On the Metapleural Gland of Ants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Producing Sea Buckthorn of High Quality
Natural resources and bioeconomy studies 31/2015 Producing Sea Buckthorn of High Quality Proceedings of the 3rd European Workshop on Sea Buckthorn EuroWorkS2014 Naantali, Finland, October 14-16, 2014 Kauppinen Sanna, Petruneva Ekaterina (Eds.) Natural resources and bioeconomy studies 31/2015 Producing Sea Buckthorn of High Quality Proceedings of the 3rd European Workshop on Sea Buckthorn EuroWorkS2014 Naantali, Finland October 14-16, 2014 Kauppinen Sanna, Petruneva Ekaterina (Eds.) Natural Resources Institute Finland, Helsinki 2015 ISBN: 978-952-326-035-1 (Online) ISSN 2342-7647 (Online) URN: http://urn.fi/URN:ISBN:978-952-326-035-1 Copyright: Natural Resources Institute Finland (Luke) Authors: Kauppinen Sanna, Petruneva Ekaterina (Eds.) Publisher: Natural Resources Institute Finland (Luke), Helsinki 2015 Year of publication: 2015 Cover photo: Sanna Kauppinen Natural resources and bioeconomy studies 31/2015 Preface Producing sea buckthorn of high quality asks skills and knowledge in every step of the food chain from the field to the consumer. The 3rd European Workshop on Sea Buckthorn (EuroWorkS2014) was held in Naantali, Finland on 14th to 16th of October 2014 under the theme “Producing Sea Buckthorn of High Quality”. Conference concentrated on three topics that were recognized to be current under the theme: sea buckthorn fly, cultivation technology and standardization of sea buckthorn. A special attention was paid to sea buckthorn fly because of its rapid and destructive invasion to Europe. Protective measurements need to be studied fast to get this new pest under control. Also long-term strategies are needed in order to continue efficient berry production, also without pesti- cides. Dr. Ljubov Shamanskaja has a long research experience with sea buckthorn fly in Barnaul, Rus- sia, where the fly has been a problem over 20 years. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Worldwide Spread of the Ruby Ant, Myrmica Rubra (Hymenoptera: Formicidae)
Myrmecological News 14 87-96 Vienna, January 2011 Worldwide spread of the ruby ant, Myrmica rubra (Hymenoptera: Formicidae) James K. WETTERER & Alexander G. RADCHENKO Abstract The ruby ant, Myrmica rubra (LINNAEUS, 1758) (formerly Myrmica laevinodis NYLANDER, 1846), an aggressive Eur- asian species with a powerful sting, is now spreading through temperate North America. To document the worldwide distribution of M. rubra and evaluate its potential for further spread, we compiled published and unpublished specimen records from > 2000 sites. We report the earliest known M. rubra records for 71 geographic areas (countries, major is- lands, US states, Canadian provinces, and Russian federal districts), including three areas with no previously published records: Prince Edward Island, Washington State, and the Far Eastern Federal District of Russia. All earlier published records of M. rubra from East Asia, including the Far East of Russia, Japan, and China, appear to be misidentifications of Myrmica kotokui FOREL, 1911. Myrmica rubra is native to an enormous expanse extending from Ireland and Portugal in westernmost Europe across 8000 km to central Asia and eastern Siberia, and from 39 to 70° N in latitude. Exotic populations of M. rubra were first recorded in eastern North America more than 100 years ago. Myrmica rubra is now documented from five southeastern Canadian provinces (New Brunswick, Nova Scotia, Ontario, Prince Edward Island, and Quebec), six northeastern US states (Maine, Massachusetts, New Hampshire, New York, Rhode Island, and Vermont), and one northwestern state (Wash- ington) ranging from 41.5 to 47.6° N. Given the vast range of M. rubra in Eurasia, perhaps the most striking aspect about this species in North America is how little it has spread over the past century. -
Hymenoptera: Formicidae
16 The Weta 30: 16-18 (2005) Changes to the classification of ants (Hymenoptera: Formicidae) Darren F. Ward School of Biological Sciences, Tamaki Campus, Auckland University, Private Bag 92019, Auckland ([email protected]) Introduction This short note aims to update the reader on changes to the subfamily classification of ants (Hymenoptera: Formicidae). Although the New Zealand ant fauna is very small, these changes affect the classification and phylogeny of both endemic and exotic ant species in New Zealand. Bolton (2003) has recently proposed a new subfamily classification for ants. Two new subfamilies have been created, a revised status for one, and new status for four. Worldwide, there are now 21 extant subfamilies of ants. The endemic fauna of New Zealand is now classified into six subfamilies (Table 1), as a result of three subfamilies, Amblyoponinae, Heteroponerinae and Proceratiinae, being split from the traditional subfamily Ponerinae. Bolton’s (2003) classification also affects several exotic species in New