Collective Modes of the Massless Dirac Plasma

Total Page:16

File Type:pdf, Size:1020Kb

Collective Modes of the Massless Dirac Plasma Collective modes of the massless Dirac plasma S. Das Sarma and E. H. Hwang Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742-4111 and Kavli Institute for Theoretical Physics, Santa Barbara, California 93106 (Dated: April 26, 2009) We develop a theory for the long-wavelength plasma oscillation of a collection of charged massless Dirac particles in a solid, as occurring for example in doped graphene layers, interacting via the long-range Coulomb interaction. We find that the long-wavelength plasmon frequency in such a doped massless Dirac plasma is explicitly non-classical in all dimensions with the plasma frequency being proportional to 1/√!. We also show that the long wavelength plasma frequency of the D- dimensional superlattice made from such a plasma does not agree with the corresponding D +1 dimensional bulk plasmon frequency. We compare and contrast such Dirac plasmons with the well- studied regular palsmons in metals and doped semiconductors which manifest the usual classical long wavelength plasma oscillation. PACS numbers: 52.27.Ny; 81.05.Uw; 71.45.Gm A collection of charged particles (i.e. a plasma), elec- ‘!’ appearing manifestly in the long wavelength plasma trons or holes or ions, is characterized by a collective frequency in D = 1, 2, 3 dimension (and in between). mode associated with the self-sustaining in-phase den- By contrast the long wavelength plasma frequency of or- sity oscillations of all the particles due to the restoring dinary electron liquids is classical, and quantum effects force arising from the long-range 1/r Coulomb poten- show up only as nonlocal corrections in higher order wave tial. The classical plasma frequency in three-dimensional vector dispersion of the plasmon mode. This is quite un- 2 1/2 (3D) plasmas [1] is well-known to be ω3 = (4πn3e /m) expected in view of the popular belief that the long wave- where e and m are respectively the charge and the mass length quantum plasmon dispersion is necessarily a clas- of each particle, and n3 is the 3D particle density. (In sical plasma frequency [2–4]. The popular belief seems this paper, we use ωD and nD as the D-dimensional to be true for the usual parabolic energy dispersion, but long-wavelength plasma frequency and particle density not for the linear Dirac spectrum. respectively.) A solid state degenerate plasma [2–4] ex- We start from the fundamental many-body formula ists in metals and doped semiconductors where free car- defining the collective plasmon mode in an electron sys- riers can move around quantum mechanically in the ionic tem: lattice background. Such a degenerate quantum plasma #(q,ω) = 1 v(q)Π(q,ω)=0, (1) has the quantized version of exactly the same collective − mode, the so-called plasmon [2–4], which dominates the where #(q,ω) is the wave vector (q) and frequency (ω) spectral weight of the long-wavelength elementary exci- dependent dynamical dielectric function of the system, tation spectrum of an electron liquid. (We will use the with Π(q,ω) the irreducible polarizability and v(q) the world ‘electron’ generally throughout this paper to in- Coulomb interaction between the electrons in the wave dicate either electron or hole.) The collective plasmon vector space. The zero of the dielectric function in Eq. (1) modes of solid state quantum plasmas have been ex- signifies a self-sustaining collective mode, with the solu- tensively studied experimentally and theoretically over tion of Eq. (1) giving the plasmon frequency as a function the last sixty years in both metals and doped semicon- of wave vector. We first recapitulate the known results ductors. In the present work, we study theoretically for the parabolic dispersion electron system before dis- the collective plasmon mode in a solid state plasma of cussing the novel collective dispersion for massless Dirac massless Dirac fermions, as occurring for example, in 2D plasma. graphene layers. We define the Dirac plasma as a system The Coulomb interaction in the wave vector space is of charged carriers whose energy-momentum dispersion given by the appropriate D-dimensional Fourier trans- is linear, obeying the Dirac equation. form of the Coulomb interaction v(r)=e2/κr Our main qualitative result is that the massless Dirac 4πe2 v(q)= D =3, (2a) plasma is manifestly quantum, and does not have a classi- κq2 cal limit in the form of an !