Beringian Paleoecology: Results from the 1997 Workshop Scott A

Total Page:16

File Type:pdf, Size:1020Kb

Beringian Paleoecology: Results from the 1997 Workshop Scott A Quaternary Science Reviews 20 (2001) 7}13 Beringian paleoecology: results from the 1997 workshop Scott A. Elias* Institute of Arctic and Alpine Research, University of Colorado 1560, 30th Street, Campus Box 450, Boulder, CO, 80309-0450, USA Abstract Much progress has been made in the various "elds concerned with Beringian studies since the publication of Paleoecology of Beringia in 1982. The 1997 Beringian Paleoenvironments workshop brought together Russian, Canadian, and American scientists, and the paleoecological and archaeological presentations gave rise to 20 papers. The main points of most of these papers are summarized here, in the context of speci"c research topics, including (1) timing and environments associated with the Old Crow tephra in Eastern Beringia; (2) Last Interglacial environments of Eastern Beringia; (3) interstadial environments from the middle of the Last Glaciation in Beringia; (4) full glacial environments in Beringia; (5) Lateglacial environments in Beringia; (6) early Holocene environments in Beringia; (7) Late Pleistocene archaeology of Siberia; and 8) the timing, adaptations, and possible migration routes of people entering the New World. ( 2000 Elsevier Science Ltd. All rights reserved. 1. Introduction Our joint "eld of Beringian research has bene"tted greatly from the cessation of that undeclared war. Many The "rst book on Beringian paleoenvironments was scientists now travel back and forth between the US and The Bering Land Bridge, published in 1967 (Hopkins, Russia to visit "eld sites, collaborate on joint research 1967). The volume entitled Paleoecology of Beringia, pub- projects, and attend meetings. Attendees at the 1997 lished in 1982 broke considerable new ground in this "eld workshop presented new contributions on paleoenviron- Hopkins et al. (1982). Since then, scientists from North ments from prior to the Last Interglacial to the Holo- America and Russia have worked steadily on this topic, cene, as well as contributions on the archaeology of the and the 1997 Beringian Paleoenvironments workshop region (another of David Hopkins' scienti"c passions). provided a vehicle for the presentation of the next iter- East met west in a way that was scarcely possible until ation of Beringian research. Of course David Hopkins is a few years ago. The 1997 workshop was a scienti"c the common link between these two publications. David success, and the convenors (Julie Brigham-Grette and edited the "rst book, co-edited the second book, and has myself) took that opportunity to launch this volume on generally been a driving force in Beringian research for Beringian paleoenvironments. more than 50 years. The 1997 workshop brought to- The paleoecological and archaeological papers pre- gether a large group of people who came to honor David sented at the 1997 workshop gave rise to 20 papers and the accomplishments of his career in Beringian re- spanning many research themes, ranging from lake levels search. Especially noteworthy in this most recent work- and paleosols to the botanical composition of shop was the presence of many Russian scientists, who steppe}tundra and proposed routes of human migration acknowledge David as the one who began the di$cult from the Old World to the New. Some of the featured process of breaking down the barriers between scientists topics are as follows: on both sides of the Cold War who share an interest in Beringia. (1) Timing and environments associated with the Old Crow tephra in Eastern Beringia (2) Last Interglacial environments of Eastern Beringia (3) Interstadial environments from the middle of the last * Corresponding author. Tel.: #1-303-492-5158; fax: #1-303-492- glaciation in Beringia 6388. (4) Full glacial environments in Beringia E-mail address: [email protected] (S.A. Elias). (5) Lateglacial environments in Beringia 0277-3791/01/$- see front matter ( 2000 Elsevier Science Ltd. All rights reserved. PII: S 0 2 7 7 - 3 7 9 1 ( 0 0 ) 0 0 1 3 5 - 9 8 S.A. Elias / Quaternary Science Reviews 20 (2001) 7}13 (6) Early Holocene environments in Beringia search of Elias et al. (2001) suggests that the OCt fell (7) The Late Pleistocene archaeology of Siberia during a cool period late in isotope stage 6. Forest (8) The timing, adaptations, and possible migration beds in the Noatak sequence lie well above the tephra routes of people entering the New World in riverbank deposits. McDowell and Edwards (2001) described a stratigraphic sequence from Birch Creek, In this paper, I will summarize the major new "ndings near Circle, Alaska. At this site, OCt was deposited relating to these topics, and synthesize regional recon- at least 6 m below sediments indicative of interglacial structions of paleoenvironments estimated for the vari- environments (i.e., sediments containing abundant ous time intervals. spruce pollen and macrofossils). Pollen spectra from loess deposits between the OCt and the interglacial 