Novel Analogs of M-Chlorophenylguanidine As 5-HT3 Receptor Ligands Katie Alix Virginia Commonwealth University

Total Page:16

File Type:pdf, Size:1020Kb

Novel Analogs of M-Chlorophenylguanidine As 5-HT3 Receptor Ligands Katie Alix Virginia Commonwealth University Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2009 Novel Analogs of m-Chlorophenylguanidine as 5-HT3 Receptor Ligands Katie Alix Virginia Commonwealth University Follow this and additional works at: http://scholarscompass.vcu.edu/etd Part of the Chemicals and Drugs Commons © The Author Downloaded from http://scholarscompass.vcu.edu/etd/1734 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. © Katie Elizabeth Alix 2008 All Rights Reserved NOVEL ANALOGS OF m-CHLOROPHENYLGUANIDINE AS 5-HT3 RECEPTOR LIGANDS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. by KATIE ELIZABETH ALIX Bachelor of Science in Biochemistry, Virginia Tech 2006 Bachelor of Arts in Chemistry, Virginia Tech 2006 Director:MAŁGORZATA DUKAT Associate Professor, Department of Medicinal Chemistry Virginia Commonwealth University Richmond, Virginia May 2009 Acknowledgement First, I would like to thank Dr. Dukat for her patience and guidance over the last three years. She has helped mold me into a better scientist with a deeper understanding and appreciation of medicinal chemistry as an entire discipline. I would like to thank Dr. Richard Glennon for his help with my thesis and numerous useful insights. I would also like to thank Dr. Richard Young, Jessica Worsham, and Genevieve Sirles for teaching me how to handle mice and the various animal assays. I would also like to thank Dr. Jin- Sung Kim, Dr. Eliseu De Oliveria, Dr. Nadezhda German, and Dr. Mikhail Bonderov for their guidance with synthetic problems and a special thanks to Dr. Mikhail Bonderov for his help using the HPLC system. I would like to thank Justin Elenewski and Dr. Phil Moiser for their help with molecular modeling. I would like to thank my committee members Dr. Richard Glennon, Dr. Richard Young, and Dr. Aron Lichtman. And a special thank you to Shawquia Young for the synthesis of analog 48 and Samantha Casterlow for the synthesis of analogs 43 and 44 used throughout these studies. These studies were supported by the Jeffress Memorial Trust RG-J-778. I would also like to thank my loving husband for his support and confidence in me throughout this endeavor. I would like to thank the rest of my family as well for their moments of inspiration and motivation and for always being there. ii iii Table of Contents List of Tables .................................................................................................................... vii List of Figures .................................................................................................................. viii List of Schemes ................................................................................................................. xii List of Abbreviations ....................................................................................................... xiii Abstract ..............................................................................................................................xv I. Introduction ......................................................................................................................1 II. Background .....................................................................................................................4 A. History of Serotonin ............................................................................................4 B. Classification of 5-HT Receptors ........................................................................5 1. G-Protein Coupled-Receptors ..................................................................6 2. Ligand-Gated Ion-Channel Receptors .....................................................7 C. 5-HT3 receptors ...................................................................................................9 1. Classification............................................................................................9 2. Structure and Distribution ......................................................................11 3. Pharmacology and Biological Functions ...............................................12 4. Agonists .................................................................................................17 5. Antagonists ............................................................................................24 6. Quantitative Structure-Activity Relationships .......................................26 7. Behavioral Assays for Antidepressants .................................................29 8. Locomotor Activity Assay .....................................................................31 III. Specific Aims and Rationale ........................................................................................33 iv IV. Results and Discussion ................................................................................................43 A. Halogen Series ..................................................................................................43 1. Synthesis of N-(3-Fluorophenyl)guanidine Nitrate (42) ........................43 2. Binding Studies ......................................................................................44 3. Hansch Analysis.....................................................................................46 4. Log P Analysis .......................................................................................52 5. Molecular Modeling...............................................................................56 6. Designed Ligand ....................................................................................67 B. Conformationally-Constrained Analogs ...........................................................68 1. Synthesis of 2-Amino-7-chloro-3,4-dihydroquinazoline (46) ...............68 2. Synthesis of 2-Amino-6-chloro-3,4-dihydroquinazoline (47) ...............69 3. Binding Studies ......................................................................................70 