Zealand. Three species have been transferred from Ponerinae: Amblyopone australis to Amblyoponinae, and Rhytidoponera chalybaea and R. metallica to Ectatomminae. Currently there are 28 exotic species in New Zealand (Table 1). Eighteen species have most likely come from Australia, where they are native. Eight are global tramp species, commonly transported by human activities, and two species are of African origin. Nineteen of the currently established exotic species are recorded for the first time in New Zealand as occurring outside their native range. This may result in difficulty in obtaining species-specific biological knowledge and assessing their likelihood of becoming successful invaders. In addition to the work by Bolton (2003), Phil Ward and colleagues at UC Davis have started to resolve the phylogenetic relationships among subfamilies and genera of all ants using molecular data (Ward et al, 2005). -
Actes Des Colloques Insectes Sociaux
U 2 I 0 E 0 I 2 S ACTES DES COLLOQUES INSECTES SOCIAUX Edité par l'Union Internationale pour l’Etude des Insectes Sociaux - Section française (sous la direction de François-Xavier DECHAUME MONCHARMONT et Minh-Hà PHAM-DELEGUE) VOL. 15 (2002) – COMPTE RENDU DU COLLOQUE ANNUEL 50e anniversaire - Versailles - 16-18 septembre 2002 ACTES DES COLLOQUES INSECTES SOCIAUX Edité par l'Union Internationale pour l’Etude des Insectes Sociaux - Section française (sous la direction de François-Xavier DECHAUME MONCHARMONT et Minh-Hà PHAM-DELEGUE) VOL. 15 (2002) – COMPTE RENDU DU COLLOQUE ANNUEL 50e anniversaire - Versailles - 16-18 septembre 2002 ISSN n° 0265-0076 ISBN n° 2-905272-14-7 Composé au Laboratoire de Neurobiologie Comparée des Invertébrés (INRA, Bures-sur-Yvette) Publié on-line sur le site des Insectes Sociaux : : http://www.univ-tours.fr/desco/UIEIS/UIEIS.htm Comité Scientifique : Martin GIURFA Université Toulouse Alain LENOIR Université Tours Christian PEETERS CNRS Paris 6 Minh-Hà PHAM-DELEGUE INRA Bures Comité d'Organisation : Evelyne GENECQUE F.X. DECHAUME MONCHARMONT Et toute l’équipe du LNCI (INRA Bures) Nous remercions sincèrement l’INRA et l’établissement THOMAS qui ont soutenu financièrement cette manifestation. Crédits Photographiques Couverture : 1. Abeille : Serge CARRE (INRA) 2. Fourmis : Photothèque CNRS 3. Termite : Alain ROBERT (Université de Bourgogne, Dijon) UIEIS Versailles Page 1 Programme UNION INTERNATIONALE POUR L’ETUDE DES INSECTES SOCIAUX UIEIS Section Française - 50ème Anniversaire Versailles 16-18 Septembre 2002 PROGRAMME Lundi 16 septembre 9 h ACCUEIL DES PARTICIPANTS - CAFE 10 h Présentation du Centre INRA de Versailles – Président du Centre Session Plasticité et Socialité- Modérateur Martin Giurfa 10 h 15 - Conférence Watching the bee brain when it learns – Randolf Menzel (Université Libre de Berlin) 11 h 15 Calcium responses to queen pheromones, social pheromones and plant odours in the antennal lobe of the honey bee drone Apis mellifera L. -
Notification of Access Arrangement for MP 41279, Mt Te Kuha
Attachment C Draft Terrestrial Ecology Report 106 VEGETATION AND FAUNA OF THE PROPOSED TE KUHA MINE SITE Prepared for Te Kuha Limited Partnership October 2013 EXECUTIVE SUMMARY The Te Kuha mining permit is located predominantly within the Westport Water Conservation Reserve (1,825 ha), which is a local purpose reserve administered by the Buller District Council. The coal deposit is situated outside the water catchment within an area of approximately 490 ha of Brunner Coal Measures vegetation approximately 5 km southwest of Mt Rochfort. Access would be required across conservation land to reach the coal resource. The Te Kuha site was recommended as an area for protection by the Protected Natural Areas Programme surveys in the 1990s on the basis that in the event it was removed from the local purpose reserve for any reason, addition to the public conservation estate would increase the level of protection of coal measures habitats which, although found elsewhere (principally in the Mt Rochfort Conservation Area), were considered inadequately protected overall. The proposal to create an access road and an opencast mine at the site would affect twelve different vegetation types to varying degrees. The habitats present at the proposed mine site are overwhelmingly indigenous and have a very high degree of intactness reflecting their lack of human disturbance. Previous surveys have shown that some trees in the area are more than 500 years old. Habitats affected by the proposed access road are less intact and include exotic pasture as well as regenerating shrubland and forest. Te Kuha is not part of the Department of Conservation’s Buller Coal Plateaux priority site and is unlikely to receive management for that reason. -
Invasibility of Native Habitats by Argentine Ants, Linepithema Humile, in New Zealand
