The Transient Receptor Potential Family of Ion Channels Bernd Nilius and Grzegorz Owsianik*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TRP Channels in Visceral Pain
Send Orders of Reprints at [email protected] 23 The Open Pain Journal, 2013, 6, (Suppl 1: M4) 23-30 Open Access TRP Channels in Visceral Pain L. Ashley Blackshaw*,1,2, Stuart M. Brierley2, Andrea M. Harrington2 and Patrick A. Hughes2 1Wingate Institute for Neurogastroenterology, Centre for Digestive Diseases, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; 2Nerve-Gut Research Laboratory, Discipline of Medicine, The University of Adelaide, Adelaide, South Australia, Australia 5000. Abstract: Visceral pain is both different and similar to somatic pain - different in being poorly localized and usually referred elsewhere to the body wall, but similar in many of the molecular mechanisms it employs (like TRP channels) and the specialization of afferent endings to detect painful stimuli. TRPV1 is sensitive to low pH. pH is lowest in gastric juice, which may cause severe pain when exposed to the oesophageal mucosa, and probably works via TRPV1. TRPV1 is found in afferent fibres throughout the viscera, and the TRPV1 agonist capsaicin can recapitulate symptoms experienced in disease. TRPV1 is also involved in normal mechanosensory function in the gut. Roles for TRPV4 and TRPA1 have also been described in visceral afferents, and TRPV4 is highly enriched in them, where it plays a major role in both mechanonociception and chemonociception. It may provide a visceral-specific nociceptor target for drug development. TRPA1 is also involved in mechano-and chemosensory function, but not as selectively as TRPV4. TRPA1 is colocalized with TRPV1 in visceral afferents, where they influence each other’s function. -
The Role of Transient Receptor Potential Cation Channels in Ca2þ Signaling
Downloaded from http://cshperspectives.cshlp.org/ on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press The Role of Transient Receptor Potential Cation Channels in Ca2þ Signaling Maarten Gees, Barbara Colsoul, and Bernd Nilius KU Leuven, Department of Molecular Cell Biology, Laboratory Ion Channel Research, Campus Gasthuisberg, Herestraat 49, bus 802, Leuven, Belgium Correspondence: [email protected] The 28 mammalian members of the super-family of transient receptor potential (TRP) channels are cation channels, mostly permeable to both monovalent and divalent cations, and can be subdivided into six main subfamilies: the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and the TRPA (ankyrin) groups. TRP channels are widely expressed in a large number of different tissues and cell types, and their biological roles appear to be equally diverse. In general, considered as poly- modal cell sensors, they play a much more diverse role than anticipated. Functionally, TRP channels, when activated, cause cell depolarization, which may trigger a plethora of voltage-dependent ion channels. Upon stimulation, Ca2þ permeable TRP channels 2þ 2þ 2þ generate changes in the intracellular Ca concentration, [Ca ]i,byCa entry via the plasma membrane. However, more and more evidence is arising that TRP channels are also located in intracellular organelles and serve as intracellular Ca2þ release channels. This review focuses on three major tasks of TRP channels: (1) the function of TRP channels as Ca2þ entry channels; (2) the electrogenic actions of TRPs; and (3) TRPs as Ca2þ release channels in intracellular organelles. ransient receptor potential (TRP) channels choanoflagellates, yeast, and fungi are primary Tconstitute a large and functionally versatile chemo-, thermo-, or mechanosensors (Cai 2008; family of cation-conducting channel proteins, Wheeler and Brownlee 2008; Chang et al. -
TRP Mediation
molecules Review Remedia Sternutatoria over the Centuries: TRP Mediation Lujain Aloum 1 , Eman Alefishat 1,2,3 , Janah Shaya 4 and Georg A. Petroianu 1,* 1 Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; [email protected] (L.A.); Eman.alefi[email protected] (E.A.) 2 Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates 3 Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11941, Jordan 4 Pre-Medicine Bridge Program, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; [email protected] * Correspondence: [email protected]; Tel.: +971-50-413-4525 Abstract: Sneezing (sternutatio) is a poorly understood polysynaptic physiologic reflex phenomenon. Sneezing has exerted a strange fascination on humans throughout history, and induced sneezing was widely used by physicians for therapeutic purposes, on the assumption that sneezing eliminates noxious factors from the body, mainly from the head. The present contribution examines the various mixtures used for inducing sneezes (remedia sternutatoria) over the centuries. The majority of the constituents of the sneeze-inducing remedies are modulators of transient receptor potential (TRP) channels. The TRP channel superfamily consists of large heterogeneous groups of channels that play numerous physiological roles such as thermosensation, chemosensation, osmosensation and mechanosensation. Sneezing is associated with the activation of the wasabi receptor, (TRPA1), typical ligand is allyl isothiocyanate and the hot chili pepper receptor, (TRPV1), typical agonist is capsaicin, in the vagal sensory nerve terminals, activated by noxious stimulants. -