4. Log P Analysis .......................................................................................71 5. Behavioral Studies .................................................................................73 a. Tail Suspension Test ..................................................................73 b. Locomotor Activity Assay .........................................................79 6. Molecular Modeling...............................................................................84 7. Synthesis of 2-Amino-8-chloro-1,3-benzodiazepine (49) .....................88 V. Conclusions ...................................................................................................................94 VI. Experimental ..............................................................................................................100 A. Synthesis .........................................................................................................100 N-(3-Fluorophenyl)guanidine, Nitrate (42) .............................................100 2-Amino-7-chloro-3,4-dihydroquinazoline, Hydrochloride (46) ............101 2-Amino-6-chloro-3,4-dihydroquinazoline, Hydrochloride (47) ............102 N-(3-Chloro-4-hydroxyphenyl)guanidine, Hydrochloride (51) ...............103 v 2-Chloro-4-nitrophenol (53) ....................................................................103 3-Chloro-4-hydroxyaniline, Hydrochloride (54) .....................................104 2-Amino-7-chloro-quinazolin-4-(3H)-one (56) .......................................104 2-Amino-6-chloro-quinazolin-4-(3H)-one (58) .......................................105 2-Amino-4-chlorobenzylalcohol (60, R = H) ..........................................105 2-Amino-4-chlorobenzylbromide (61, R = H) ........................................106 2-(2-Amino-4-chlorophenyl)acetic Acid (65) ..........................................106 4-Chloro-2-nitrobenzaldedhyde (69) .......................................................107 4-Chloro-2-nitro-1-(2-nitrovinyl)benzene (70) ........................................108 (4-Chloro-2-nitrophenyl)(1H-imidazol-1-yl)methanone (72) .................108 4-Chloro-2-nitrobenzylbromide (75) .......................................................109 2,3-Bis(4-chloro-2-nitrophenyl)propanenitrile (77) ................................109 B. Log P Analysis ................................................................................................111 1. Standards ..............................................................................................111 2. Halogen Series .....................................................................................113 3. Quinazoline Series ...............................................................................113 C. Behavioral Studies ...........................................................................................114 1. Animals ................................................................................................114 2. Drugs ....................................................................................................115 3. Tail Suspension Test ............................................................................115 4. Locomotor Activity Assay ...................................................................117
Recommended publications
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • 5-HT3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: the Iceberg Still Lies Beneath the Surface
    1521-0081/71/3/383–412$35.00 https://doi.org/10.1124/pr.118.015487 PHARMACOLOGICAL REVIEWS Pharmacol Rev 71:383–412, July 2019 Copyright © 2019 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: JEFFREY M. WITKIN 5-HT3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface Gohar Fakhfouri,1 Reza Rahimian,1 Jonas Dyhrfjeld-Johnsen, Mohammad Reza Zirak, and Jean-Martin Beaulieu Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.) Abstract. ....................................................................................384 I. Introduction. ..............................................................................384 II. 5-HT3 Receptor Structure, Distribution, and Ligands.........................................384 A. 5-HT3 Receptor Agonists .................................................................385 B. 5-HT3 Receptor Antagonists. ............................................................385 Downloaded from 1. 5-HT3 Receptor Competitive Antagonists..............................................385 2. 5-HT3 Receptor
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Investigating the Pharmacology of Novel 5-HT3 Receptor Ligands; with the Potential to Treat Neuropsychiatric and Gastrointestinal Disorders
    Investigating the pharmacology of novel 5-HT3 receptor ligands; with the potential to treat neuropsychiatric and gastrointestinal disorders by Alexander Roberts A thesis submitted to the University of Birmingham for the Degree of Doctor of Philosophy Institute of Clinical Sciences College of Medical and Dental Sciences University of Birmingham February 2020 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract The 5-hydroxytryptamine (5-HT; serotonin) 5-HT3 receptor is an excitatory ligand- gated ion channel expressed in for example the brain and the gastrointestinal tract. Two major subtypes of the receptor have been studied in the most detail; the homomeric 5-HT3A receptor and the heteromeric 5-HT3AB receptor. 5-HT3 receptor antagonists are used clinically to treat chemotherapy induced and post-operative nausea and vomiting, and demonstrate symptomatic relief in diarrhoea-predominant irritable bowel syndrome (IBS-d); but unfortunately, these medications cause adverse effects such as constipation or rarely ischemic colitis in the latter condition. This study has characterised the pharmacology of two structurally distinct 5-HT3 receptor partial agonists (vortioxetine and CSTI-300); and identified the unique binding properties of the cryptic orthosteric modulator 5-chloroindole (Cl-indole) for the human (h) 5-HT3 receptor.