-independent long-wavelength 2πe2 = D =2, (2b) plasma frequency, in a striking contrast to the corre- κq sponding parabolic dispersion electron liquids familiar 2e2 from the extensive study of plasmons in metals and = K0(qa) D =1, (2c) semiconductors [3–5]. The long-wavelength plasmon fre- κ quency of a Dirac plasma is necessarily quantum with where we have introduced a background dielectric con- 2 stant (κ) which, in general, differs from unity in semi- the corresponding massless Dirac plasma, that the long (p) conductor based electron systems, and K0 is the zeroth- wavelength plasmon frequency ω for parabolic systems order modified Bessel function of the second kind. We is completely classical since ‘!’ does not appear in the note that K0(x) ln(x) for x 0, and the length ‘a’ leading term of Eq. (5) in any dimension. (Note that the in the 1D Coulomb∼| interaction| in→ Eq. (2c) characterizes right hand side of Eq. (5) has the explicit dimensionality the typical lateral confinement size of the 1D electron of time inverse, i.e. a frequency, in each dimension since D system (ES) which is obviously necessary in defining a nD has the dimension of (length)− in D-dimension.) 1DES. The second order dispersion correction term in Eq. (5), The irreducible polarizability function Π(q,ω) of an i.e. the O(q2,q3/2,q3) term in D =3, 2, 1 respectively, interacting ES is, in general, unknown since self-energy is fully quantum mechanical (i.e. ‘!’ shows up explicitly and vertex corrections cannot be calculated exactly. A in the non-local wave vector corrections), and is affected great simplification, however, occurs in the long wave- by interaction corrections (both self energy and vertex length limit (q 0) when the dielectric function, and corrections to the irreducible polarizability). consequently, the→ plasmon frequency is determined en- Now we consider plasmons in the D-dimensional mass- tirely by the noninteracting irreducible polarizability, the less Dirac plasma, where the single-particle energy dis- electron-hole ‘bubble’ diagram. The noninteracting irre- persion is linear, i.e. ξk = !vF k vp classically, in ducible polarizability is given by the expression: D =1, 2, 3. The long wavelength| |→ quantum plasmon dispersion is still defined by the set of formula given D d k nF (ξk) nF (ξk+q) by Eqs. (1)–(3) with the explicit form of the nonin- Π(q,ω)=g D − F (k, q), (3) (2π) !ω + ξk ξk+q teracting irreducible polarizability being calculated with ! − ξ = v k in Eq. (3). where ξ is the single particle energy dispersion i.e. k ! F k The long| | wavelength (q 0) form for the noninteract- ξ = 2k2/2m for parabolic systems (and ξ = v k k ! k ! F ing irreducible polarizability→ (Eq. (3)) can be calculated for the massless Dirac plasma), n is the Fermi distri- F for linear energy dispersion relation (i.e. ξ = v k) in bution function, and F (k, q) is the overlap form factor k ! F all dimensions, giving due to chirality. For non-chiral systems F (q, k) = 1. The D 1 D/2 2 factor ‘g’ in Eq. (3) is the degeneracy factor: g = gsgv gv k − 2π q Π(q,ω)= F F + O(q4/ω4), (6) where gs (=2) is the spin degeneracy and gv is the valley D(2π)D Γ( D ) ω2 or pseudospin degeneracy. 2 2 2 Putting ξk = ! k /2m, we can easily calculate Eq. (3) where kF is the Fermi momentum of the system and Γ(x) upto the leading order in wave vector (i.e. the long wave- is the Gamma function. (We note that the chirality factor length limit) to obtain F (k, q) in Eq. (3) does not influence the long wavelength limit.) n q2 Π(q,ω) D + O(q4/ω4). (4) Combining Eqs. (1), (2), and (6), we get the following ≈ m ω2 (l) for the long wavelength plasmon frequency, ωD , in D = Combining Eqs. (1)–(4) we immediately obtain the 1, 2, 3 Dirac plasma: well-known long-wavelength plasma frequency in a D- g dimensional ES: ω(l) = √r v q ln(qa) + O(q3), (7a) 1 s π F | | " 2 2e n1 (l) 1/#4 1/2 3/2 (p) 3 ω = √rs(gπn2) vF q + O(q ), (7b) ω1 = q ln(qa) + O(q ), (5a) 2 κm | | 1 " 6 2# (l) 32πg 1/3 2 (p) 2πn2e 1/2 3/2 ω3 = √rs n3 vF + O(q ), (7c) ω2 = q + O(q ), (5b) 3 " κm $ % 2 where we have introduced the dimensionless fine struc- (p) 4πn3e ω = + O(q2), (5c) 2 3 κm ture constant rs( e /(κ!vF )) for notational simplicity. " Comparing Eqs.