WARD,Available HARRIS: on-line at: HABITAT http://www.nzes.org.nz/nzje INVASIBILITY BY ARGENTINE ANTS 215 Invasibility of native habitats by Argentine ants, Linepithema humile, in New Zealand Darren F. Ward1* and Richard J. Harris2 1School of Biological Sciences, Tamaki Campus, University of Auckland, Private Bag 92019, Auckland, New Zealand 2Landcare Research, P.O. Box 6, Nelson, New Zealand *Author for correspondence (E-mail: [email protected]) ____________________________________________________________________________________________________________________________________ Abstract: The Argentine ant, Linepithema humile, was found established in New Zealand in 1990. During summer 2001/2002 the spread of Argentine ants from urban environments into native habitats was investigated. During an initial large-scale survey around the northern cities of Auckland and Whangarei, Argentine ants were observed at 35 of 211 sites. Eight sites in Auckland were subsequently surveyed in greater detail to determine the extent of movement by Argentine ants into native habitats. The presence of Argentine ants was determined every 10 m along a total of 28 transects into native forest, scrub and mangrove habitats. Argentine ants moved up to 20 m into forest habitats. In habitats with more open canopy (mangrove and scrub), ants moved at least 30 m and 60 m, respectively. We predict that open habitats and relatively open canopy scrub environments in northern New Zealand are likely to be vulnerable to invasion, and to experience the highest densities and the greatest impacts of Argentine ants. Our preliminary data, coupled with data from other parts of the world suggests that intact indigenous forest in New Zealand will probably not be invaded. -
The Quiet Forest 203 References 207
Fiona M. F. McQueen Our minds possess by nature an insatiable desire to know the truth. Cicero How can you reveal the truth if those to whom you are speaking do not want to hear? David Walsh, Author. Seven Deadly Sins. My pursuit of Lance Armstrong I This book is sold subject to the condition that it will not, by way of trade or otherwise, be re-sold, hired out or otherwise circulated without the publisher’s prior written consent, in any form of binding or cover other than that in which it is published and without a similar condition, including this condition, being imposed on the subsequent purchaser. No part of this book may be reproduced by any process, stored in a retrieval system, or transmitted in any form without the prior permission of the author. Copyright 2017. Fiona McQueen ISBN: 9781872970 55 9 Published by Tross Publishing, P.O. Box 22 143, Khandallah, Wellington 6441, New Zealand. Printed by Your Books, 18 Cashew Street, Grenada North, Wellington, New Zealand Cover Design, layout and production: Clark Design [email protected] II ABOUT THE AUTHOR Fiona McQueen (MBChB, MD, FRACP) was born in Dunedin in 1958 and graduated from the University of Otago in Medicine in 1980. She has worked as a consultant rheumatologist within the New Zealand public health system for the last 26 years, mostly in the Auckland region, but more recently in Southland. She completed an MD in Immunology (University of Auckland) in 1996 and was made Professor of Rheumatology in 2009. She has had a distinguished international academic career and has been active in research and teaching. -
Coleoptera: Staphylinidae)
Clemson University TigerPrints All Dissertations Dissertations August 2020 Evolution of Secondary Sexual Characters in Pselaphinae (Coleoptera: Staphylinidae) Laura Maria Vasquez-Velez Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Vasquez-Velez, Laura Maria, "Evolution of Secondary Sexual Characters in Pselaphinae (Coleoptera: Staphylinidae)" (2020). All Dissertations. 2696. https://tigerprints.clemson.edu/all_dissertations/2696 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. EVOLUTION OF SECONDARY SEXUAL CHARACTERS IN PSELAPHINAE (COLEOPTERA: STAPHYLINIDAE) A D issertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Entomology by Laura María Vásquez Vélez August 2020 Accepted by: Dr. Michael S. Caterino, Committee Chair Dr. Peter Adler Dr. Juan Antonio Baeza Dr. Joseph Parker ABSTRACT Secondary sexual characters (SSC) are traits present only in one sex, commonly on males, and different from the reproductive organs. These characters have evolved mainly through the action of Sexual Selection, the differential mating success of organisms of the same species. Males use SSC to challenge other males for access to females, while females use these traits as signals to choose mates with overall good. SSC can manifest as horns, tusks, enlarged appendages, spines, coloration, and body size. Sexually dimorphic traits are present in all major groups of animals, including Insects. Sexual selection and secondary sexual traits have been proposed to be drivers for speciation on hypothetical bases, but empirical evidence has proven to be inconclusive. -
Of Hungary: Survey of Ant Species with an Annotated Synonymic Inventory
