bioRxiv preprint doi: https://doi.org/10.1101/2020.03.30.015511; this version posted September 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 Burst-dependent synaptic plasticity can coordinate learning in 3 hierarchical circuits 4 1 2,3 4 5,6,7,8 5 Alexandre Payeur • Jordan Guerguiev • Friedemann Zenke Blake A. Richards ⇤• and Richard 1,9, 6 Naud ⇤• 7 1 uOttawa Brain and Mind Institute, Centre for Neural Dynamics, Department of 8 Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada 9 2 Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, 10 Canada 11 3 Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada 12 4 Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland 13 5 Mila, Montr´eal, QC, Canada 14 6 Department of Neurology and Neurosurgery, McGill University, Montr´eal, QC, Canada 15 7 School of Computer Science, McGill University, Montr´eal, QC, Canada 16 8 Learning in Machines and Brains Program, Canadian Institute for Advanced Research, 17 Toronto, ON, Canada 18 9 Department of Physics, University of Ottawa, Ottawa, ON, Canada 19 Corresponding authors, email:
[email protected],
[email protected] ⇤ 20 Equal contributions • 21 Abstract 22 Synaptic plasticity is believed to be a key physiological mechanism for learning. It is well-established that 23 it depends on pre and postsynaptic activity.