HERRERA-THESIS-2013.Pdf (12.72Mb)

Total Page:16

File Type:pdf, Size:1020Kb

HERRERA-THESIS-2013.Pdf (12.72Mb) A PETROLEUM SYSTEM STUDY OF THE CRATONIC WILLISTON BASIN IN NORTH DAKOTA, U.S.A.: THE ROLE OF THE LARAMIDE OROGENY A Thesis Presented to the Faculty of the Department of Earth and Atmospheric Sciences University of Houston -------------------------------------------- In Partial Fulfillment of the Requirements for the Degree Master of Science -------------------------------------------- By Henry Herrera August 2013 A PETROLEUM SYSTEM STUDY OF THE CRATONIC WILLISTON BASIN IN NORTH DAKOTA, U.S.A.: THE ROLE OF THE LARAMIDE OROGENY Henry Herrera APPROVED: Dr. Jolante Van Wijk, Chairman Dr. Guoquan Wang Dr. Constantin Sandu Dean, College of Natural Science and Mathematics ii DEDICATION To Jesus, my mom, dad, and sister, and all the people that believed in me. iii ACKNOWLEDGEMENTS I want to thank God because he is always with me. Thanks to my mother, father, and sister because they are always there for me. Thanks to Dr. Jolante Van Wijk because she supported me in good and bad moments during the thesis project, and did not let me quit. Thanks to Dr. Constantin Sandu and Dr. Wang for being part of my committee. I am thankful to Ismail Ahmad Abir and Kevin Schmidt for being patient helping me with my GIS problems. Thanks to Simon Echegu for his geochemical advice and friendship. Finally, thanks to the North Dakota Geological Survey (NDGS) for the provided information for the conclusion this thesis. iv A PETROLEUM SYSTEM STUDY OF THE CRATONIC WILLISTON BASIN IN NORTH DAKOTA, U.S.A.: THE ROLE OF THE LARAMIDE OROGENY An Abstract of a Thesis Presented to the Faculty of the Department of Earth and Atmospheric Sciences University of Houston -------------------------------------------- In Partial Fulfillment of the Requirements for the Degree Master of Science -------------------------------------------- By Henry Herrera August 2013 v ABSTRACT The Williston Basin is a Phanerozoic intracratonic basin located in the northern USA (North Dakota, South Dakota and Montana) and southern Canada (Manitoba and Saskatchewan). The basin is known as a major hydrocarbon-producing basin in North America, with a petroleum system characterized by multiple source rocks and reservoirs. The aim of this study is to increase our understanding of the Williston Basin’s petroleum system in the North Dakota region. A detailed analysis of the source rocks in the basin will increase our knowledge about their generation potential and maturity, which could allow the identification of new prospective reservoirs. The source rocks have an average of total organic carbon content between 0.59 and 17.63%, and are type II kerogen, except for the Tyler Formation which is type III kerogen. This gives these formations a good quality status as a source rock, and potentially oil-and-gas prone source. Geochemical data (vitrinite reflectance %Ro, in this case) were used for model calibration. Results show a heat flow range between 41.91-65.14 mW/m2, with higher values toward the center of the basin in North Dakota where the sediment package thickens, and lower values toward the edges. My models predict that the end of the Upper Cretaceous is a critical period in the basin, when peak maturation and hydrocarbon generation are found for every source rock. In this same geologic time an increase in temperature is observed in the North Dakota area, as well as the maximum burial period. Subsidence curves show a slow and long tectonic subsidence period across the basin, with rapid subsidence stages during the Carboniferous in the center of the basin in North Dakota. vi TABLE OF CONTENTS CHAPTER 1. INTRODUCTION ....................................................................................... 1 1.1 THE WILLISTON BASIN ...................................................................................... 1 1.2 OBJECTIVES ........................................................................................................... 4 CHAPTER 2. STRATIGRAPHY OF THE WILLISTON BASIN .................................... 5 2. 1 STRATIGRAPHIC SEQUENCES OF THE WILLISTON BASIN ....................... 5 2.1.1 SAUK SEQUENCE ........................................................................................... 5 2.1.2 TIPPECANOE SEQUENCE ............................................................................. 5 2.1.3 KASKASKIA SEQUENCE............................................................................... 6 2.1.4 ABSAROKA SEQUENCE ................................................................................ 7 2.1.5 ZUNI SEQUENCE ............................................................................................ 8 2.1.6 TEJAS SEQUENCE .......................................................................................... 