, experimenting with, and researching the ever-changing and emerging worlds of virtual reality, augmented reality, mixed reality, and other immersive reality technologies and software. They keep getting better, though they still aren’t totally "there" yet. The challenge is to bridge the gap between their promise and actual use in workplaces to drive learning and performance. The good news is that in the past three years we have made major jumps forward.
    [Show full text]
  • TV in VR Changho Choi, Peter Langner, Praveen Reddy, Satender Saroha, Sunil Srinivasan, Naveen Suryavamsh
    TV in VR Changho Choi, Peter Langner, Praveen Reddy, Satender Saroha, Sunil Srinivasan, Naveen Suryavamsh Introduction The evolution of storytelling has gone through various phases. Earliest known methods were through plain text. Plays and theatres were used to bring some of these stories to life but for the most part, artists relied on their audience to imagine the fictional worlds they were describing. Illustrations were a nice addition to help visualize an artist's perception. With the advent of cinema in the early 1900’s starting with silent films to the current summer blockbusters with their CGI, 3D and surround sound – viewers are transported into these imaginary worlds – to experience these worlds just as the creators of this content envisioned it. Virtual reality, with its ability to provide an immersive medium with a sense of presence and depth is the next frontier of storytelling. Seminal events in history ­ Moon landing in 1969 When Neil Armstrong and Buzz Aldrin took the first steps on the moon ­ it captured the imagination of the world. The culmination of a grand vision and the accompanying technological breakthroughs brought about an event that transfixed generations to come. As it happened in the 1969, the enabling technology for experiencing this event was the trusted radio or through grainy broadcasts of television anchors describing the events as they were described to them! Super Bowl 49 As the Seattle Seahawks stood a yard away from winning the Super Bowl in 2015, 115 million people watched on NBC in the United States alone. In front of their big screen TVs and every possible option explained to them by the commentators, the casual and the rabid football fan alike watched as the Seahawks lost due to a confluence of events.
    [Show full text]
  • Hyperreality and Virtual Worlds: When the Virtual Is Real
    sphera.ucam.edu ISSNe: 2695-5725 ● Número 19 ● Vol.II ● Año 2019 ● pp. 36-58 Hyperreality and virtual worlds: when the virtual is real Paulo M. Barroso, Polytechnic Institute of Viseu (Portugal) [email protected] Received: 12/11/19 ● Accepted: 10/12/19 ● Published: 19/12/19 How to reference this paper: Barroso, Paulo M. (2019). Hyperreality and virtual worlds: when the virtual is real, Sphera Publica, 2(19), 36‐58. Abstract This article questions what is hyperreality and underlines the role of the signs/images fostering the perception of a virtual world. It argues the potentiality of signs as artefacts. Starting from Agamben’s perspective regarding contemporary, the hyperreality is understood as a modern, visual and mass manifestation of the need for simulacra in a non-referential virtual world. How hyperreality, spectacle, simulation, and appearance emerge out of reality? What is authentic or real are issues raised using images and technological devices. The images are popular and amplify the effects of distraction and social alienation. The image is immediately absorbed, spectacular, attractive, a peculiar ready-to-think that eliminates or dilutes the concepts and produces a fast culture. Through a reflexive strategy, this article is conceptual (it has no case study or empirical work) and has the purpose of problematize the experience of hyperreality, which is reshaping and restructuring patterns of social life and social interdependence, and the ways we see, think, feel, act or just mean and interpret the reality. Keywords Hyperreality, image, real, virtual worlds, technology Barroso Hiperrealidad y mundos virtuales Hiperrealidad y mundos virtuales: cuando lo virtual es real Paulo M.
    [Show full text]
  • "Physics Considerations for a Simulated Reality"
    Physics considerations for a simulated reality Max Hodak 1 Why build a simulated reality? ined, but that of defining a suitable physics system. We conjecture that there is a relationship between Video games have a powerful natural appeal. Our the depth of a virtual world and the sophistication of physical world imposes harsh constraints: atoms are its underlying physics. difficult to work with compared to bits, and the Any non-trivial universe must contain informa- scarcity of both materials and the capacity to trans- tion, and we can phrase the central problem in world form them leads to a tough environment. By con- design as one of writing down the information that trast, video games can be anything we want them defines a universe; informally, we can state that a to be: players can fly, use magic, or even have their universe without information has zero depth. We can own planet, all the while exercising mental faculties start from a premise that information in any universe in just as satisfying a way as they would in our base is found in two forms: matter and its interactions. reality. As computer processing power continues to improve and the space of games we can build expands, a natural opportunity arises to build simulated real- 2 Naturalness ities that are as engaging and emotionally immersive as our base reality, but with fewer constraints and a Before we think about physics as it is usually under- greater capacity for easier creative expression. stood, let's briefly look at video game \physics" as Video game design is challenging on multiple lev- it exists today.