1.1. Timing and environments associated with the Old forest bed are indicative of cold climatic conditions. Crow tephra in Eastern Beringia The authors o!er three alternative explanations for this stratigraphic sequence, (1) the OCt was deposited The Old Crow tephra (OCt) is an ash that probably during the isotope stage 6/5 transition, and a strongly came from an eruption (or series of eruptions) from an developed glacial interval occurred early in stage 5; as-yet unidenti"ed volcano in the Alaska Peninsula (2) the OCt was deposited during a `non-Milankovitcha region. Estimates of the age of this tephra, based warm interval late in stage 6; and (3) the OCt was on "ssion-track and uranium-series ages, average deposited far earlier, perhaps as far back as isotope 140,000$20,000 years. However, the stratigraphic data stage 7, and the overlying `colda loess was deposited in from sites across Alaska and the Yukon con#ict as stage 6, followed by the forest bed, indicative of stage to the timing and environmental conditions associated 5 interglacial environments. Alternative 1 is essentially with the deposition of the OCt (Hamilton and Brigham- the same as the scenario reconstructed by Elias et al. Grette, 1991). Unfortunately, the data presented at the (2001) from the Nk-26 site on the Noatak River. Both 1997 workshop by PeH weH et al. (1997) and by Muhs the Birch Creek and the Noatak River fossil records et al. (2001) did nothing to change this situation. may contradict the results of the Eva Creek study, in The timing of this volcanic eruption (or series of erup- which the OCt may associated with full interglacial envi- tions) is critical to Eastern Beringian paleoenviron- ronments. mental research, because the OCt is a prominent It is possible that the solution to this problem lies in stratigraphic marker, tying together the chronologies multiple episodes of OCt ash deposition, emanating from of many sites in Alaska and the Yukon Territory. a series of eruptions of the same volcano over a period of New ages on this tephra will soon be forthcoming, perhaps several thousand years. Detailed trace-element but for the time being, we can only say with certainty analysis of OCt samples may resolve this issue. Until that the OCt was deposited sometime between late these are done, we are left with more questions than isotope stage 6 and the last interglaciation (isotope answers. stage 5e). Ideally, paleoecological reconstructions based on fossil beds intimately associated with the OCt 1.2. Last Interglacial environments of Eastern Beringia could be used to help clarify the age of the ash, but there has never been a general consensus about these recon- Related to the OCt topic is the issue of isotope stage 5e structions, and the 1997 workshop only added to the environments in Beringia. Given that the main forest bed controversy. from Eva Creek represents the last interglaciation, the Muhs et al. (2001) reported on paleoenvironments and fossil record from the Eva Forest Bed is consistent with vegetation associated with OCt deposits at the Eva regional reconstructions of warmer-than-present condi- Creek site, near Fairbanks. In their reconstruction, the tions across Eastern Beringia. Both Elias (2001) and OCt may have fallen during a time of warmer-than- Muhs et al. (2001) agree that summer temperatures must modern climate, when spruce forest dominated interior have been warmer than modern during stage 5e. Elias' Alaska. Their paleoenvironmental reconstruction, which mutual climatic range (MCR) studies from fossil beetle included greater-than-modern annual precipitation, sug- assemblages estimate that mean July temperatures gests that the OCt could have been deposited at or near (TMAX) were about 53C warmer than modern, although the height of the last interglacial period. In contrast to estimates from individual sites ranged from 2.3 to 8.33C. this, Elias (2001) reported that OCt-associated deposits There is a general trend in the MCR data from stage 5e from the Noatak River drainage of northwestern Alaska in Eastern Beringia: greatest level of summer temper- are indicative of arctic tundra environments, and that the atures in the east (Yukon Territory), and least level of OCt underlies isotope stage 5e deposits in the Noatak summer warming in the west (near the Bering Land stratigraphy. Mean July temperatures inferred from Bridge and the Paci"c Ocean). However, this recon- OCt-associated fossil beetle assemblages from the struction appears to be at odds with the climatic recon- Noatak were 23C colder than present. The Noatak re- struction of Brigham-Grette and Hopkins (1995), that S.A. Elias / Quaternary Science Reviews 20 (2001) 7}13 9 suggested warmer-than-modern climates in western levels. Al"mov and Berman (2001) suggest that TMAX in Alaska during stage 5e, based on shifts in sea-ice limits, northeastern Siberia was 12}133C during the LGM. the lack of permafrost in some coastal regions, and These temperatures are essentially the same as modern warmer-than-modern ocean currents in the Bering Sea TMAX in their study region.