≡ (5) and (7) we see that ω(p) and ω(l) (p) have one important similarity and several striking differ- where ωD denotes the long-wavelength (q 0) plas- mon mode in the D-dimensional parabolic dispersion→ ES ences. The similarity is that the plasmon dispersion (i.e. (with the carrier density nD per unit D-dimensional vol- the power law dependence of the plasma frequency on ume) where the one particle energy is given by ξ = wave vector) is the same in the parabolic system and the !2k2/2m p2/2m = mv2/2 classically (where p = !k massless Dirac plasma for all D.
Recommended publications
  • Plasma Oscillation in Semiconductor Superlattice Structure
    Memoirs of the Faculty of Engineering,Okayama University,Vol.23, No, I, November 1988 Plasma Oscillation in Semiconductor Superlattice Structure Hiroo Totsuji* and Makoto Takei* (Received September 30, 1988) Abstract The statistical properties of two-dimensional systems of charges in semiconductor superlattices are analyzed and the dispersion relation of the plasma oscillation is ealculated. The possibility to excite these oscillations by applying the electric field parallel to the structure is discussed. ]. Introduction The layered structure of semiconductors with thickness of the order of lO-6 cm or less is called semiconductor superlattice. The superlattice was first proposed by Esaki and Tsu [11 as a structure which has a Brillouin zone of reduced size and therefore allows to apply the negative mass part of the band structure to electronic devices through conduction of carriers perpendicular to the structure. The superlattice has been realized by subsequent developments of technologies such as molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) in fabricating controlled fine structures. At the same time, many interesting and useful physical phenomena related to the parallel conduction have also been revealed in addition to the parallel conduction. From the view point of application to devices, the enhancement of the carrier mobility due to separation of channels from Ionized impurities may be one of the most important progresses. Some high speed devices are based on this technique. The superlattlce structure
    [Show full text]
  • Carbon Fiber Skeleton/Silver Nanowires Composites with Tunable Negative
    EPJ Appl. Metamat. 8, 1 (2021) © Y. An et al., published by EDP Sciences, 2021 https://doi.org/10.1051/epjam/2020019 Available online at: epjam.edp-open.org Metamaterial Research Updates from China RESEARCH ARTICLE Carbon fiber skeleton/silver nanowires composites with tunable negative permittivity behavior Yan An1, Jinyuan Qin1, Kai Sun1,*, Jiahong Tian1, Zhongyang Wang2,*, Yaman Zhao1, Xiaofeng Li1, and Runhua Fan1 1 College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China 2 State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China Received: 13 November 2020 / Accepted: 25 December 2020 Abstract. With the development of periodic metamaterials, more attention has been paid to negative permittivity behavior due to great potential applications. In this paper, silver nanowires (AgNWs) were introduced to the porous carbon fibers (CFS) by an impregnation process to prepare CFS/AgNWs composites with different content of AgNWs and the dielectric property was investigated. With the formation of conductive network, the Drude-like negative permittivity was observed in CFS/AgNWs composites. With the increase of AgNWs, the connectivity of conductive network became enhanced, the conductivity gradually increases, and the absolute value of the negative dielectric constant also increases to 8.9 Â 104, which was ascribed to the enhancement of electron density of the composite material. Further investigation revealed that the inductive characteristic was responsible for the negative permittivity. Keywords: Negative permittivity / metacomposites / plasma oscillation / inductive characteristic 1 Introduction capacitors [10,11]. The electromagnetic metamaterials have a great value in the fields of wireless communication In the past decades, electromagnetic metamaterials with [12], electromagnetic absorption [13] and shielding [14], etc.