8 2. 2 BAKKEN FORMATION ...................................................................................... 11 2.3 AGES OF DEPOSITION ....................................................................................... 14 2.3.1 EROSION AGES ............................................................................................. 16 2.4 TECTONIC HISTORY OF THE WILLISTON BASIN ........................................ 17 2.4.1 TECTONIC SETTING .................................................................................... 18 2.5 SUBSIDENCE HISTORY...................................................................................... 21 2.6 STRUCTURAL STYLE ......................................................................................... 22 vii 2.7 THERMAL HISTORY ........................................................................................... 23 CHAPTER 3. PETROLEUM GEOCHEMISTRY OF THE WILLISTON BASIN ........ 25 3.1 TOTAL ORGANIC CARBON CONTENT (TOC) ............................................... 25 3.2 KEROGEN TYPE .................................................................................................. 26 3.3 ORGANIC MATTER MATURITY ....................................................................... 28 3.4 WILLISTON BASIN GEOCHEMISTRY ............................................................. 30 3.5 PETROLEUM SYSTEMS OF THE WILLISTON BASIN ................................... 32 CHAPTER 4. METHODS AND DATA .......................................................................... 37 4.1 METHODOLOGY ................................................................................................. 37 4.1.1 METHODS ...................................................................................................... 38 4.2 PETROLEUM SYSTEMS MODELING ............................................................... 38 4.3 BACKSTRIPPING AND PETROMOD ................................................................ 40 4.4 DATA SOURCE ..................................................................................................... 40 4.4.1 2D CROSS SECTIONS ................................................................................... 41 4.5.1 KINETICS ....................................................................................................... 54 4.6 PETROLEUM SYSTEM ELEMENTS .................................................................. 55 4.7 MODELS CALIBRATION .................................................................................... 56 4.8 SYN-RIFT PHASE ................................................................................................. 62 4.9 BETA STRETCHING FACTOR ........................................................................... 64 viii 4.10 PALEOWATER DEPTHS ................................................................................... 64 CHAPTER 5. RESULTS .................................................................................................. 66 5.1 SUBSIDENCE CURVES ....................................................................................... 67 5.2 HEAT FLOW.......................................................................................................... 73 5.3 BURIAL PLOTS .................................................................................................... 82 5.3.1 N-S CROSS SECTION ................................................................................... 82 5.3.2 E-W CROSS SECTION .................................................................................. 93 5.4 VITRINITE REFLECTANCE................................................................................ 98 5.4.1 N-S CROSS SECTION ................................................................................... 98 5.4. 2 E-W CROSS SECTION WELLS ................................................................. 105 5.5 TRANSFORMATION RATIO ............................................................................ 112 5.5.1 N-S CROSS SECTION ................................................................................. 112 5.5.2 E-W CROSS SECTION ................................................................................ 119 5.6 GENERATION MASS ......................................................................................... 126 5.6.1 N-S CROSS SECTION ................................................................................. 126 5.6.1 E-W CROSS SECTION WELLS .................................................................. 133 5.7 2D MODELING ................................................................................................... 139 5.7.1 NORTH-SOUTH (N-S) CROSS SECTION ................................................. 139 5.7.2 EAST-WEST (E-W) CROSS SECTION......................................................