Recommended publications
  • Sedimentary Biomarkers Reaffirm Human Impacts on Northern Beringian Ecosystems During the Last Glacial Period
    bs_bs_banner Sedimentary biomarkers reaffirm human impacts on northern Beringian ecosystems during the Last Glacial period RICHARD S. VACHULA , YONGSONG HUANG, JAMES M. RUSSELL, MARK B. ABBOTT, MATTHEW S. FINKENBINDER AND JONATHAN A. O’DONNELL Vachula, R. S., Huang, Y. , Russell, J. M., Abbott, M. B., Finkenbinder, M. S. & O’Donnell, J. A.: Sedimentary biomarkers reaffirm human impacts on northern Beringian ecosystems during the Last Glacial period. Boreas. https://doi.org/10.1111/bor.12449. ISSN 0300-9483. Our understanding of the timing of human arrival to the Americas remains fragmented, despite decades of active research and debate. Genetic research has recently led to the ‘Beringian standstill hypothesis’ (BSH), which suggests an isolated group of humans lived somewhere in Beringia for millennia during the Last Glacial, before a subgroup migrated southward into the American continents about 14 ka. Recently published organic geochemical data suggest human presence around Lake E5 on the Alaskan North Slope during the Last Glacial; however, these biomarker proxies, namely faecal sterols and polycyclic aromatic hydrocarbons (PAHs), are relatively novel and require replication to bolster their support of the BSH. Wepresent newanalyses of thesebiomarkers in the sediment archive of Burial Lake (latitude 68°260N, longitude 159°100W m a.s.l.) in northwestern Alaska. Our analyses corroborate that humans were present in Beringia during the Last Glacial and that they likely promoted fire activity. Our data also suggest that humans coexistedwith Ice Age megafauna for millenniaprior to theireventual extinction at the end of the Last Glacial. Lastly, we identify fire as an overlooked ecological component of the mammoth steppe ecosystem.
    [Show full text]
  • The Population History of Northeastern Siberia Since the Pleistocene Martin Sikora1,43*, Vladimir V
    ARTICLE https://doi.org/10.1038/s41586-019-1279-z The population history of northeastern Siberia since the Pleistocene Martin Sikora1,43*, Vladimir V. Pitulko2,43*, Vitor C. Sousa3,4,5,43, Morten E. Allentoft1,43, Lasse Vinner1, Simon Rasmussen6,41, Ashot Margaryan1, Peter de Barros Damgaard1, Constanza de la Fuente1,42, Gabriel Renaud1, Melinda A. Yang7, Qiaomei Fu7, Isabelle Dupanloup8, Konstantinos Giampoudakis9, David Nogués-Bravo9, Carsten Rahbek9, Guus Kroonen10,11, Michaël Peyrot11, Hugh McColl1, Sergey V. Vasilyev12, Elizaveta Veselovskaya12,13, Margarita Gerasimova12, Elena Y. Pavlova2,14, Vyacheslav G. Chasnyk15, Pavel A. Nikolskiy2,16, Andrei V. Gromov17, Valeriy I. Khartanovich17, Vyacheslav Moiseyev17, Pavel S. Grebenyuk18,19, Alexander Yu. Fedorchenko20, Alexander I. Lebedintsev18, Sergey B. Slobodin18, Boris A. Malyarchuk21, Rui Martiniano22, Morten Meldgaard1,23, Laura Arppe24, Jukka U. Palo25,26, Tarja Sundell27,28, Kristiina Mannermaa27, Mikko Putkonen25, Verner Alexandersen29, Charlotte Primeau29, Nurbol Baimukhanov30, Ripan S. Malhi31,32, Karl-Göran Sjögren33, Kristian Kristiansen33, Anna Wessman27,34, Antti Sajantila25, Marta Mirazon Lahr1,35, Richard Durbin22,36, Rasmus Nielsen1,37, David J. Meltzer1,38, Laurent Excoffier4,5* & Eske Willerslev1,36,39,40* Northeastern Siberia has been inhabited by humans for more than 40,000 years but its deep population history remains poorly understood. Here we investigate the late Pleistocene population history of northeastern Siberia through analyses of 34 newly recovered ancient
    [Show full text]
  • Terminal Pleistocene Alaskan Genome Reveals First Founding Population of Native Americans J