    [Show full text]
  • Toward Interconnected Virtual Reality: Opportunities, Challenges, and Enablers Ejder Bastug, Mehdi Bennis, Muriel Médard, Merouane Debbah
    Toward Interconnected Virtual Reality: Opportunities, Challenges, and Enablers Ejder Bastug, Mehdi Bennis, Muriel Médard, Merouane Debbah To cite this version: Ejder Bastug, Mehdi Bennis, Muriel Médard, Merouane Debbah. Toward Interconnected Virtual Reality: Opportunities, Challenges, and Enablers. IEEE Communications Magazine, Institute of Electrical and Electronics Engineers, 2017, 55 (6), pp.110 - 117. 10.1109/MCOM.2017.1601089. hal-01781856 HAL Id: hal-01781856 https://hal-centralesupelec.archives-ouvertes.fr/hal-01781856 Submitted on 18 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Towards Interconnected Virtual Reality: Opportunities, Challenges and Enablers Ejder Ba¸stug˘;⊗, Mehdi Bennisy, Muriel Médard, and Mérouane Debbah⊗;◦ Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA ⊗Large Networks and Systems Group (LANEAS), CentraleSupélec, Université Paris-Saclay, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette, France yCentre for Wireless Communications, University of Oulu, Finland ◦Mathematical and Algorithmic Sciences Lab, Huawei France R&D, Paris, France {ejder, medard}@mit.edu, [email protected].fi, [email protected] Abstract Just recently, the concept of augmented and virtual reality (AR/VR) over wireless has taken the entire 5G ecosystem by storm spurring an unprecedented interest from both academia, industry and others.
    [Show full text]
  • Virtual and Augmented Reality in Marketing
    Virtual and Augmented Reality in Marketing Laura Håkansson Thesis Tietojenkäsittelyn Koulutusohjelma 2018 Authors Group Laura Håkansson HETI15KIM The title of your thesis Number of Virtual and Augmented Reality in Marketing pages and appendices 56 Supervisors Heikki Hietala This thesis serves as an introduction to Virtual and Augmented Reality and explains how these two different technologies can be used in marketing. I work in marketing and have been following the evolvement of both VR and AR for a few years now. I was personally very curious to learn about how these have been implemented in marketing in the past, and what they will look like in the future, and if there are any reoccurring themes, for both VR and AR, that work best with a specific product or service. I spent a year reading the latest news and articles about various VR/AR marketing campaigns, and about the updates on these technologies that kept coming almost monthly. I also participated in different VR/AR-themed events in Helsinki to try out headsets and new AR apps, and to listen to the experts view on the potential of VR and AR. I wanted to create clear guidelines on which technology to use and how, depending on the product or service being marketed, but realized during my research that this was not possible. VR and AR are still in development, but evolving at a very fast pace, and right now it’s important to just bravely test them out without worrying about failing. I give plenty of examples in this thesis that will hopefully encourage marketers to start experimenting now, because we will see some really advanced VR and AR/MR in a few years, and those with the most experience will have great advantage in the marketing field.
    [Show full text]
  • Improving the Management of an Air Campaign with Virtual Reality
    Improving the Management of an Air Campaign with Virtual Reality JAMES E. HAYWOOD, Major, USAF School of Advanced Airpower Studies THESIS PRESENTED TO THE FACULTY OF THE SCHOOL OF ADVANCED AIRPOWER STUDIES, MAXWELL AIR FORCE BASE, ALABAMA, FOR COMPLETION OF GRADUATION REQUIREMENTS, ACADEMIC YEAR 1994–95. Air University Press Maxwell Air Force Base, Alabama March 1996 Disclaimer The author produced this paper in a Department of Defense school environment in the interest of academic freedom and the advancement of national defense-related concepts. The views expressed in this publication are those of the author and do not reflect the official policy or position of the Department of Defense or the United States government. This publication has been reviewed by security and policy review authorities and is cleared for public release. ii Contents Chapter Page DISCLAIMER . ii ABSTRACT . v ABOUT THE AUTHOR . vii ACKNOWLEDGMENTS . ix 1 INTRODUCTION . 1 Notes . 3 2 THE TECHNOLOGY OF VIRTUAL REALITY . 5 The Human-Computer Interface . 6 Types of Virtual Realities . 7 Virtual Reality Component Technologies . 8 Technological Challenges . 10 Notes . 12 3 BATTLE MANAGEMENT OF AN AIR CAMPAIGN . 15 Structure and Organization for Theater Air Battle Management . 15 Functions of the Air Operations Center . 17 Elements of the Theater Air Control System . 18 Data Required for Air Battle Management . 19 Notes . 21 4 MANAGING AN AIR CAMPAIGN WITH VIRTUAL REALITY . 23 Operational Considerations . 24 Technical Considerations . 30 Notes . 30 5 CONCLUSION . 33 Notes . 34 BIBLIOGRAPHY . 35 iii Illustrations Figure Page 1 Conventional (A) versus VR (B) User Interfaces . 7 2 Air Operations Center Organization . 17 3 Elements of the Theater Air Control System .