    [Show full text]
  • α2-Adrenoceptor and 5-Ht3 Serotonin Receptor
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2012 α2-ADRENOCEPTOR AND 5-HT3 SEROTONIN RECEPTOR LIGANDS AS POTENTIAL ANALGESIC ADJUVANTS Genevieve Alley Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Pharmacy and Pharmaceutical Sciences Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2867 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. © Genevieve Sirles Alley 2012 All Rights Reserved i α2-ADRENOCEPTOR AND 5-HT3 SEROTONIN RECEPTOR LIGANDS AS POTENTIAL ANALGESIC ADJUVANTS A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University. by Genevieve Sirles Alley Bachelor of Science in Biology, Virginia Commonwealth University 2005 Director: Małgorzata Dukat, Ph.D. Associate Professor, Department of Medicinal Chemistry Virginia Commonwealth University Richmond, Virginia August 2012 ii ACKNOWLEDGMENT First, I would like to thank Dr. Małgorzata Dukat for her continued assistance and advice throughout my studies. This guidance has helped me better understand and appreciate medicinal chemistry. Also, a special thanks is given to both Dr. Dukat and Dr. Richard A. Glennon for their constant quizzing during group meetings, which not only helped me recongnize what I did not already understand, but also, improved my ability to devise potential solutions for future research problems. Furthermore, I could not have successfully completed this dissertation work without the help of Dr.
    [Show full text]
  • Analyzing in Vitro Results for the 5-HT Ligands
    APPLICATION NOTE Analyzing In Vitro Results for the 5-HT Ligands REACHING A DEEPER UNDERSTANDING OF LIGAND–RECEPTOR INTERACTIONS Effective drug discovery depends on a deep understanding of the function and therapeutic potential of a compound as well as a clear picture of the chemical structure and druggability of the compound. Using the example of serotonin receptors, this application note looks at how in vitro data from Reaxys® Medicinal Chemistry facilitate such studies on the interface of biology and chemistry. A systematic look at 5-HT receptor family ligands could reveal even broader possibilities for their therapeutic application. The study of serotonin (5-HT) receptor pharmacology has been and remains an area of major interest for pharmaceutical research. Indeed, in the last 50 years, drugs directly or indirectly targeting these receptors have emerged as important therapeutic agents, providing treatments for a broad range of clinical conditions. Many different serotonin receptor subtypes have been described in the literature 1,( 2). The 5-HT1, 5-HT2, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 receptor families all belong to the G-protein- coupled receptor (GPCR) class A superfamily (3). The 5-HT1 receptor family is one of the most complex in terms of molecular diversity and pharmacological interactions. Selective 5-HT1B/1D receptor agonists, such as sumatriptan and rizatriptan, have established a new standard in the acute treatment of migraine headaches. Unlike other serotonin receptors, the 5-HT3 receptor is not a GPCR but a ligand-gated ion channel. Its ligands have been extensively studied. Selective antagonists at 5-HT3 receptors have transformed cancer therapy by preventing chemotherapy- and radiation-induced emesis.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0147509 A1 Landau (43) Pub