    LETTER doi:10.1038/nature25173 Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans J. Víctor Moreno-Mayar1*, Ben A. Potter2*, Lasse Vinner1*, Matthias Steinrücken3,4, Simon Rasmussen5, Jonathan Terhorst6,7, John A. Kamm6,8, Anders Albrechtsen9, Anna-Sapfo Malaspinas1,10,11, Martin Sikora1, Joshua D. Reuther2, Joel D. Irish12, Ripan S. Malhi13,14, Ludovic Orlando1, Yun S. Song6,15,16, Rasmus Nielsen1,6,17, David J. Meltzer1,18 & Eske Willerslev1,8,19 Despite broad agreement that the Americas were initially populated Native American ancestors were isolated from Asian groups in Beringia via Beringia, the land bridge that connected far northeast Asia before entering the Americas2,9,13; whether one or more early migra- with northwestern North America during the Pleistocene epoch, tions gave rise to the founding population of Native Americans1–4,7,14 when and how the peopling of the Americas occurred remains (it is commonly agreed that the Palaeo-Eskimos and Inuit populations unresolved1–5. Analyses of human remains from Late Pleistocene represent separate and later migrations1,15,16); and when and where Alaska are important to resolving the timing and dispersal of these the basal split between southern and northern Native American (SNA populations. The remains of two infants were recovered at Upward and NNA, respectively) branches occurred. It also remains unresolved Sun River (USR), and have been dated to around 11.5 thousand whether the genetic affinity between some SNA groups and indigenous years ago (ka)6. Here, by sequencing the USR1 genome to an average Australasians2,3 reflects migration by non-Native Americans3,4,14, early coverage of approximately 17 times, we show that USR1 is most population structure within the first Americans3 or later gene flow2.
    [Show full text]
  • Haplogroup a Sample Report
    1 Genelex Laboratory #:20470-11 Participant: Jane Doe Summary of Findings: The results of the mtDNA sequencing test for Jane Doe found differences with the Cambridge Reference Sequence at positions 16111, 16187, 16223, 16290, 16319, 16362, 64, 73, 146, 153, 235, and 263. The bases found at these positions are listed on your certificate. Results: The mtDNA signature may be used to identify an individual and their direct maternal lineage. The mtDNA signature may also be helpful in identifying ethnic origins. Portions of the hypervariable region I and II from the mtDNA were amplified and sequenced from base pair positions 16100-16569 and 1-290 respectively. The mtDNA sequence data was compared to the Cambridge Reference Sequence. Any differences from the Cambridge Reference Sequence outside of the stated region will not be detected by using this test. This information was then referenced with current mtDNA haplogroup and archaeological information sources to provide a description of the origins of the maternal line. Haplogroup Assignment: A Haplogroup Description: You belong to Haplogroup A, a lineage originating in North East Siberia in the ancient Chukotkan populations (Chukchi and Siberian Eskimos). Your ancestral clan spread to the Americas and now represents over 40% of Native American populations. According to genetic theory, all humans descend from a woman nicknamed "African Eve." This unknown woman probably lived in Africa, perhaps in Kenya, about 145,000 years ago (~5,700 generations). She was a very distant cousin of the Neanderthals, but unlike them, she became an ancestor of all modern humans. She wasn't the only human female in her generation -- some scientists think that she belonged to a human population of about 2,000 people.
