Sedimentary Biomarkers Reaffirm Human Impacts on Northern Beringian Ecosystems During the Last Glacial Period

Total Page:16

File Type:pdf, Size:1020Kb

Sedimentary Biomarkers Reaffirm Human Impacts on Northern Beringian Ecosystems During the Last Glacial Period bs_bs_banner Sedimentary biomarkers reaffirm human impacts on northern Beringian ecosystems during the Last Glacial period RICHARD S. VACHULA , YONGSONG HUANG, JAMES M. RUSSELL, MARK B. ABBOTT, MATTHEW S. FINKENBINDER AND JONATHAN A. O’DONNELL Vachula, R. S., Huang, Y. , Russell, J. M., Abbott, M. B., Finkenbinder, M. S. & O’Donnell, J. A.: Sedimentary biomarkers reaffirm human impacts on northern Beringian ecosystems during the Last Glacial period. Boreas. https://doi.org/10.1111/bor.12449. ISSN 0300-9483. Our understanding of the timing of human arrival to the Americas remains fragmented, despite decades of active research and debate. Genetic research has recently led to the ‘Beringian standstill hypothesis’ (BSH), which suggests an isolated group of humans lived somewhere in Beringia for millennia during the Last Glacial, before a subgroup migrated southward into the American continents about 14 ka. Recently published organic geochemical data suggest human presence around Lake E5 on the Alaskan North Slope during the Last Glacial; however, these biomarker proxies, namely faecal sterols and polycyclic aromatic hydrocarbons (PAHs), are relatively novel and require replication to bolster their support of the BSH. Wepresent newanalyses of thesebiomarkers in the sediment archive of Burial Lake (latitude 68°260N, longitude 159°100W m a.s.l.) in northwestern Alaska. Our analyses corroborate that humans were present in Beringia during the Last Glacial and that they likely promoted fire activity. Our data also suggest that humans coexistedwith Ice Age megafauna for millenniaprior to theireventual extinction at the end of the Last Glacial. Lastly, we identify fire as an overlooked ecological component of the mammoth steppe ecosystem. Richard S. Vachula ([email protected])(present address: Department of Geography and Environmental Science, UniversityofReading,Reading,UK),YongsongHuangandJamesM.Russell,DepartmentofEarth,Environmental,and Planetary Sciences, Institute at Brown for Environment and Society, Brown University, Providence, RI, USA; Mark B. Abbott, Department of Geologyand Environmental Science, Universityof Pittsburgh, Pittsburgh, PA,USA; Matthew S. Finkenbinder, Department of Environmental Engineering and Earth Sciences, Wilkes University, Wilkes-Barre, PA, USA; Jonathan A. O’Donnell, Arctic Network, National Park Service, Anchorage, AK, USA; received 1st February 2020, accepted 17th April 2020. Human arrival to the American continents remains one Cinq-Mars & Morlan 1999; Morlan 2003), but have of the most debated topics in our understanding the been controversial for decades. More recently, stone global dispersal and proliferation of Homo sapiens artifacts in the Bluefish Caves that had remained (Goebel et al. 2008; Waters 2019). Most researchers overlooked for decades were reexamined and found to agree that Beringia, the landmass that spanned north- indicate human presence during the Last Glacial eastern Asia and northwest North America during the (Bourgeon et al. 2017; Waters 2019). These findings, Last Glacial period (herein referring to Marine Isotope combined with genetic data, stimulated the proposal of Stages 2 and 3), was the initial entrywayof this migration the ‘Beringian standstill’ hypothesis (BSH), which to the Americas (West 1996; Hoffecker et al. 2014, suggests a small group diverged from East Asians 2016), but genetic data and archaeological artifacts c. 36 000 years ago, moving to isolation in Beringia provide a fragmented history of human populations in before eventually moving south into the continent the region. Despite assumptions that human popula- (Tamm et al. 2007; Skoglund & Reich 2016; Mulligan tions could not survive the cold climate of the Glacial & Szathmary 2017; Moreno-Mayar et al. 2018; Waters Arctic, cut-marked bones found at the Bunge Toll site 2019). Importantly, the BSH is built upon earlier genetic (Pitulko et al. 2016), and stone tools found at the Yana analyses that detected differences between Native site complex (Pitulko et al. 2017), in Siberia place Americans north and south of the Laurentide Ice Sheet humans in western Beringia c. 48 thousand calibrated (Szathmary 1993; Bonatto & Salzano 1997) and anthro- years before present (cal. ka BP) and 32 cal. ka BP pological inferences from linguistic analyses (Nichols (Pitulko et al. 2016), respectively. In contrast, the 1990, 2008). It has also been bolstered by dental analyses earliest unequivocal archaeological evidence in eastern (Scott et al. 2018) and further genetic analyses of ancient Beringia dates to 14 cal. ka BP (Swan Point; Potter et