Recessive Mutations of the Gene TRPM1 Abrogate on Bipolar Cell Function and Cause Complete Congenital Stationary Night Blindness in Humans
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REPORT Recessive Mutations of the Gene TRPM1 Abrogate ON Bipolar Cell Function and Cause Complete Congenital Stationary Night Blindness in Humans Zheng Li,1 Panagiotis I. Sergouniotis,1 Michel Michaelides,1,2 Donna S. Mackay,1 Genevieve A. Wright,2 Sophie Devery,2 Anthony T. Moore,1,2 Graham E. Holder,1,2 Anthony G. Robson,1,2 and Andrew R. Webster1,2,* Complete congenital stationary night blindness (cCSNB) is associated with loss of function of rod and cone ON bipolar cells in the mammalian retina. In humans, mutations in NYX and GRM6 have been shown to cause the condition. Through the analysis of a consan- guineous family and screening of nine additional pedigrees, we have identified three families with recessive mutations in the gene TRPM1 encoding transient receptor potential cation channel, subfamily M, member 1, also known as melastatin. A number of other variants of unknown significance were found. All patients had myopia, reduced central vision, nystagmus, and electroretinographic evidence of ON bipolar cell dysfunction. None had abnormalities of skin pigmentation, although other skin conditions were reported. RNA derived from human retina and skin was analyzed and alternate 50 exons were determined. The most 50 exon is likely to harbor an initiation codon, and the protein sequence is highly conserved across vertebrate species. These findings suggest an important role of this specific cation channel for the normal function of ON bipolar cells in the human retina. Congenital stationary night blindness (CSNB) is a group of of the gene encoding transient receptor potential cation genetically determined, nondegenerative disorders of the channel, subfamily M, member 1 (TRPM1 [MIM *603576]) retina associated with lifelong deficient vision in the dark has been discovered in the skin and retina of horses homo- and often nystagmus and myopia. -
Diterpenoids As Potential Anti-Malarial Compounds from Andrographis Paniculata Manish Kumar Dwivedi, Shringika Mishra, Shruti Sonter and Prashant Kumar Singh*
Dwivedi et al. Beni-Suef University Journal of Basic and Applied Sciences Beni-Suef University Journal of (2021) 10:7 https://doi.org/10.1186/s43088-021-00098-8 Basic and Applied Sciences RESEARCH Open Access Diterpenoids as potential anti-malarial compounds from Andrographis paniculata Manish Kumar Dwivedi, Shringika Mishra, Shruti Sonter and Prashant Kumar Singh* Abstract Background: The objectives of the current study are to evaluate the traditionally used medicinal plants Andrographis paniculata for in vitro anti-malarial activity against human malarial parasite Plasmodium falciparum and to further characterize the anti-malarial active extract of A. paniculata using spectroscopic and chromatographic methods. Results: The chloroform extract of A. paniculata displayed anti-malarial activity with IC50 values 6.36 μg/ml against 3D7 strain and 5.24 μg/ml against K1 strains respectively with no evidence of significant cytotoxicity against mammalian cell line (CC50 > 100 μg/ml). LC-MS analysis of the extract led to the identification of 59 compounds based on their chromatographic and mass spectrometric features (a total of 35 compounds are present in positive ion and 24 compounds in negative ion mode). We have identified 5 flavonoids and 30 compounds as diterpenoids in positive ion mode, while in the negative mode all identified compounds were diterpenoids. Characterization of the most promising class of compound diterpenoids using HPLC-LC-ESI-MS/MS was also undertaken. Conclusions: The in vitro results undoubtedly validate the traditional use of A. paniculata for the treatment of malaria. The results have led to the identification of diterpenoids from IGNTU_06 extract as potential anti-malarial compounds that need to be further purified and analyzed in anti-malarial drug development programs. -
102 the Effects of Intravesical