    [Show full text]
  • Virtual Reality – Mittendrin Statt Nur Dabei Thomas P
    Virtual Reality – Mittendrin statt nur dabei Thomas P. Kersten Labor für Ph t grammetrie & Laserscanning VDI‐Mitgliederevent, Hamburg, 3. Dezember 2020 Inhalt der Präsentation Einführung Definitionen & Geschichte Workflow Datenerfassung & ‐modellierung Game Engine & Virtual Reality System Implementierung der VR‐Applikation Anwendungen Fazit & Ausblick Labor für Ph t grammetrie & Laserscanning 1. Einführung Die neue Realität –Virtual Reality (VR) hat das Potenzial, die Art zu verändern, wie wir die Welt wahrnehmen – überall und für jeden Labor für Ph t grammetrie & Laserscanning 1. Einführung Zeitreise in die Vergangenheit mit VR! Labor für Ph t grammetrie & Laserscanning Labor für Ph t grammetrie & Laserscanning 1. Einführung Visit new worlds with VR you could not image before Labor für Ph t grammetrie & Laserscanning 1. Einführung Sinnestäuschung Labor für Ph t grammetrie & Laserscanning 1. Einführung Virtual Reality – zunehmende Bedeutung in zahlreichen Fachdisziplinen VR – starke Verbreitung im Konsumermarkt durch preisgünstige Systeme 3D‐Welten für Jedermann/‐frau Aufgaben für Geodäsie, Photogrammetrie und benachbarte Fächer? Virtual Reality –neue Visualisierungstechnologie für 3D‐Geodaten? Was brauchen wir für immersive VR‐Erlebnisse? 3D‐Daten Game Engine Virtual Reality System Labor für Ph t grammetrie & Laserscanning 2. Definitionen & Geschichte Als virtuelle Realität (VR) wird die Darstellung und gleichzeitige Wahrnehmung der Wirklichkeit und ihrer physikalischen Eigenschaften in einer in Echtzeit computer‐
    [Show full text]
  • The Virtual Reality Renaissance Is Here, but Are We Ready? 2.2K SHARES WHAT's THIS?
    MUST READS SOCIAL MEDIA TECH BUSINESS ENTERTAINMENT US & WORLD WATERCOOLER JOBS MORE The Virtual Reality Renaissance Is Here, But Are We Ready? 2.2k SHARES WHAT'S THIS? IMAGE: MASHABLE, BOB AL-GREENE BY LANCE ULANOFF / 2014-04-20 21:19:32 UTC This piece is part of Mashable Spotlight, which presents in-depth looks at the people, concepts and issues shaping our digital world. I'm flapping my wings. Not hard, but slowly and smoothly. At 25 feet across, my wingspan is so great I don't need to exert much energy to achieve lift. In the distance, I see an island under an azure sky. This is my home. Off to my west, the sun is setting and the sky glows with warm, orange light. Spotting movement in the ocean below, I bend my body slightly to the left and begin a gentle dive. As I approach the shore, I spot my prey splashing in the shallows. I lean back, keeping my wings fully extended so I can glide just above the water. I'm right over the fish. I pull in my wings, bend forward sharply and dive into the water. I emerge with a fish in my mouth. Success. Better yet, I did all this without ever leaving the ground or getting wet. Lance Ulanoff trying out the American Museum of Natural History's Pterosaur flight simulator. IMAGE: MASHABLE This is virtual reality, or at least the American Museum of Natural History’s (AMNH) brand of semi-immersive virtual reality. With a large projection screen, Microsoft Kinect V1 and a gaming PC, the setup lets you control the flight of a virtual pterosaur by standing in front of the Kinect sensor, flapping your arms and bending.