al. DNA and whole genomes (Moreno-Mayar et al. 2018; 2013), roughly contemporaneous with the earliest finds Sikora et al. 2019). Though the inferences drawn from in the American continents. This coincidence of timing linguistic and dental analyses support early divergence supports the hypothesis of a ‘swift peopling’ of eastern of the Native American founder group from its Asian Beringia and the American continents c. 14 000 years ancestors, these analyses do not place humans in ago (Goebel et al. 2008). However, cut-marks on animal Beringia during the Last Glacial. At present, the bones found in the Bluefish Caves equivocally support Bluefish Caves provide the only archaeological site human presence in eastern Beringia during the Last supporting a human population in eastern Beringia Glacial (Morlan & Cinq-Mars 1982; Cinq-Mars 1990; during the Last Glacial, although lack of more estab- DOI 10.1111/bor.12449 © 2020 The Authors. Boreas published by John Wiley & Sons Ltd on behalf of The Boreas Collegium This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 2 Richard S. Vachula et al. BOREAS lished forms of archaeological evidence, such as stone fire in the mammoth steppe biome that spanned Beringia tools and fire pits, still cast uncertainties on the during the Last Glacial. attribution of cut-marks on bones to humans. The BSH also has important implications for our Study site understanding of Beringian ecosystem dynamics in the Last Glacial and the role of humans in the Burial Lake (68°260N, 159°100W; 460 m a.s.l.; Fig. 1) is extinction of Pleistocene megafauna. During the Last located in the Noatak River Basin in the Brooks Range in Glacial, Beringia was home to the mammoth steppe northwestern Alaska (Kurek et al. 2009; Abbott et al. ecosystem, a productive, diverse grassland that sup- 2010; Dorfman et al. 2015; Finkenbinderet al. 2015). The ported and was in turn enhanced by megafauna lake is deep (21.5 m) and small (0.8 km2), with a relatively herbivores including mammoths, bison, horses, cari- small watershed (3.3 km2), one outlet stream, and several bou, woolly rhinoceros, saiga and muskoxen (Guthrie seasonally ephemeral inlets (Finkenbinder et al. 2015). 2001; Mann et al. 2013). The ecosystem dynamics Like Lake E5 in north-central Alaska (Vachula et al. and demise of the Beringian mammoth steppe and 2019), Burial Lake is one of a small number of lakes that its megafauna are debated (Guthrie 2001; Yurtsev persisted during the cold and arid Last Glacial period 2001; Zimov et al. 2012; Mann et al. 2013, 2015; (Finkenbinder et al. 2015). As such, sediments from E5 Sandom et al. 2014). To date, little research has and Burial are valuable environmental archives. characterized the role that a Standstill population of humans might have had in the demise of this Material and methods ecosystem without modern counterparts. Recent palaeolimnological analyses from Lake E5, Sediment core and chronology located in northern Alaska, provide additional bio- geochemical evidence supporting the presence of Sediment cores were collected from several water depths humans in Beringia during the Last Glacial (Vachula in Burial Lake (5.0, 7.9, 13.2 and 21.5 m), but sedimen- et al. 2019). Measurements of charcoal and polycyclic tary hiatuses associated with the drier glacial period aromatic hydrocarbons (PAHs) in the E5 sediment interrupt all of these archives with the exception of the record indicate increased fire activity from 32 to 19 cal. core from the deepest water (Abbott et al. 2010; Finken- ka BP, despite natural lightning ignitions being binder et al. 2015). The sediments preserved in this core suppressed by a cold glacial climate (Vachula et al. span the last 37 000 years. The age-depth chronology of 2019). In many ignition-limited regions, evidence of this core was established by Finkenbinder et al. (2015, increased burning has been observed to coincide with 2018) using the CLAM age modelling package (Blaauw human arrival (Mann et al. 2008; Pinter et al. 2011; 2010). The chronology is informed by 15 radiocarbon- Argiriadis et al. 2018). Similarly, the arrival of humans dated terrestrial macrofossils (Fig. 2). In this paper, we to Australiawas accompanied by increased fire activity refer to sedimentological ages as thousands of calibrated (Rule et al. 2019). This circumstantial evidence for years before present (1950 CE = 0cal.kaBP). human presence is further supported by faecal sterol data suggesting human faecal contamination at E5. Organic geochemical analyses Thus, the Lake E5 record provides evidence of a sustained human presence in eastern Beringia during Following Vachula et al. (2019), we quantified polycyclic the Last Glacial (Vachula et al. 2019). The Lake E5 aromatic hydrocarbons (PAHs) and faecal sterols in the analyses support the BSH but
Recommended publications