    [Show full text]
  • The Population History of Northeastern Siberia Since the Pleistocene
    bioRxiv preprint doi: https://doi.org/10.1101/448829; this version posted October 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The population history of northeastern Siberia since the Pleistocene Martin Sikora1,*, Vladimir V. Pitulko2,*, Vitor C. Sousa3,4,5,*, Morten E. Allentoft1,*, Lasse Vinner1, Simon Rasmussen6, Ashot Margaryan1, Peter de Barros Damgaard1, Constanza de la Fuente Castro1, Gabriel Renaud1, Melinda Yang7, Qiaomei Fu7, Isabelle Dupanloup8, Konstantinos Giampoudakis9, David Bravo Nogues9, Carsten Rahbek9, Guus Kroonen10,11, Michäel Peyrot11, Hugh McColl1, Sergey V. Vasilyev12, Elizaveta Veselovskaya12,13, Margarita Gerasimova12, Elena Y. Pavlova2,14, Vyacheslav G. Chasnyk15, Pavel A. Nikolskiy2,16, Pavel S. Grebenyuk17,18, Alexander Yu. Fedorchenko19, Alexander I. Lebedintsev17, Sergey B. Slobodin17, Boris A. Malyarchuk20, Rui Martiniano21,22, Morten Meldgaard1,23, Laura Arppe24, Jukka U. Palo25,26, Tarja Sundell27,28, Kristiina Mannermaa27, Mikko Putkonen25, Verner Alexandersen29, Charlotte Primeau29, Ripan Mahli30,31, Karl- Göran Sjögren32, Kristian Kristiansen32, Anna Wessman27, Antti Sajantila25, Marta Mirazon Lahr1,33, Richard Durbin21,22, Rasmus Nielsen1,34, David J. Meltzer1,35, Laurent Excoffier4,5, Eske Willerslev1,22,36** 1 - Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen, Denmark. 2 - Palaeolithic Department, Institute for the History of Material Culture RAS, 18 Dvortsovaya nab., 191186 St. Petersburg, Russia. 3 - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
    [Show full text]
  • 1 Ancient Genomes Reveal Long Range Influence of the Site and Culture of Tiwanaku
    Supplementary Information for Ancient genomes reveal long range influence of the site and culture of Tiwanaku Danijela Popović1*, Martyna Molak1,2, Mariusz Ziołkowski3, Alexei Vranich4, Maciej Sobczyk3, Delfor Ulloa Vidaurre5, Magdalena Skrzypczak1, Krzysztof Ginalski1, Guido Agresti3, Thiseas Christos Lamnidis6, Nathan Nakatsuka7,8, Swapan Mallick7,9,10, Mateusz Baca1* 1 Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland 2 Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warsaw, Poland 3 Centre for Andean Studies, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland 4 Department of Anthropology, University of Texas, San Antonio. College of Liberal and Fine Arts. One UTSA Circle San Antonio, TX 78249-1644 5 Unit of Archeology and Museums - Vice-Ministry of Interculturality. Tiahuanaco Street No93 at the corner of Federico Suazo. Box 4856. La Paz, Bolivia 6 Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, 07745 Jena, Germany 7 Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA 8 Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115, USA 9 Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02446, USA 10Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA *corresponding authors: * Danijela Popović; Mateusz Baca Email: [email protected]; [email protected] This PDF file includes: Supplementary Information Text Figures S1 to S3 Other supplementary materials for this manuscript include the following: Datasets S1 to S3 Supplementary Information Text 1.ARCHAEOLOGICAL SITE INFORMATION Bolivia Samples from individuals from Bolivia were obtained under permission from La Unidad de Arqueologia y Museos (UDAM) Ministerio de Culturas y Turismo no.
    [Show full text]
  • Connecting to Country: an Australian Indigenous Metagenomics Strategy Environmental Scan and Research Gap Report
    Connecting to Country: An Australian Indigenous Metagenomics Strategy Environmental Scan and Research Gap Report December 2020 © Commonwealth of Australia as represented by the Department of Health 2021 Creative Commons Licence This publication is licensed under the Creative Commons Attribution 4.0 International Public License available from https://creativecommons.org/licenses/by/4.0/legalcode (“Licence”). You must read and understand the Licence before using any material from this publication. Restrictions The Licence may not give you all the permissions necessary for your intended use. For example, other rights (such as publicity, privacy and moral rights) may limit how you use the material found in this publication. The Licence does not cover, and there is no permission given for, use of any of the images, diagrams or maps found in this publication. Attribution Without limiting your obligations under the Licence, the Department of Health requests that you attribute this publication in your work. Any reasonable form of words may be used provided that you: • include a reference to this publication and where, practicable, the relevant page numbers; • make it clear that you have permission to use the material under the Creative Commons Attribution 4.0 International Public License; • make it clear whether or not you have changed the material used from this publication; • include a copyright notice in relation to the material used. In the case of no change to the material, the words “© Commonwealth of Australia (Department of Health) 2021” may be used. In the case where the material has been changed or adapted, the words: “Based on Commonwealth of Australia (Department of Health) material” may be used; and • do not suggest that the Department of Health endorses you or your use of the material.