Recommended publications
  • L'.3350 Deposmon and DISSOLUTION of the MIDDLE DEVONIAN PRAIRIE FORMATION, Williston BASIN, NORTH DAKOTA and MONTANA By
    l'.3350 DEPOsmON AND DISSOLUTION OF THE MIDDLE DEVONIAN PRAIRIE FORMATION, WilLISTON BASIN, NORTH DAKOTA AND MONTANA by: Chris A. Oglesby T-3350 A thesis submined to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date f:" /2 7 /C''i::-- i ; Signed: Approved: Lee C. Gerhard Thesis Advisor Golden, Colorado - 7 Date' .' Samuel S. Adams, Head Department of Geology and Geological Engineering II T-3350 ABSTRACf Within the Williston basin, thickness variations of the Prairie Formation are common and are interpreted to originate by two processes, differential accumulation of salt during deposition, and differential removal of salt by dissolution. Unambiguous evidence for each process is rare because the Prairie/Winnipegosis interval is seldom cored within the U.S. portion of the basin. Therefore indirect methods, utilizing well logs, provide the principal method for identifying characteristics of the two processes. The results of this study indicate that the two processes can be distinguished using correlations within the Prairie Formation. Several regionally correlative upward-brining, and probably shoaling-upward sequences occur within the Prairie Formation .. Near the basin center, the lowermost sequence is transitional with the underlying Winnipegosis Formation. This transition is characterized by thinly laminated carbonates that become increasingly interbedded with anhydrites of the basin-centered Ratner Member, the remainder of the sequence progresses up through halite and culminates in the halite-dominated Esterhazy potash beds. Two overlying sequences also brine upwards, however, these sequences lack the basal anhydrite and instead begin with halite and culminate in the Belle Plaine and Mountrail potash Members, respectively.
    [Show full text]
  • Helium in Southwestern Saskatchewan: Accumulation and Geological Setting
    Open File Report 2016-1 Helium in Southwestern Saskatchewan: Accumulation and Geological Setting Melinda M. Yurkowski 2016 (Revised 14 December 2016) Saskatchewan Geological Survey ii Open File Report 2016-1 Open File Report 2016-1 Helium in Southwestern Saskatchewan: Accumulation and Geological Setting Melinda M. Yurkowski 2016 (Revised 14 December 2016) Printed under the authority of the Minister of the Economy © 2016, Government of Saskatchewan Although the Saskatchewan Ministry of the Economy has exercised all reasonable care in the compilation, interpretation and production of this product, it is not possible to ensure total accuracy, and all persons who rely on the information contained herein do so at their own risk. The Saskatchewan Ministry of the Economy and the Government of Saskatchewan do not accept liability for any errors, omissions or inaccuracies that may be included in, or derived from, this product. This product is available for viewing and download at: http://www.publications.gov.sk.ca/deplist.cfm?d=310&c=176 Information from this publication may be used if credit is given. It is recommended that reference to this publication be made in the following form: Yurkowski, M.M. (2016): Helium in southwestern Saskatchewan: accumulation and geological setting; Saskatchewan Ministry of the Economy, Saskatchewan Geological Survey, Open File Report 2016-1, 20p. and Microsoft® Excel® file. Saskatchewan Geological Survey ii Open File Report 2016-1 Contents Introduction and Study Area ..........................................................................................................................................
    [Show full text]
  • Mannville Group of Saskatchewan
    Saskatchewan Report 223 Industry and Resources Saskatchewan Geological Survey Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan J.E. Christopher 2003 19 48 Printed under the authority of the Minister of Industry and Resources Although the Department of Industry and Resources has exercised all reasonable care in the compilation, interpretation, and production of this report, it is not possible to ensure total accuracy, and all persons who rely on the information contained herein do so at their own risk. The Department of Industry and Resources and the Government of Saskatchewan do not accept liability for any errors, omissions or inaccuracies that may be included in, or derived from, this report. Cover: Clearwater River Valley at Contact Rapids (1.5 km south of latitude 56º45'; latitude 109º30'), Saskatchewan. View towards the north. Scarp of Middle Devonian Methy dolomite at right. Dolomite underlies the Lower Cretaceous McMurray Formation outcrops recessed in the valley walls. Photo by J.E. Christopher. Additional copies of this digital report may be obtained by contacting: Saskatchewan Industry and Resources Publications 2101 Scarth Street, 3rd floor Regina, SK S4P 3V7 (306) 787-2528 FAX: (306) 787-2527 E-mail: [email protected] Recommended Citation: Christopher, J.E. (2003): Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan; Sask. Industry and Resources, Report 223, CD-ROM. Editors: C.F. Gilboy C.T. Harper D.F. Paterson RnD Technical Production: E.H. Nickel M.E. Opseth Production Editor: C.L. Brown Saskatchewan Industry and Resources ii Report 223 Foreword This report, the first on CD to be released by the Petroleum Geology Branch, describes the geology of the Success Formation and the Mannville Group wherever these units are present in Saskatchewan.