    US 2004O147509A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0147509 A1 Landau (43) Pub. Date: Jul. 29, 2004 (54) METHOD OF TREATING FUNCTIONAL (52) U.S. Cl. .................. 514/218; 514/252.16; 514/260.1 BOWEL DISORDERS (75) Inventor: Steven B. Landau, Wellesley, MA (US) Correspondence Address: (57)57 ABSTRACT HAMILTON, BROOK, SMITH & REYNOLDS, P.C. 530 VIRGINA ROAD The invention relates to a method of treating functional P.O. BOX 91.33 bowel disorders in a subject in need of treatment. The CONCORD, MA 01742-9133 (US) method comprises administering to a Subject in need of (73) Assignee: Dynogen Pharmaceuticals, Inc., Bos- treatment a therapeutically effective amount of a compound ton, MA that has 5-HT receptor antagonist activity and NorAdrena line Reuptake Inhibitor (NARI) activity. The invention fur (21) Appl. No.: 10/757,364 ther relates to a method of treating a functional bowel (22) Filed: Jan. 13, 2004 disorder in a subject in need thereof, comprising coadmin istering to Said Subject a first amount of a 5-HT antagonist Related U.S. Application Data and a second amount of a NARI, wherein the first and Second amounts together comprise a therapeutically effec (60) Provisional application No. 60/492,480, filed on Aug. tive amount or are each present in a therapeutically effective 4, 2003. Provisional application No. 60/440,077, filed amount. In addition, the method of the invention comprises on Jan. 13, 2003. administering a NARI alone. The functional bowel disorders Publication Classification which can be treated according to the method of the inven tion include IBS, functional abdominal bloating, functional (51) Int.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0184806 A1 Barlow Et Al
    US 20100184806A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0184806 A1 Barlow et al. (43) Pub. Date: Jul. 22, 2010 (54) MODULATION OF NEUROGENESIS BY PPAR (60) Provisional application No. 60/826,206, filed on Sep. AGENTS 19, 2006. (75) Inventors: Carrolee Barlow, Del Mar, CA (US); Todd Carter, San Diego, CA Publication Classification (US); Andrew Morse, San Diego, (51) Int. Cl. CA (US); Kai Treuner, San Diego, A6II 3/4433 (2006.01) CA (US); Kym Lorrain, San A6II 3/4439 (2006.01) Diego, CA (US) A6IP 25/00 (2006.01) A6IP 25/28 (2006.01) Correspondence Address: A6IP 25/18 (2006.01) SUGHRUE MION, PLLC A6IP 25/22 (2006.01) 2100 PENNSYLVANIA AVENUE, N.W., SUITE 8OO (52) U.S. Cl. ......................................... 514/337; 514/342 WASHINGTON, DC 20037 (US) (57) ABSTRACT (73) Assignee: BrainCells, Inc., San Diego, CA (US) The instant disclosure describes methods for treating diseases and conditions of the central and peripheral nervous system (21) Appl. No.: 12/690,915 including by stimulating or increasing neurogenesis, neuro proliferation, and/or neurodifferentiation. The disclosure (22) Filed: Jan. 20, 2010 includes compositions and methods based on use of a peroxi some proliferator-activated receptor (PPAR) agent, option Related U.S. Application Data ally in combination with one or more neurogenic agents, to (63) Continuation-in-part of application No. 1 1/857,221, stimulate or increase a neurogenic response and/or to treat a filed on Sep. 18, 2007. nervous system disease or disorder. Patent Application Publication Jul. 22, 2010 Sheet 1 of 9 US 2010/O184806 A1 Figure 1: Human Neurogenesis Assay Ciprofibrate Neuronal Differentiation (TUJ1) 100 8090 Ciprofibrates 10-8.5 10-8.0 10-7.5 10-7.0 10-6.5 10-6.0 10-5.5 10-5.0 10-4.5 Conc(M) Patent Application Publication Jul.