102 Harper M, Brady C. M, Scaravilli F, Fowler C. J. Institute of Neurology, London THE EFFECTS OF INTRAVESICAL RESINIFERATOXIN ON SUBUROTHELIAL NERVE DENSITY IN PATIENTS WITH NEUROGENIC DETRUSOR OVERACTIVITY Aims of Study Somatic and autonomic neural pathways integrated in the CNS regulate urine storage and voiding. When spinal cord lesions disrupt these pathways, an aberrant segmental sacral reflex emerges, the afferent limb of which is comprised of small unmyelinated C-fibres that originate in the suburothelium. This pathological reflex is thought to be the underlying cause of “spinal” neurogenic detrusor overactivity (NDO). We are currently evaluating the role of resiniferatoxin (RTX) in the treatment of refractory “spinal” NDO. RTX is an ultra-potent capsaicin analogue purified from the dried latex of the succulent plant Euphorbia Resinifera. The vanillyl group of RTX facilitates the action of the vanilloid receptor (VR-1), a non-selective cation channel expressed on suburothelial C-fibres. Intravesical therapy with a single dose of RTX results in early acute excitatory effects (“sensitisation”) followed by inhibition of neuropeptide release and neuronal terminal field degeneration (“desensitisation”) (Avelino et al., 2001). In patients with refractory NDO, it has been shown that intravesical therapy with vanilloid compounds such as RTX or capsaicin significantly decreases lower urinary tract symptoms for a period of weeks or months, depending on factors such as dose and disease progression. It is thought that the eventual recurrence of symptoms is related to C-fibre regeneration. We have previously shown that the mean suburothelial nerve density decreases in patients who respond to capsaicin. Our experimental aim is to measure suburothelial nerve density in flexible cystoscopic biopsies in controls and patients with NDO before and after intravesical RTX or placebo. -
TRP CHANNELS AS THERAPEUTIC TARGETS TRP CHANNELS AS THERAPEUTIC TARGETS from Basic Science to Clinical Use
TRP CHANNELS AS THERAPEUTIC TARGETS TRP CHANNELS AS THERAPEUTIC TARGETS From Basic Science to Clinical Use Edited by ARPAD SZALLASI MD, PHD Department of Pathology, Monmouth Medical Center, Long Branch, NJ, USA AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 125 London Wall, London, EC2Y 5AS, UK 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA 225 Wyman Street, Waltham, MA 02451, USA The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK First published 2015 Copyright © 2015 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. -
The Role of Phytotoxic and Antimicrobial Compounds of Euphorbia Gummifera in the Cause and Maintenance of the Fairy Circles of Namibia
The role of phytotoxic and antimicrobial compounds of Euphorbia gummifera in the cause and maintenance of the fairy circles of Namibia by Nicole Galt Submitted in partial fulfillment of the requirements for the degree Magister Scientiae Department of Plant and Soil Sciences Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria Supervisor: Prof. J.J.M. Meyer March 2018 i The role of phytotoxic and antimicrobial compounds of Euphorbia gummifera in the cause and maintenance of the fairy circles of Namibia by Nicole Galt Department of Plant and Soil Sciences Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria Supervisor: Prof. J.J.M. Meyer Degree: MSc Medicinal Plant Science Abstract Fairy circles (FC) are unexplained botanical phenomena of the pro-Namib desert and parts of the West Coast of South Africa. They are defined as circular to oval shaped anomalies of varying sizes that are left bereft of vegetation. Even though there are several distinctly different hypotheses that have aimed to explain the origin of fairy circles, none have done so to satisfaction of the scientific community. The aim of this study was to determine if phytotoxic and antibacterial properties of a co-occurring Euphorbia species, E. gummifera plays a role in the creation of fairy circles. Representative soil samples (from inside-, outside fairy circles and underneath dead E. gummifera plants) and plant samples (aerial ii parts of E. gummifera and intact grasses, Stipagrostis uniplumis) were collected from the area. The collected samples were used for a several biological assays. A soil bed bio-assay was done using the three collected soil types. -
TRPV1 and Endocannabinoids: Emerging Molecular Signals That Modulate Mammalian Vision
Cells 2014, 3, 914-938; doi:10.3390/cells3030914 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review TRPV1 and Endocannabinoids: Emerging Molecular Signals that Modulate Mammalian Vision 1,2,†, 1,2,† 1,† 1,2,3,4, Daniel A. Ryskamp *, Sarah Redmon , Andrew O. Jo and David Križaj * 1 Department of Ophthalmology & Visual Sciences, Moran Eye Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; E-Mails: [email protected] (S.R.); [email protected] (A.O.J.) 2 Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84132, USA 3 Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA 4 Center for Translational Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA † Those authors contributed equally to this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (D.A.R.); [email protected] (D.K.); Tel.: +1-801-213-2777 (D.K.); Fax: +1-801-587-8314 (D.K.). Received: 1 July 2014; in revised form: 27 August 2014 / Accepted: 5 September 2014 / Published: 12 September 2014 Abstract: Transient Receptor Potential Vanilloid 1 (TRPV1) subunits form a polymodal cation channel responsive to capsaicin, heat, acidity and endogenous metabolites of polyunsaturated fatty acids. While originally reported to serve as a pain and heat detector in the peripheral nervous system, TRPV1 has been implicated in the modulation of blood flow and osmoregulation but also neurotransmission, postsynaptic neuronal excitability and synaptic plasticity within the central nervous system. -