    [Show full text]
  • Free Electron Lasers and High-Energy Electron Cooling*
    FREE ELECTRON LASERS AND HIGH-ENERGY ELECTRON COOLING* Vladimir N. Litvinenko, BNL, Upton, Long Island, NY, USA# Yaroslav S. Derbenev, TJNAF, Newport News, VA, USA) Abstract The main figure of merit of any collider is its average Cooling intense high-energy hadron beams remains a luminosity, i.e., its average productivity for an appropriate major challenge in modern accelerator physics. branch of physics. Cooling hadron beams at top energy Synchrotron radiation of such beams is too feeble to may further this productivity. provide significant cooling: even in the Large Hadron For a round beam, typical for hadron colliders, the Collider (LHC) with 7 TeV protons, the longitudinal luminosity is given by a simple expression: ' * damping time is about thirteen hours. Decrements of N1N2 & s traditional electron cooling decrease rapidly as the high L = fc * % h) * , (1) 4"# $ ( # + power of beam energy, and an effective electron cooling of protons or antiprotons at energies above 100 GeV where N1, N2 are the number of particles per bunch, fc is seems unlikely. Traditional stochastic cooling still cannot their collision frequency, !* is the transverse !-function catch up with the challenge of cooling high-intensity at the collision point, " is the transverse emittance of the bunched proton beams - to be effective, its bandwidth b!ea m, #s is the bunch length, and h ! 1 is a coefficient must be increased by about two orders-of-magnitude. accounting for the so-called hourglass effect [1]: Two techniques offering the potential to cool high- " 1/ x 2 h(x) = e erfc(1/ x). energy hadron beams are optical stochastic cooling (OSC) x and coherent electron cooling (CEC) – the latter is the The hourglass effect is caused by variations in the beam’s 2 focus of this paper.
    [Show full text]
  • The Effect Pressure on Wavelengths of Plasma Oscillations in Argon And
    AN ABSTRACT OF TI-lE TRESIS OF - ¡Idgar for Gold.an the ri,, s. in (Name) (Degree) (Najor) Date Thesis presented ia. i9i__ Title flTO PSDEo LPLASMA OSeILLATIos..iN - Abstract Approved (-(Najor Professor) Experiments on argon and. nitrogen are described. which show that the wave length of electromaetjc radiation emitted from a gas plasma in a magnetic field is a function of the pressure of the gas. This result is Consistent with the theory of plasma oscillation developed by Tonics and Langniir if the assumption is made that plasma electron density is a function of gas pressure. A lower limit of wave length plasma of oscillation is indicated by the experiments in qualitative agreement with the Debye length equation, No difference in the wave length-tressn, relationship between the two gases was observed. The experimental tube, which consisted of a gas filled cylindrical anode with an axial tungsten filament) was motmted. in a magnetic field parallel to the axis of the anode. Gas pressures between i and 50 microns and. magnetic fields between 500 and 1,000 gauss were used. The anode voltage was aplied. in short pulses in order to mini- mize heating of the cathode by ion bombardment and to make possible the use of alternating voltage amplifiers in the receiver. The receiver of electromagnetic radiation consisted. of a crystal- detector dipole, constructed from a 1N26 crystal cartridge, followed by a video amp1ifier The amplifier had a maximum gain of 1.6 X iO7, and. a bandwidth of 2 megacycles Wave lengths were measured by means of an interferometer.