    [Show full text]
  • Ancient DNA Studies in Pre-Columbian Mesoamerica
    G C A T T A C G G C A T genes Review Ancient DNA Studies in Pre-Columbian Mesoamerica Xavier Roca-Rada 1,* , Yassine Souilmi 1,2,3 , João C. Teixeira 1,4 and Bastien Llamas 1,2,3,4,* 1 Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; [email protected] (Y.S.); [email protected] (J.C.T.) 2 National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia 3 Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia 4 Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia * Correspondence: [email protected] (X.R.-R.); [email protected] (B.L.); Tel.: +61-8-8313-0262 (X.R.-R. & B.L.) Received: 1 October 2020; Accepted: 10 November 2020; Published: 13 November 2020 Abstract: Mesoamerica is a historically and culturally defined geographic area comprising current central and south Mexico, Belize, Guatemala, El Salvador, and border regions of Honduras, western Nicaragua, and northwestern Costa Rica. The permanent settling of Mesoamerica was accompanied by the development of agriculture and pottery manufacturing (2500 BCE–150 CE), which led to the rise of several cultures connected by commerce and farming. Hence, Mesoamericans probably carried an invaluable genetic diversity partly lost during the Spanish conquest and the subsequent colonial period. Mesoamerican ancient DNA (aDNA) research has mainly focused on the study of mitochondrial DNA in the Basin of Mexico and the Yucatán Peninsula and its nearby territories, particularly during the Postclassic period (900–1519 CE).
    [Show full text]
  • Recent Excavations at Owl Ridge, Interior Alaska
    Received: 15 February 2019 | Revised: 24 May 2019 | Accepted: 29 May 2019 DOI: 10.1002/gea.21754 RESEARCH ARTICLE Recent excavations at Owl Ridge, interior Alaska: Site stratigraphy, chronology, and site formation and implications for late Pleistocene archaeology and peopling of eastern Beringia Kelly E. Graf1 | Angela K. Gore1 | J. Anne Melton2 | Tarah Marks3 | Lyndsay DiPietro4 | Ted Goebel1 | Michael R. Waters1 | David Rhode5 1Center for the Study of the First Americans, Department of Anthropology, Texas A&M Abstract University, College Station, Texas The early archaeological record of Beringia is complicated by the occurrence of 2Department of Anthropology, University of several lithic industries. Site assemblages, dating from 14,000 to 12,800 years ago Minnesota, Minneapolis, Minnesota ‐ 3Department of Anthropology, University of and located from the Yana Indigirka Lowlands of Siberia to the upper Tanana River Iowa, Iowa City, Iowa basin, contain artifacts characteristic of the Nenana technological complex. After 4 Department of Geology, Baylor University, 12,800 years ago, site assemblages contain artifacts diagnostic of the Denali Waco, Texas 5Division of Earth and Ecosystem Sciences, technocomplex. To explain the variation in lithic industries, we first and foremost Desert Research Institute, Reno, Nevada need well‐stratified and well‐dated sites with multiple components so we securely Correspondence know their ages and depositional relationships. We present excavation results of one Kelly E. Graf, Center for the Study of the First such site located in interior Alaska, Owl Ridge, with the goal of assessing site Americans, Department of Anthropology, Texas A&M University, College Station, stratigraphy, radiocarbon chronology, and natural site formation processes.