  • Regional Patterns of Postglacial Changes in the Palearctic
    www.nature.com/scientificreports OPEN Regional patterns of postglacial changes in the Palearctic mammalian diversity indicate Received: 14 November 2014 Accepted: 06 July 2015 retreat to Siberian steppes rather Published: 06 August 2015 than extinction Věra Pavelková Řičánková, Jan Robovský, Jan Riegert & Jan Zrzavý We examined the presence of possible Recent refugia of Pleistocene mammalian faunas in Eurasia by analysing regional differences in the mammalian species composition, occurrence and extinction rates between Recent and Last Glacial faunas. Our analyses revealed that most of the widespread Last Glacial species have survived in the central Palearctic continental regions, most prominently in Altai–Sayan (followed by Kazakhstan and East European Plain). The Recent Altai–Sayan and Kazakhstan regions show species compositions very similar to their Pleistocene counterparts. The Palearctic regions have lost 12% of their mammalian species during the last 109,000 years. The major patterns of the postglacial changes in Palearctic mammalian diversity were not extinctions but rather radical shifts of species distribution ranges. Most of the Pleistocene mammalian fauna retreated eastwards, to the central Eurasian steppes, instead of northwards to the Arctic regions, considered Holocene refugia of Pleistocene megafauna. The central Eurasian Altai and Sayan mountains could thus be considered a present-day refugium of the Last Glacial biota, including mammals. Last Glacial landscape supported a unique mix of large species, now extinct or living in non-overlapping biomes, including rhino, bison, lion, reindeer, horse, muskox and mammoth1. The so called “mammoth steppe”2–4 community thrived for approximately 100,000 years without major changes, and then became extinct by the end of Pleistocene, around 12,000 years BP5,6.
    [Show full text]
  • Mammal Extinction Facilitated Biome Shift and Human Population Change During the Last Glacial Termination in East-Central Europeenikő
    Mammal Extinction Facilitated Biome Shift and Human Population Change During the Last Glacial Termination in East-Central EuropeEnikő Enikő Magyari ( [email protected] ) Eötvös Loránd University Mihály Gasparik Hungarian Natural History Museum István Major Hungarian Academy of Science György Lengyel University of Miskolc Ilona Pál Hungarian Academy of Science Attila Virág MTA-MTM-ELTE Research Group for Palaeontology János Korponai University of Public Service Zoltán Szabó Eötvös Loránd University Piroska Pazonyi MTA-MTM-ELTE Research Group for Palaeontology Research Article Keywords: megafauna, extinction, vegetation dynamics, biome, climate change, biodiversity change, Epigravettian, late glacial Posted Date: August 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-778658/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/27 Abstract Studying local extinction times, associated environmental and human population changes during the last glacial termination provides insights into the causes of mega- and microfauna extinctions. In East-Central (EC) Europe, Palaeolithic human groups were present throughout the last glacial maximum (LGM), but disappeared suddenly around 15 200 cal yr BP. In this study we use radiocarbon dated cave sediment proles and a large set of direct AMS 14C dates on mammal bones to determine local extinction times that are compared with the Epigravettian population decline, quantitative climate models, pollen and plant macrofossil inferred climate and biome reconstructions and coprophilous fungi derived total megafauna change for EC Europe. Our results suggest that the population size of large herbivores decreased in the area after 17 700 cal yr BP, when temperate tree abundance and warm continental steppe cover both increased in the lowlands Boreal forest expansion took place around 16 200 cal yr BP.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier
    (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Quaternary Science Reviews 57 (2012) 26e45 Contents lists available at SciVerse ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Mammoth steppe: a high-productivity phenomenon S.A. Zimov a,*, N.S. Zimov a, A.N. Tikhonov b, F.S. Chapin III c a Northeast Science Station, Pacific Institute for Geography, Russian Academy of Sciences, Cherskii 678830, Russia b Zoological Institute, Russian Academy of Sciences, Saint Petersburg 199034, Russia c Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA article info abstract Article history: At the last deglaciation Earth’s largest biome, mammoth-steppe, vanished. Without knowledge of the Received 11 January 2012 productivity of this ecosystem, the evolution of man and the glacialeinterglacial dynamics of carbon Received in revised form storage in Earth’s main carbon reservoirs cannot be fully understood.