    [Show full text]
  • Carboniferous Formations and Faunas of Central Montana
    Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa­ tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________
    [Show full text]
  • FORT BELKNAP RESERVATION List of Topics
    FORT BELKNAP RESERVATION List of Topics BACKGROUND Reservation Overview Regional Geologic Overview GEOLOGIC OVERVIEW Geologic History Summary of Play Types CONVENTIONAL PLAY TYPES Play 1 - Shallow Cretaceous Biogenic Gas Play Play 2 - Northern Plains Biogenic Gas Play Plays 3,4,5 - Jurassic/Cretaceous and Mississippian Plays UNCONVENTIONAL / HYPOTHETICAL PLAY TYPES Plays 6,7 - Fractured Bakken and Cambrian Sandstone Plays REFERENCES Historical Background of the OVERVIEW (i.e. joint ventures) in contrast to procedures and regulatory minimums imposed Assiniboine and Gros Ventre Tribes at Fort Belknap by the previous 1938 Minerals Leasing Act. The 1982 Act further provides that FORT BELKNAP RESERVATION The Fort Belknap Indian Reservation was created in 1887 as the home for the individual Indian allottees may join agreements negotiated for tribal lands. The Assiniboine and Gros Ventre Tribes Assiniboine and Gros Ventre Indian Tribes. The ancestors of these tribes have section entitled Operating Regulations discusses the procedures for obtaining lived on the northern plains for several centuries. The Assiniboine were allottee participance in the negotiated agreement. recognized by Europeans as part of the great Sioux Nation and speak a Siouan Principal components for the formal corporate proposal should include the TRIBAL HEADQUARTERS: Fort Belknap Agency, Montana language. However, their name is taken from a Chippewa word referring to area(s) of interest, type of contract, elaboration of proposed agreement terms, GEOLOGIC SETTING: Williston Basin "those who cook with stones." At some point in time the Assiniboine bands points of potential negotiation, diligence commitments (i.e. drilling), bonus broke with the traditional Sioux and allied themselves with the Cree.
    [Show full text]
  • Oil and Gas Potential of the Red River Formation, Southwestern North Dakota Timothy O
    Oil and Gas Potential of the Red River Formation, Southwestern North Dakota Timothy O. Nesheim Introduction North Dakota has experienced commercial oil and gas production third highest for the state, a bronze medal so to speak, and is from 19 different geologic formations over the past 65 years. only eclipsed by the “gold” medal Bakken-Three Forks Formations Most of these productive formations have experienced spotlight (>1.2 billion barrels of oil) and the “silver” medal Madison Group attention from the oil and gas industry at one time or another, (Mission Canyon & Charles Formations, ~1 billion barrels of oil). and, whether for a few months or years, were considered a “hot Red River production is also regionally extensive and stretches play” to explore and develop. The unconventional Bakken-Three into northwestern South Dakota, eastern Montana, and southern Forks development is a current example of a play that brought Saskatchewan (fig. 1). oil and gas activity in the state to record levels and has sustained drilling activity even in a depressed oil and gas market. As the Summary of Red River Oil and Gas Production oil and gas industry transitions beyond the Bakken over time and The upper Red River consists of four, vertically stacked, oil- begins to spend more time evaluating the other 17 productive productive sedimentary rock layers referred to informally as the non-Bakken/Three Forks Formations, additional oil and gas plays “A” through “D” zones (fig. 2). Just over half of the Red River’s will emerge across western North Dakota. One formation that oil production has come from horizontal wells drilled within the has previously experienced “hot play” status and may be poised “B” zone of southwestern Bowman County, a prolific oil play to one day re-emerge into the spotlight of the oil and gas industry that emerged during the late 1990s and was North Dakota’s “hot is the deeply buried Red River Formation.