insects Article The Myrmecofauna (Hymenoptera: Formicidae) of Hungary: Survey of Ant Species with an Annotated Synonymic Inventory Sándor Cs˝osz 1,2, Ferenc Báthori 2,László Gallé 3,Gábor L˝orinczi 4, István Maák 4,5, András Tartally 6,* , Éva Kovács 7, Anna Ágnes Somogyi 6 and Bálint Markó 8,9 1 MTA-ELTE-MTM Ecology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; [email protected] 2 Evolutionary Ecology Research Group, Centre for Ecological Research, Institute of Ecology and Botany, 2163 Vácrátót, Hungary; [email protected] 3 Department of Ecology and Natural History Collection, University of Szeged, Szeged Boldogasszony sgt. 17., 6722 Szeged, Hungary; [email protected] 4 Department of Ecology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary; [email protected] (G.L.); [email protected] (I.M.) 5 Museum and Institute of Zoology, Polish Academy of Sciences, ul. Wilcza 64, 00-679 Warsaw, Poland 6 Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; [email protected] 7 Kiskunság National Park Directorate, Liszt F. u. 19, 6000 Kecskemét, Hungary; [email protected] 8 Hungarian Department of Biology and Ecology, Babe¸s-BolyaiUniversity, Clinicilor 5-7, 400006 Cluj-Napoca, Romania; [email protected] 9 Centre for Systems Biology, Biodiversity and Bioresources, Babes, -Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania * Correspondence: [email protected]; Tel.: +36-52-512-900 (ext. 62349) Simple Summary: Abundance is a hallmark of ants (Hymenoptera: Formicidae). They are exceed- ingly common in both natural and artificial environments and they constitute a conspicuous part Citation: Cs˝osz,S.; Báthori, F.; Gallé, of the terrestrial ecosystem; every 3 to 4 out of 10 kg of insects are given by ants. -
The Ecology and Moleculary Ecology of the New Zealand Lesser Short
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. The Ecology and Molecular Ecology of the New Zealand Lesser Short-tailed Bat Mystacina tuberculata A thesis presented in partial fulfIlment of the requirements for the degree of Doctor of Philosophy in Ecology at Massey University, Palmerston North, New Zealand Brian Donald Lloyd 2002 General abstract ii GENERAL ABSTRACT The distnbution, ecology, and molecular ecology of short-tailed bats My stacina tuberculata were investigated in the central North Island, New Zealand. Special emphasis was given to providing information for conservation management of the species. Seven large populations containing between 2000 and 10 000 bats were found to persist in the area. Populations require numerous large cavities in the main trunk of mature trees for colonial roosts and are therefore restricted to extensive stands of tall old-growth forest. There was no evidence of predation by introduced mammals at roosts where the bats are most wlnerable. In summer, large group size, aggressive behaviour, and frequent movement between colonial roosts reduce the probability of predation. During winter, roosting bats remain in torpor for long periods and are vulnerable to predators, but the entrances to winter roosts are usually too small for predators to enter. Although field trials demonstrated that the bats may be at risk of secondary poisoning during pest control operations, close monitoring of a bat population during a control operation revealed no mortality. -
The Sub-Lethal and Density-Dependent Effects of An
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ResearchArchive at Victoria University of Wellington The Sub-Lethal and Density-Dependent Effects of an Invasive Wasp on an Endemic Ant By Allan Burne A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Ecology and Biodiversity Victoria University of Wellington 2012 Abstract The detrimental effects of invasive species on recipient taxa are most frequently reported in terms of displacement or extinction. However, there may be other less obvious effects. For example, a reduction in resource availability mediated by a novel competitor may affect growth and development in recipient species. The cost of aggressive competitive interactions with invasives may promote niche shifts or altered spatial distribution to minimise competition, and intense predation by exotic species may result in a reduced effective population size with a concomitant reduction in genetic diversity. In this thesis I examined the sub-lethal effects of varying densities of the invasive competitor and predator Vespula vulgaris on the morphology, behaviour, population genetics and spatial distribution of the New Zealand endemic ant Prolasius advenus. The restriction of food resources can result in reduced worker size and altered scaling relationships of adult body parts in ants. Measurements of nine morphological characters from P. advenus worker ants collected from sites of varying wasp density revealed that workers were significantly smaller where there were more wasps. I also found evidence of allometric scaling relationships among body parts, which varied between areas of high and low wasp density.