    [Show full text]
  • Migration: on the Move in Alaska
    National Park Service U.S. Department of the Interior Alaska Park Science Alaska Region Migration: On the Move in Alaska Volume 17, Issue 1 Alaska Park Science Volume 17, Issue 1 June 2018 Editorial Board: Leigh Welling Jim Lawler Jason J. Taylor Jennifer Pederson Weinberger Guest Editor: Laura Phillips Managing Editor: Nina Chambers Contributing Editor: Stacia Backensto Design: Nina Chambers Contact Alaska Park Science at: [email protected] Alaska Park Science is the semi-annual science journal of the National Park Service Alaska Region. Each issue highlights research and scholarship important to the stewardship of Alaska’s parks. Publication in Alaska Park Science does not signify that the contents reflect the views or policies of the National Park Service, nor does mention of trade names or commercial products constitute National Park Service endorsement or recommendation. Alaska Park Science is found online at: www.nps.gov/subjects/alaskaparkscience/index.htm Table of Contents Migration: On the Move in Alaska ...............1 Future Challenges for Salmon and the Statewide Movements of Non-territorial Freshwater Ecosystems of Southeast Alaska Golden Eagles in Alaska During the A Survey of Human Migration in Alaska's .......................................................................41 Breeding Season: Information for National Parks through Time .......................5 Developing Effective Conservation Plans ..65 History, Purpose, and Status of Caribou Duck-billed Dinosaurs (Hadrosauridae), Movements in Northwest
    [Show full text]
  • Evolutionary History of the Arctic Ground Squirrel (Spermophilus Parryii) in Nearctic Beringia
    Journal of Mammalogy, 85(4):601–610, 2004 EVOLUTIONARY HISTORY OF THE ARCTIC GROUND SQUIRREL (SPERMOPHILUS PARRYII) IN NEARCTIC BERINGIA AREN A. EDDINGSAAS,* BRANDY K. JACOBSEN,ENRIQUE P. LESSA, AND JOSEPH A. COOK Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA (AAE) University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK 99775-6960, USA (BKJ) Laboratorio de Evolucio´n, Facultad de Ciencias, Casilla de Correos 12106, Montevideo 11300, Uruguay (EPL) Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (JAC) Pleistocene glaciations had significant effects on the distribution and evolution of arctic species. We focus on these effects in Nearctic Beringia, a high-latitude ice-free refugium in northwest Canada and Alaska, by examining variation in mitochondrial cytochrome b (Cytb) sequences to elucidate phylogeographic relationships and identify times of evolutionary divergence in arctic ground squirrels (Spermophilus parryii). This arctic- adapted species provides an excellent model to examine the biogeographic history of the Nearctic due to its extensive subspecific variation and long evolutionary history in the region. Four geographically distinct clades are identified within this species and provide a framework for exploring patterns of biotic diversification and evolution within the region. Phylogeographic analysis and divergence estimates are consistent with a glacial vicariance hypothesis. Estimates of genetic and population divergence suggest that differentiation within Nearctic S. parryii occurred as early as the Kansan glaciation. Timing of these divergence events clusters around the onset of the Kansan, Illinoian, and Wisconsin glaciations, supporting glacial vicariance, and suggests that S. parryii survived multiple glacial periods in Nearctic Beringia.