    [Show full text]
  • Etymology and Terminology
    The Journal of ZEPHYRUS ISSN: 0514-7336 VIRTUAL REALITY PAPER PRESENTATION PREPARED BY PRADEEISH.P K.S.R COLLEGE OF TECHNOLOGY, K.S.R KALIVI NAGAR THIRUCHENGODU PINCODE - 637215 Virtual reality (VR) typically refers to computer technologies that use software to generate the realistic images, sounds and other sensations that replicate a real environment (or create an imaginary setting), and simulate a user's physical presence in this environment. VR has been defined as "...a realistic and immersive simulation of a three-dimensional environment, created using interactive software and hardware, and experienced or controlled by movement of the body"[1] or as an "immersive, interactive experience generated by a computer".[2] A person using virtual reality equipment is typically able to "look around" the artificial world, move about in it and interact with features or items that are depicted on a screen or in goggles. Most 2016-era virtual realities are displayed either on a computer monitor, a projector screen, or with a virtual reality headset (also called head-mounted display or HMD). HMDs typically take the form of head-mounted goggles with a screen in front of the eyes. Programs may include audio and sounds through speakers or headphones. Advanced haptic systems in the 2010s may include tactile information, generally known as force feedback in medical, video gaming and military training applications. Some VR systems used in video games can transmit vibrations and other sensations to the user via the game controller. Virtual reality also refers to remote communication environments which provide a virtual presence of users with through telepresence and telexistence or the use of a virtual artifact (VA).
    [Show full text]
  • Virtual Reality’ Paradigm
    San Jose State University SJSU ScholarWorks ART 108: Introduction to Games Studies Art and Art History & Design Departments Fall 12-2017 Exploring Oculus Rift: A Historical Analysis of the ‘Virtual Reality’ Paradigm Chastin Gammage San Jose State University, [email protected] Follow this and additional works at: https://scholarworks.sjsu.edu/art108 Part of the Game Design Commons, and the Graphics and Human Computer Interfaces Commons Recommended Citation Chastin Gammage. "Exploring Oculus Rift: A Historical Analysis of the ‘Virtual Reality’ Paradigm" ART 108: Introduction to Games Studies (2017). This Final Class Paper is brought to you for free and open access by the Art and Art History & Design Departments at SJSU ScholarWorks. It has been accepted for inclusion in ART 108: Introduction to Games Studies by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. Chastin Gammage Professor James Morgan CS 108: Introduction to Game Studies 15 December 2017 Exploring Oculus Rift: A Historical Analysis of the ‘Virtual Reality’ Paradigm Although many consider Virtual Reality to be a relatively new concept, it is more appropriately defined as a long-standing ideology subject to continuous transformation and several varying iterations throughout time depending on the advents in technology. Peter Stearns, a renown modern historian, once wrote an article sharing a similar historically oriented disposition claiming that "the past causes the present, and so the future. Anytime we try to know how something happened… we have to look for the factors that took shape earlier… only through studying history (a proper historical analysis) can we begin to comprehend the factors changing the field so rapidly." In essence, understanding the historical legacy associated with virtual reality is a critical first step in developing a solid foundation on the topic as a whole.
    [Show full text]
  • Virtual Realism: Really Realism Or Only Virtually So? a Comment on D
    Virtual Realism: Really Realism or only Virtually so? A Comment on D. J. Chalmers’s Petrus Hispanus Lectures Claus Beisbart University of Bern DOI: 10.2478/disp-2019-0008 BIBLID [0873-626X (2019) 55; pp.297–331] Abstract What is the status of a cat in a virtual reality environment? Is it a real ob- ject? Or part of a fiction? Virtual realism, as defended by D. J. Chalm- ers, takes it to be a virtual object that really exists, that has properties and is involved in real events. His preferred specification of virtual realism identifies the cat with a digital object. The project of this paper is to use a comparison between virtual reality environments and sci- entific computer simulations to critically engage with Chalmers’s posi- tion. I first argue that, if it is sound, his virtual realism should also be applied to objects that figure in scientific computer simulations, e.g. to simulated galaxies. This leads to a slippery slope because it implies an unreasonable proliferation of digital objects. A philosophical analysis of scientific computer simulations suggests an alternative picture: The cat and the galaxies are parts of fictional models for which the computer provides model descriptions. This result motivates a deeper analysis of the way in which Chalmers builds up his realism. I argue that he buys realism too cheap. For instance, he does not really specify what virtual objects are supposed to be. As a result, rhetoric aside, his virtual real- ism isn’t far from a sort of fictionalism. Keywords Computer simulation, model, fictional model, ontology, fictionalism.
    [Show full text]