    [Show full text]
  • Early Human Dispersals Within the Americas
    RESEARCH ARTICLES Cite as: J. V. Moreno-Mayar et al., Science 10.1126/science.aav2621 (2018). Early human dispersals within the Americas J. Víctor Moreno-Mayar1*, Lasse Vinner1*, Peter de Barros Damgaard1*, Constanza de la Fuente1*, Jeffrey Chan2*, Jeffrey P. Spence3*, Morten E. Allentoft1, Tharsika Vimala1, Fernando Racimo1, Thomaz Pinotti4, Simon Rasmussen5, Ashot Margaryan1,6, Miren Iraeta Orbegozo1, Dorothea Mylopotamitaki1, Matthew Wooller7, Clement Bataille8, Lorena Becerra-Valdivia9, David Chivall9, Daniel Comeskey9, Thibaut Devièse9, Donald K. Grayson10, Len George11, Harold Harry12, Verner Alexandersen13, Charlotte Primeau13, Jon Erlandson14, Claudia Rodrigues-Carvalho15, Silvia Reis15, Murilo Q. R. Bastos15, Jerome Cybulski16,17,18, Carlos Vullo19, Flavia Morello20, Miguel Vilar21, Spencer Wells22, Kristian Gregersen1, Kasper Lykke Hansen1, Niels Lynnerup13, Marta Mirazón Lahr23, Kurt Kjær1, André Strauss24,25, Marta Alfonso-Durruty26, Antonio Salas27,28, Hannes Schroeder1, Thomas Higham9, Ripan S. Malhi29, Jeffrey T. Rasic30, Luiz Souza31, Fabricio R. Santos4, Anna-Sapfo Malaspinas32, Martin Sikora1, Rasmus Nielsen1,33,34, Yun S. Song2,33,35†, David J. Meltzer1,36†, Eske Willerslev1,37,38† Downloaded from 1Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark. 2Computer Science Division, University of California, Berkeley, CA 94720, USA. 3Computational Biology Graduate Group, University of California, Berkeley, CA 94720, USA. 4Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. 5Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark. 6Institute of Molecular Biology, National Academy of Sciences, 7 Hasratian St., 0014, Yerevan, Armenia. 7Alaska Stable Isotope Facility, Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
    [Show full text]
  • Terminal Pleistocene Alaskan Genome Reveals First Founding Population of Native 2 Americans 3 4 J
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by LJMU Research Online 1 Terminal Pleistocene Alaskan genome reveals first founding population of Native 2 Americans 3 4 J. Víctor Moreno-Mayar 1,*, Ben A. Potter 2,*, Lasse Vinner 1,* Matthias Steinrücken 5 3,4,5, Simon Rasmussen 6, Jonathan Terhorst 4, John A. Kamm4,7, Anders 6 Albrechtsen 8, Anna-Sapfo Malaspinas 1,9,10, Martin Sikora 1, Joshua D. Reuther2, 7 Joel D. Irish11, Ripan S. Malhi 12,13, Ludovic Orlando 1, Yun S. Song 3,4,14,15, Rasmus 8 Nielsen 1,4,14, David J. Meltzer 1,16 and Eske Willerslev 1,7,17,**. 9 10 1. Centre for GeoGenetics, Natural History Museum of Denmark, University of 11 Copenhagen, 1350 Copenhagen, Denmark. 12 2. Department of Anthropology, University of Alaska, Fairbanks, AK 99775. 13 3. Computer Science Division, University of California, Berkeley, CA 94720, USA. 14 4. Department of Statistics, University of California, Berkeley, CA 94720, USA. 15 5. Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, 16 MA 01003, USA. 17 6. Center for Biological Sequence Analysis, Department of Systems Biology, Technical 18 University of Denmark, 2800 Kongens Lyngby, Denmark. 19 7. Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, 20 CB10 1SA, UK. 21 8. The Bioinformatics Centre, Department of Biology, University of Copenhagen, 2200 22 Copenhagen, Denmark. 23 9. Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland. 24 10. Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland. 25 11. Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John 26 Moores University, Liverpool L3 3AF, UK.
    [Show full text]
  • Peopling of the Americas As Inferred from Ancient Genomics
    Review Peopling of the Americas as inferred from ancient genomics https://doi.org/10.1038/s41586-021-03499-y Eske Willerslev1,2,3,5 ✉ & David J. Meltzer2,4,5 ✉ Received: 9 November 2020 Accepted: 26 March 2021 In less than a decade, analyses of ancient genomes have transformed our Published online: xx xx xxxx understanding of the Indigenous peopling and population history of the Americas. These studies have shown that this history, which began in the late Pleistocene epoch Check for updates and continued episodically into the Holocene epoch, was far more complex than previously thought. It is now evident that the initial dispersal involved the movement from northeast Asia of distinct and previously unknown populations, including some for whom there are no currently known descendants. The frst peoples, once south of the continental ice sheets, spread widely, expanded rapidly and branched into multiple populations. Their descendants—over the next ffteen millennia— experienced varying degrees of isolation, admixture, continuity and replacement, and their genomes help to illuminate the relationships among major subgroups of Native American populations. Notably, all ancient individuals in the Americas, save for later-arriving Arctic peoples, are more closely related to contemporary Indigenous American individuals than to any other population elsewhere, which challenges the claim—which is based on anatomical evidence—that there was an early, non-Native American population in the Americas. Here we review the patterns revealed by ancient genomics that help to shed light on the past peoples who created the archaeological landscape, and together lead to deeper insights into the population and cultural history of the Americas.
    [Show full text]