    [Show full text]
  • Introduction to Metamaterials
    FEATURE ARTICLE INTRODUCTION TO METAMATERIALS BY MAREK S. WARTAK, KOSMAS L. TSAKMAKIDIS AND ORTWIN HESS etamaterials (MMs) are artificial structures LEFT-HANDED MATERIALS designed to have properties not available in To describe the basic properties of metamaterials, let us nature [1]. They resemble natural crystals as recall Maxwell’s equations M they are build from periodically arranged (e.g., square) unit cells, each with a side length of a. The ∂H ∂E ∇×E =−μμand ∇×H = εε (1) unit cells are not made of physical atoms or molecules but, 00rr∂tt∂ instead, contain small metallic resonators which interact μ ε with an external electromagnetic wave that has a wave- where the r and r are relative permeability and permit- λ ⎡ ∂ ∂ ∂ ⎤ length . The manner in which the incident light wave tivity, respectively, and L =⎢ ,,⎥ . From the above ⎣⎢∂xy∂ ∂z ⎦⎥ interacts with these metallic “meta-atoms” of a metamate- equations, one obtains the wave equation rial determines the medium’s electromagnetic proper- ties – which may, hence, be made to enter highly unusual ∂2E ∇=−2E εμεμ (2) regimes, such as one where the electric permittivity and 00rr∂t 2 the magnetic permeability become simultaneously (in the ε μ same frequency region) negative. If losses are ignored and r and r are considered as real numbers, then one can observe that the wave equation is ε The response of a metamaterial to an incident electromag- unchanged when we simultaneously change signs of r and μ netic wave can be classified by ascribing to it an effective r . (averaged over the volume of a unit cell) permittivity ε ε ε μ μ μ To understand why such materials are also called left- eff = 0 r and effective permeability eff = 0 r .
    [Show full text]
  • Plasma Waves
    Plasma Waves S.M.Lea January 2007 1 General considerations To consider the different possible normal modes of a plasma, we will usually begin by assuming that there is an equilibrium in which the plasma parameters such as density and magnetic field are uniform and constant in time. We will then look at small perturbations away from this equilibrium, and investigate the time and space dependence of those perturbations. The usual notation is to label the equilibrium quantities with a subscript 0, e.g. n0, and the pertrubed quantities with a subscript 1, eg n1. Then the assumption of small perturbations is n /n 1. When the perturbations are small, we can generally ignore j 1 0j ¿ squares and higher powers of these quantities, thus obtaining a set of linear equations for the unknowns. These linear equations may be Fourier transformed in both space and time, thus reducing the differential equations to a set of algebraic equations. Equivalently, we may assume that each perturbed quantity has the mathematical form n = n exp i~k ~x iωt (1) 1 ¢ ¡ where the real part is implicitly assumed. Th³is form descri´bes a wave. The amplitude n is in ~ general complex, allowing for a non•zero phase constant φ0. The vector k, called the wave vector, gives both the direction of propagation of the wave and the wavelength: k = 2π/λ; ω is the angular frequency. There is a relation between ω and ~k that is determined by the physical properties of the system. The function ω ~k is called the dispersion relation for the wave.
    [Show full text]
  • What Is Plasma? Its Characteristics Plasma Oscillations Plasmon And
    Topics covered here are: What is Plasma? Its Characteristics Plasma Oscillations Plasmon and plasmon frequency Sources used here are: http://farside.ph.utexas.edu/teaching/plasma/Plasmahtml/node1.html https://www.britannica.com/science/plasma-state-of-matter/Plasma-oscillations- and-parameters What is Plasma The electromagnetic force is generally observed to create structure: e.g., stable atoms and molecules, crystalline solids. Structured systems have binding energies larger than the ambient thermal energy. Placed in a sufficiently hot environment, they decompose: e.g., crystals melt, molecules disassociate. At temperatures near or exceeding atomic ionization energies, atoms similarly decompose into negatively charged electrons and positively charged ions. These charged particles are by no means free: in fact, they are strongly affected by each others' electromagnetic fields. Nevertheless, because the charges are no longer bound, their assemblage becomes capable of collective motions of great vigor and complexity. Such an assemblage is termed a plasma. Of course, bound systems can display extreme complexity of structure: e.g., a protein molecule. Complexity in a plasma is somewhat different, being expressed temporally as much as spatially. It is predominately characterized by the excitation of an enormous variety of collective dynamical modes. Its occurrence and characteristics Since thermal decomposition breaks interatomic bonds before ionizing, most terrestrial plasmas begin as gases. In fact, a plasma is sometimes defined as a gas that is sufficiently ionized to exhibit plasma-like behavior. Note that plasma-like behavior ensues after a remarkably small fraction of the gas has undergone ionization. Thus, fractionally ionized gases exhibit most of the exotic phenomena characteristic of fully ionized gases.