Ion Channels 3 1
r r r Cell Signalling Biology Michael J. Berridge Module 3 Ion Channels 3 1 Module 3 Ion Channels Synopsis Ion channels have two main signalling functions: either they can generate second messengers or they can function as effectors by responding to such messengers. Their role in signal generation is mainly centred on the Ca2 + signalling pathway, which has a large number of Ca2+ entry channels and internal Ca2+ release channels, both of which contribute to the generation of Ca2 + signals. Ion channels are also important effectors in that they mediate the action of different intracellular signalling pathways. There are a large number of K+ channels and many of these function in different + aspects of cell signalling. The voltage-dependent K (KV) channels regulate membrane potential and + excitability. The inward rectifier K (Kir) channel family has a number of important groups of channels + + such as the G protein-gated inward rectifier K (GIRK) channels and the ATP-sensitive K (KATP) + + channels. The two-pore domain K (K2P) channels are responsible for the large background K current. Some of the actions of Ca2 + are carried out by Ca2+-sensitive K+ channels and Ca2+-sensitive Cl − channels. The latter are members of a large group of chloride channels and transporters with multiple functions. There is a large family of ATP-binding cassette (ABC) transporters some of which have a signalling role in that they extrude signalling components from the cell. One of the ABC transporters is the cystic − − fibrosis transmembrane conductance regulator (CFTR) that conducts anions (Cl and HCO3 )and contributes to the osmotic gradient for the parallel flow of water in various transporting epithelia. -
Structure of Full-Length Human TRPM4
Structure of full-length human TRPM4 Jingjing Duana,1, Zongli Lib,c,1, Jian Lid,e,1, Ana Santa-Cruza, Silvia Sanchez-Martineza, Jin Zhangd,2, and David E. Claphama,f,g,2 aHoward Hughes Medical Institute, Ashburn, VA 20147; bHoward Hughes Medical Institute, Harvard Medical School, Boston, MA 02115; cDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115; dSchool of Basic Medical Sciences, Nanchang University, Nanchang, 330031 Jiangxi, China; eDepartment of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536; fDepartment of Neurobiology, Harvard Medical School, Boston, MA 02115; and gDepartment of Cardiology, Boston Children’s Hospital, Boston, MA 02115 Contributed by David E. Clapham, January 25, 2018 (sent for review December 19, 2017; reviewed by Mark T. Nelson, Dejian Ren, and Thomas Voets) Transient receptor potential melastatin subfamily member 4 Structure of Human TRPM4 (TRPM4) is a widely distributed, calcium-activated, monovalent- Full-length human TRPM4 (1,214 residues) was expressed using selective cation channel. Mutations in human TRPM4 (hTRPM4) the BacMam expression system (Materials and Methods). The result in progressive familial heart block. Here, we report the + TRPM4 construct used for expression retained the key func- electron cryomicroscopy structure of hTRPM4 in a closed, Na - tional properties of the wild-type channel, such as permeability + + bound, apo state at pH 7.5 to an overall resolution of 3.7 Å. Five to Na and K and activation by intracellular calcium (Fig. S1A). partially hydrated sodium ions are proposed to occupy the center The protein, obtained in the absence of exogenous calcium ions, of the conduction pore and the entrance to the coiled-coil domain. -
Osher Mini Medical School Feb 10 2016 Schumacher HAND OUT.Pptx
2/10/16! Back to the Future of Pain Medicine ! What is Pain?! ! Pain: “An unpleasant sensory and emotional Mark Schumacher Ph.D.,M.D.! experience associated with actual or potential Professor and Chief, Division of Pain Medicine! tissue damage, or described in terms of such Dept. of Anesthesia & Perioperative Care! damage (IASP).”! Medical Director, UCSF Pain Services! University of California, San Francisco! Plant derivatives imitate endogenous Have we made any progress in the analgesic systems pharmacologic treatment of pain?! ! Morphine! " 1805 - Primary therapy for severe pain is:! " Morphine! ! Endorphin! " 2016 - Primary therapy for severe pain is:! " Morphine! •" Sustained Release! Ideal analgesic ?! A revolution is underway in our understanding of the pain pathway! Acts selectively on the “pain-sensing” nerves! Does not depress CNS - respiration! .. and its origin began thousands of Use over time maintains analgesia! years ago with the physicians of ancient times! Easy to administer! Is not addictive! Affordable $$! ! 1! 2/10/16! # Anti-Atlas Mountains-Morocco! Capsaicin vs. Resiniferatoxin (RTX)! ! ! ! ! # Euphorbia Resinifera! Share a Common Modification ! Perception! Peppers Sail the Ocean Blue! Transmission! 2000 BC 63 BC 1428 1492 Euphobia Resinifera Transduction! Descartes 1644 ! Sherrington and the development ! of modern neurobiology - nociceptor! Primary Afferent Nociceptors! Sherrington (1906) ... Proposed: the experience of pain is based on nerves that responded to specific 2000 BC 63 BC 1428 1492 1906 noxious stimuli