    [Show full text]
  • Pollen-Based Quantitative Land-Cover Reconstruction for Northern Asia Covering the Last 40 Ka Cal BP
    Clim. Past, 15, 1503–1536, 2019 https://doi.org/10.5194/cp-15-1503-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP Xianyong Cao1,a, Fang Tian1, Furong Li2, Marie-José Gaillard2, Natalia Rudaya1,3,4, Qinghai Xu5, and Ulrike Herzschuh1,4,6 1Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A43, Potsdam 14473, Germany 2Department of Biology and Environmental Science, Linnaeus University, Kalmar 39182, Sweden 3Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrentieva 17, Novosibirsk 630090, Russia 4Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24, 14476 Potsdam, Germany 5College of Resources and Environment Science, Hebei Normal University, Shijiazhuang 050024, China 6Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24, Potsdam 14476, Germany apresent address: Key Laboratory of Alpine Ecology, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China Correspondence: Xianyong Cao ([email protected]) and Ulrike Herzschuh ([email protected]) Received: 21 August 2018 – Discussion started: 23 October 2018 Revised: 3 July 2019 – Accepted: 8 July 2019 – Published: 8 August 2019 Abstract. We collected the available relative pollen produc- pollen producers. Comparisons with vegetation-independent tivity estimates (PPEs) for 27 major pollen taxa from Eura- climate records show that climate change is the primary fac- sia and applied them to estimate plant abundances during the tor driving land-cover changes at broad spatial and temporal last 40 ka cal BP (calibrated thousand years before present) scales.
    [Show full text]
  • Reframing the Mammoth Steppe
    Reframing the mammoth steppe: Insights from analysis of isotopic niches SCHWARTZ-NARBONNE, Rachel <http://orcid.org/0000-0001-9639-9252>, LONGSTAFFE, F.J. <http://orcid.org/0000-0003-4103-4808>, KARDYNAL, K.J. <http://orcid.org/0000-0002-3480-4002>, DRUCKENMILLER, P., HOBSON, K.A., JASS, C.N. <http://orcid.org/0000-0001-6499-5260>, METCALFE, J.Z. and ZAZULA, G. Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/25656/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. Published version SCHWARTZ-NARBONNE, Rachel, LONGSTAFFE, F.J., KARDYNAL, K.J., DRUCKENMILLER, P., HOBSON, K.A., JASS, C.N., METCALFE, J.Z. and ZAZULA, G. (2019). Reframing the mammoth steppe: Insights from analysis of isotopic niches. Quaternary Science Reviews, 215, 1-21. Copyright and re-use policy See http://shura.shu.ac.uk/information.html Sheffield Hallam University Research Archive http://shura.shu.ac.uk 1 Reframing the mammoth steppe: Insights from analysis of isotopic niches. 2 3 Schwartz-Narbonne, R.a*, Longstaffe, F.J.a, Kardynal, K.J.b, Druckenmiller, P.c, Hobson, 4 K.A.b,d, Jass, C.N.e, Metcalfe, J.Z.f, Zazula, G.g 5 6 aDepartment of Earth Sciences, The University of Western Ontario, London, ON, N6A 5B7, 7 Canada. 8 bWildlife and Landscape Science Division, Environment & Climate Change Canada, Saskatoon, 9 SK, S7N 3H5, Canada. 10 cUniversity of Alaska Museum of the North and University of Alaska Fairbanks, Fairbanks, AK 11 99775, USA.