    [Show full text]
  • Plasma Oscillations in Heavy-Fermion Materials A
    Plasma oscillations in heavy-fermion materials A. J. Millis, M. Lavagna, P.A. Lee To cite this version: A. J. Millis, M. Lavagna, P.A. Lee. Plasma oscillations in heavy-fermion materials. Physical Review B: Condensed Matter (1978-1997), American Physical Society, 1987, 36 (1), pp.864-867. 10.1103/Phys- RevB.36.864. hal-01896336 HAL Id: hal-01896336 https://hal.archives-ouvertes.fr/hal-01896336 Submitted on 16 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PHYSICAL REVIEW B VOLUME 36, NUMBER 1 1 JULY 1987 Plasma oscillations in heavy-fermion materials A. J. Millis AT& T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974 M. Lavagna Laboratoire Louis Neel, Centre National de la Recherche Scientifique, Boite Postale No. 166x, 38042 Grenoble Cedex France P. A. Lee Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 2 February 1987) We calculate the dielectric function of the lattice Anderson model via an auxiliary-boson large-N method suitably generalized to include the eA'ects of the long-range part of the Coulomb interaction. We show that the model exhibits a low-lying plasma oscillation at a frequency m* on the order of the Kondo temperature of the model, in addition to the usual high-frequency plasma oscillation.
    [Show full text]
  • Tunable Acoustic Double Negativity Metamaterial SUBJECT AREAS: Z
    Tunable acoustic double negativity metamaterial SUBJECT AREAS: Z. Liang1, M. Willatzen2,J.Li1 & J. Christensen3 CONDENSED-MATTER PHYSICS FLUIDS 1Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, 2Mads Clausen Institute, University of Southern Denmark, Alsion 2, DK-6400 Sønderborg, Denmark, 3IQFR - CSIC Serrano 119, 28006 MATERIALS SCIENCE Madrid, Spain. PHYSICS Man-made composite materials called ‘‘metamaterials’’ allow for the creation of unusual wave propagation Received behavior. Acoustic and elastic metamaterials in particular, can pave the way for the full control of sound in 16 August 2012 realizing cloaks of invisibility, perfect lenses and much more. In this work we design acousto-elastic surface modes that are similar to surface plasmons in metals and on highly conducting surfaces perforated by holes. Accepted We combine a structure hosting these modes together with a gap material supporting negative modulus and 11 October 2012 collectively producing negative dispersion. By analytical techniques and full-wave simulations we attribute the observed behavior to the mass density and bulk modulus being simultaneously negative. Published 14 November 2012 lassical waves such as sound and light have recently been put to the test in the challenges for cloaking objects1–8 and realizing negative refraction9–18. Those concepts are just a few of recent fascinating phe- Correspondence and nomena which are consequences of artificial electromagnetic (EM) or acoustic metamaterial designs. C 19 20 Perfect imaging or enhanced transmission of waves in subwavelength apertures are other disciplines within requests for materials the scope of metamaterials which have received considerable attention both from a theoretical and experimental should be addressed to point of view21–24.