    [Show full text]
  • Serotonin Receptors and Drugs Affecting Serotonergic Neurotransmission R ICHARD A
    Chapter 11 Serotonin Receptors and Drugs Affecting Serotonergic Neurotransmission R ICHARD A. GLENNON AND MAŁGORZATA DUKAT Drugs Covered in This Chapter* Antiemetic drugs (5-HT3 receptor • Rizatriptan • Imipramine antagonists) • Sumatriptan • Olanzapine • Alosetron • Zolmitriptan • Propranolol • Dolasetron Drug for the treatment of • Quetiapine • Granisetron irritable bowel syndrome (5-HT4 • Risperidone • Ondansetron agonists) • Tranylcypromine • Palonosetron • Tegaserod • Trazodone • Tropisetron Drugs for the treatment of • Ziprasidone Drugs for the treatment of neuropsychiatric disorders • Zotepine migraine (5-HT1D/1F receptor agonists) • Buspirone Hallucinogenic agents • Almotriptan • Citalopram • Lysergic acid diethylamide • Eletriptan • Clozapine • 2,5-dimethyl-4-bromoamphetamine • Frovatriptan • Desipramine • 2,5-dimethoxy-4-iodoamphetamine • Naratriptan • Fluoxetine Abbreviations cAMP, cyclic adenosine IBS-C, irritable bowel syndrome with nM, nanomoles/L monophosphate constipation MT, melatonin CNS, central nervous system IBS-D, irritable bowel syndrome with MTR, melatonin receptor 5-CT, 5-carboxamidotryptamine diarrhea NET, norepinephrine reuptake transporter DOB, 2,5-dimethyl-4-bromoamphetamine LCAP, long-chain arylpiperazine 8-OH DPAT, 8-hydroxy-2-(di-n- DOI, 2,5-dimethoxy-4-iodoamphetamine L-DOPA, L-dihydroxyphenylalanine propylamino)tetralin EMDT, 2-ethyl-5-methoxy-N,N- LSD, lysergic acid diethylamide PMDT, 2-phenyl-5-methoxy-N,N- dimethyltryptamine MAO, monomaine oxidase dimethyltryptamine GABA, g-aminobutyric acid MAOI,
    [Show full text]
  • Harmonized Tariff Schedule of the United States (2004) -- Supplement 1 Annotated for Statistical Reporting Purposes
    Harmonized Tariff Schedule of the United States (2004) -- Supplement 1 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2004) -- Supplement 1 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABACAVIR 136470-78-5 ACEXAMIC ACID 57-08-9 ABAFUNGIN 129639-79-8 ACICLOVIR 59277-89-3 ABAMECTIN 65195-55-3 ACIFRAN 72420-38-3 ABANOQUIL 90402-40-7 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABCIXIMAB 143653-53-6 ACITEMATE 101197-99-3 ABECARNIL 111841-85-1 ACITRETIN 55079-83-9 ABIRATERONE 154229-19-3 ACIVICIN 42228-92-2 ABITESARTAN 137882-98-5 ACLANTATE 39633-62-0 ABLUKAST 96566-25-5 ACLARUBICIN 57576-44-0 ABUNIDAZOLE 91017-58-2 ACLATONIUM NAPADISILATE 55077-30-0 ACADESINE 2627-69-2 ACODAZOLE 79152-85-5 ACAMPROSATE 77337-76-9 ACONIAZIDE 13410-86-1 ACAPRAZINE 55485-20-6 ACOXATRINE 748-44-7 ACARBOSE 56180-94-0 ACREOZAST 123548-56-1 ACEBROCHOL 514-50-1 ACRIDOREX 47487-22-9 ACEBURIC ACID 26976-72-7
    [Show full text]