    [Show full text]
  • The Population History of Northeastern Siberia Since the Pleistocene Martin Sikora1,43*, Vladimir V
    ARTICLE https://doi.org/10.1038/s41586-019-1279-z The population history of northeastern Siberia since the Pleistocene Martin Sikora1,43*, Vladimir V. Pitulko2,43*, Vitor C. Sousa3,4,5,43, Morten E. Allentoft1,43, Lasse Vinner1, Simon Rasmussen6,41, Ashot Margaryan1, Peter de Barros Damgaard1, Constanza de la Fuente1,42, Gabriel Renaud1, Melinda A. Yang7, Qiaomei Fu7, Isabelle Dupanloup8, Konstantinos Giampoudakis9, David Nogués-Bravo9, Carsten Rahbek9, Guus Kroonen10,11, Michaël Peyrot11, Hugh McColl1, Sergey V. Vasilyev12, Elizaveta Veselovskaya12,13, Margarita Gerasimova12, Elena Y. Pavlova2,14, Vyacheslav G. Chasnyk15, Pavel A. Nikolskiy2,16, Andrei V. Gromov17, Valeriy I. Khartanovich17, Vyacheslav Moiseyev17, Pavel S. Grebenyuk18,19, Alexander Yu. Fedorchenko20, Alexander I. Lebedintsev18, Sergey B. Slobodin18, Boris A. Malyarchuk21, Rui Martiniano22, Morten Meldgaard1,23, Laura Arppe24, Jukka U. Palo25,26, Tarja Sundell27,28, Kristiina Mannermaa27, Mikko Putkonen25, Verner Alexandersen29, Charlotte Primeau29, Nurbol Baimukhanov30, Ripan S. Malhi31,32, Karl-Göran Sjögren33, Kristian Kristiansen33, Anna Wessman27,34, Antti Sajantila25, Marta Mirazon Lahr1,35, Richard Durbin22,36, Rasmus Nielsen1,37, David J. Meltzer1,38, Laurent Excoffier4,5* & Eske Willerslev1,36,39,40* Northeastern Siberia has been inhabited by humans for more than 40,000 years but its deep population history remains poorly understood. Here we investigate the late Pleistocene population history of northeastern Siberia through analyses of 34 newly recovered ancient
    [Show full text]
  • The Impact of Mammoths on Their Biome: Clash of Two Paradigms
    P. V. Putshkov Institute of Zoology,Academia of Sciences, Kiev The impact of mammoths on their biome: clash of two paradigms Putshkov, P.V., 2003 - The impact of mammoths on their biome: clash of two paradigms - in: Reumer, J.W.F., de Vos, J. & Mol, D. (eds.) - ADVANCES IN MAMMOTH RESEARCH (Proceedings of the Second International Mammoth Conference, Rotterdam, May 16-20 1999) - DEINSEA 9: 365- 379 [ISSN 0923-9308] Published 24 May 2003 Mammoths, woolly rhinoceroses, musk oxen, primitive bisons, and horses of northern races were stenobiotic cryoxerophiles living only under extreme cryoarid conditions according to the ‘steppe- tundra crash paradigm’. These animals are considered to be strict grazers on arid steppe-tundra gras- ses; hence, the possibility that mammoths maintain their pastures the way modern elephants do is rejected. Climatists claim that mammoths and their faunal satellites were killed by the Holocene warming a result of their inability to feed themselves in any of modern landscapes and to withstand the weather-caused losses. Their survival throughout interglacials is considered as resulting from climatic instability: short warm episodes are said to have alternated with very cold ones. It is belie- ved that a permanent Arctic Ocean ice-shield persisted along the Siberian coast even in summer; its cooling and aridifying influence maintained steppe-tundras and similar ecosystems throughout Northern Eurasia. On the contrary, the stable Holocene warming resulted in the disappearance of this ice-shield, in the destruction of the ecosystem of the mammoths, and in megafaunal extinctions. This conception is based mainly on the properties of Eemian Greenland ice layers.
    [Show full text]
  • Effects of Large Herbivore Grazing on Relics of the Presumed Mammoth
    www.nature.com/scientificreports OPEN Efects of large herbivore grazing on relics of the presumed mammoth steppe in the extreme climate of NE‑Siberia Jennifer Reinecke1,2*, Kseniia Ashastina3,4, Frank Kienast3, Elena Troeva5 & Karsten Wesche1,2,6 The Siberian mammoth steppe ecosystem changed dramatically with the disappearance of large grazers in the Holocene. The concept of Pleistocene rewilding is based on the idea that large herbivore grazing signifcantly alters plant communities and can be employed to recreate lost ecosystems. On the other hand, modern rangeland ecology emphasizes the often overriding importance of harsh climates. We visited two rewilding projects and three rangeland regions, sampling a total of 210 vegetation relevés in steppe and surrounding vegetation (grasslands, shrublands and forests) along an extensive climatic gradient across Yakutia, Russia. We analyzed species composition, plant traits, diversity indices and vegetation productivity, using partial canonical correspondence and redundancy analysis. Macroclimate was most important for vegetation composition, and microclimate for the occurrence of extrazonal steppes. Macroclimate and soil conditions mainly determined productivity of vegetation. Bison grazing was responsible for small‑scale changes in vegetation through trampling, wallowing and debarking, thus creating more open and disturbed plant communities, soil compaction and xerophytization. However, the magnitude of efects depended on density and type of grazers as well as on interactions with climate and site conditions. Efects of bison grazing were strongest in the continental climate of Central Yakutia, and steppes were generally less afected than meadows. We conclude that contemporary grazing overall has rather limited efects on vegetation in northeastern Siberia. Current rewilding practices are still far from recreating a mammoth steppe, although large herbivores like bison can create more open and drier vegetation and increase nutrient availability in particular in the more continental Central Yakutian Plain.