    [Show full text]
  • Tunable Reflectionless Absorption of Electromagnetic Waves in a Plasma- Metamaterial Composite Structure
    Plasma Sources Science and Technology ACCEPTED MANUSCRIPT Tunable reflectionless absorption of electromagnetic waves in a plasma- metamaterial composite structure To cite this article before publication: Nolan Uchizono et al 2020 Plasma Sources Sci. Technol. in press https://doi.org/10.1088/1361- 6595/aba489 Manuscript version: Accepted Manuscript Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors” This Accepted Manuscript is © 2020 IOP Publishing Ltd. During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere. As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period. After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0 Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version.
    [Show full text]
  • Arxiv:Cond-Mat/0408683V1 [Cond-Mat.Mtrl-Sci] 31 Aug 2004 Onaisi Ocueteapaec Fanw”Lowered” New a of ¯ at Appearence Loss the Cause to Is Boundaries Mass
    Surface plasmons in metallic structures J. M. Pitarke,1,2, V. M. Silkin,2 E. V. Chulkov,2,3, and P. M. Echenique2,3 1Materia Kondentsatuaren Fisika Saila, Zientzi Fakultatea, Euskal Herriko Unibertsitatea, 644 Posta kutxatila, E-48080 Bilbo, Basque Country, Spain 2Donostia International Physics Center (DIPC) and Centro Mixto CSIC-UPV/EHU, Manuel de Lardizabal Pasealekua, E-20018 Donostia, Basque Country, Spain 3Materialen Fisika Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea, 1072 Posta kutxatila, E-20080 Donostia, Basque Country, Spain (Dated: September 5, 2018) Since the concept of a surface collective excitation was first introduced by Ritchie, surface plas- mons have played a significant role in a variety of areas of fundamental and applied research, from surface dynamics to surface-plasmon microscopy, surface-plasmon resonance technology, and a wide range of photonic applications. Here we review the basic concepts underlying the existence of surface plasmons in metallic structures, and introduce a new low-energy surface collective excitation that has been recently predicted to exist. PACS numbers: 71.45.Gm, 73.20.At, 78.47.+p, 78.68.+m I. INTRODUCTION the energy loss of charged particles moving outside a metal surface was shown to be due to the excitation 13,14 The long-range nature of the Coulomb interaction be- of surface plasmons, and the centroid of the elec- tween valence electrons in metals is known to yield collec- tron density induced by external potentials acting on a metal surface was demonstrated to be dictated by the tive behaviour, manifesting itself in the form of plasma 15 oscillations. Pines and Bohm1 were the first to suggest wave-vector dependence of surface plasmons.
    [Show full text]
  • Study of Metamaterials and Analysis of Split Ring Resonators to Design Multiband and UWB Antennas
    Grenze International Journal of Engineering and Technology, July 2016 Study of Metamaterials and Analysis of Split Ring Resonators to Design Multiband and UWB Antennas K. V. Ajetrao1 and A. P. Dhande2 1D Y Patil Institute of Engineering and Technology/Electronics and Telecommunication Department, Pimpri ,Pune, India Email: [email protected] 2Pune Institute of Computer Technology/Electronics and Telecommunication Department, Pune, India Email: [email protected] Abstract—Metamaterials are artificial structures which provide engineerable permeability and permeability. This paper gives classification of metamaterial based on available literature. In this paper Split Ring Resonator is used to explain the concept of metamaterials. Further the work is extended to design printed monopole antenna and effect of SRR to generate multiband antenna in the frequency band of 1 GHz to 10GHz. In next section of paper multiband antenna in converted to UWB antenna by modifying the ground structure of multiband antenna using SRR. Now day’s multiband antenna with compact size is growing field of research and metamaterials promise small size, high efficient multiband and UWB antennas. Index Terms— Electromagnetic Metamaterials, Monopole antenna, Multiband antenna, Split Ring Resonator. I. INTRODUCTION Electromagnetic metamaterials (MTMs) are broadly defined as artificial effectively homogeneous electromagnetic structures with unusual properties not readily available in nature.[1][3]. The concept of artificial materials first introduced by Jagadis
    [Show full text]