    [Show full text]
  • L. Oxtoby Et Al. M.J. Wooller. Feeding Ecologies of Key Bivalve And
    L. Oxtoby et al. M.J. Wooller. Feeding ecologies of key bivalve and polychaete species in the Bering Sea as elucidated by fatty acid and compound specific stable isotope analyses (In Press). MEPS. On-Line First. P. Rinta P, et al. M.J. Wooller. (2016) Land Use Affects Carbon Sources to the Pelagic Food Web in a Small Boreal Lake. (2016). PLoS ONE 11(8): e0159900. doi:10.1371/journal.pone.0159900 A. Padilla. R. Brown and M.J. Wooller (In Press). Determining the movements and distribution of anadromous Bering Ciscoes (Coregonus laurettae) using otolith strontium isotopes. Transactions of the American Fisheries Society. On-Line First. K. Choy# Holly J. McKinney#, B. Potter, J. Reuther, S. Wang2, M.J. Wooller. (In Press). Chemical profiling of ancient hearths reveals recurrent salmon use in Ice Age Beringia. PNAS. Graham et al. M.J. Wooller. (2016). Declining freshwater availability caused the extinction of the last North 1 American mammoths PNAS. 113. doi:10.1073/pnas.1604903113. B. Gaglioti* et al. M.J. Wooller (2016). High-resolution records detect human-caused changes to the boreal forest wildfire regime in interior Alaska. The Holocene. 26: 1064-1074. S. Wang*, et al., M.J. Wooller (2016). Carbon sources and trophic relationships of ice seals during recent environmental shifts in the Bering Sea. Ecological Applications. 26: 830–845. DOI: 10.1890/14-2421. L. Oxtoby*, J.T. Mathis, L.W. Juranek, and M.J. Wooller. (2016). Constraining stable carbon isotope values of microphytobenthos (C3 photosynthesis) in the Arctic for application to food web studies. Polar Biology. 39: 473–483.
    [Show full text]
  • Beringian Paleoecology: Results from the 1997 Workshop Scott A
    Quaternary Science Reviews 20 (2001) 7}13 Beringian paleoecology: results from the 1997 workshop Scott A. Elias* Institute of Arctic and Alpine Research, University of Colorado 1560, 30th Street, Campus Box 450, Boulder, CO, 80309-0450, USA Abstract Much progress has been made in the various "elds concerned with Beringian studies since the publication of Paleoecology of Beringia in 1982. The 1997 Beringian Paleoenvironments workshop brought together Russian, Canadian, and American scientists, and the paleoecological and archaeological presentations gave rise to 20 papers. The main points of most of these papers are summarized here, in the context of speci"c research topics, including (1) timing and environments associated with the Old Crow tephra in Eastern Beringia; (2) Last Interglacial environments of Eastern Beringia; (3) interstadial environments from the middle of the Last Glaciation in Beringia; (4) full glacial environments in Beringia; (5) Lateglacial environments in Beringia; (6) early Holocene environments in Beringia; (7) Late Pleistocene archaeology of Siberia; and 8) the timing, adaptations, and possible migration routes of people entering the New World. ( 2000 Elsevier Science Ltd. All rights reserved. 1. Introduction Our joint "eld of Beringian research has bene"tted greatly from the cessation of that undeclared war. Many The "rst book on Beringian paleoenvironments was scientists now travel back and forth between the US and The Bering Land Bridge, published in 1967 (Hopkins, Russia to visit "eld sites, collaborate on joint research 1967). The volume entitled Paleoecology of Beringia, pub- projects, and attend meetings. Attendees at the 1997 lished in 1982 broke considerable new ground in this "eld workshop presented new contributions on paleoenviron- Hopkins et al.
    [Show full text]