    [Show full text]
  • TGI Strat Column 2009.Cdr
    STRATIGRAPHIC CORRELATION CHART TGI II: Williston Basin Architecture and Hydrocarbon Potential in Eastern Saskatchewan and Western Manitoba EASTERN MANITOBA PERIOD MANITOBA SUBSURFACE SASKATCHEWAN OUTCROP ERA glacial drift glacial drift glacial drift Quaternary Wood Mountain Formation Peace Garden Peace Garden Member Tertiary Member Ravenscrag Formation CENOZOIC Formation Goodlands Member Formation Goodlands Member Turtle Mountain Turtle Mountain Turtle Frenchman Formation Whitemud Formation Boissevain Formation Boissevain Formation Eastend Formation Coulter Member Coulter Member Bearpaw Formation Odanah Member Belly River “marker” Odanah Member Belly River Formation “lower” Odanah Member Millwood Member Lea Park Formation Millwood Member MONTANA GROUP Pembina Member Pembina Member Pierre Shale Pierre Shale Milk River Formation Gammon Ferruginous Member Gammon Ferruginous Member Niobrara Formation Chalky Unit Boyne Member Boyne Member Boyne Calcareous Shale Unit Member Carlile Morden Member Carlile upper Formation Morden Member Formation Morden Member Carlile Formation Assiniboine Marco Calcarenite Assiniboine Member Member CRETACEOUS Second White Specks Laurier Limestone Beds Favel Favel Keld Keld Member Member Formation Formation Belle Fourche Formation Belle Fourche Member MESOZOIC COLORADO GROUP Belle Fourche Member upper Fish Scale Formation Fish Scale Zone upper Base of Fish Scale marker Base of Fish Scale marker Westgate Formation Westgate Member lower Westgate Member Newcastle Formation Newcastle Member lower Viking Sandstone
    [Show full text]
  • Reservoir Characterization and Modelling of Potash Mine Injection Wells in Saskatchewan
    RESERVOIR CHARACTERIZATION AND MODELLING OF POTASH MINE INJECTION WELLS IN SASKATCHEWAN A Thesis Submitted to the College of Graduate and Postdoctoral Studies In Partial Fulfillment of the Requirements For the Degree of Master of Science In the Department of Civil, Geological and Environmental Engineering University of Saskatchewan Saskatoon By DAVID PHILLIPS Copyright David Phillips, December, 2018. All rights reserved PERMISSION TO USE In presenting this thesis/dissertation in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis/dissertation work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis/dissertation or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis/dissertation. Requests for permission to copy or to make other uses of materials in this thesis/dissertation in whole or part should be addressed to: Head of the Department of Civil, Geological and Environmental Engineering University of Saskatchewan 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9, Canada OR Dean College of Graduate and Postdoctoral Studies University of Saskatchewan 116 Thorvaldson Building, 110 Science Place Saskatoon, Saskatchewan, S7N 5C9, Canada i ABSTRACT In the Saskatchewan potash mining industry vast quantities of brine wastewater are generated from potash processing and mine inflow water.
    [Show full text]
  • Williston Basin Project (Targeted Geoscience Initiative II): Summary Report on Paleozoic Stratigraphy, Mapping and Hydrocarbon A
    Williston Basin Project (Targeted Geoscience Initiative II): Summary report on Paleozoic stratigraphy, mapping and GP2008-2 hydrocarbon assessment, southwestern Manitoba By M.P.B. Nicolas and D. Barchyn GEOSCIENTIFIC PAPER Geoscientific Paper GP2008-2 Williston Basin Project (Targeted Geoscience Initiative II): Summary report on Paleozoic stratigraphy, mapping and hydrocarbon assessment, southwestern Manitoba by M.P.B. Nicolas and D. Barchyn Winnipeg, 2008, reprinted with minor revisions January, 2009 Science, Technology, Energy and Mines Mineral Resources Division Hon. Jim Rondeau John Fox Minister Assistant Deputy Minister John Clarkson Manitoba Geological Survey Deputy Minister E.C. Syme Director ©Queen’s Printer for Manitoba, 2008, reprinted with minor revisions, January 2009 Every possible effort is made to ensure the accuracy of the information contained in this report, but Manitoba Science, Technol- ogy, Energy and Mines does not assume any liability for errors that may occur. Source references are included in the report and users should verify critical information. Any digital data and software accompanying this publication are supplied on the understanding that they are for the sole use of the licensee, and will not be redistributed in any form, in whole or in part, to third parties. Any references to proprietary software in the documentation and/or any use of proprietary data formats in this release do not constitute endorsement by Manitoba Science, Technology, Energy and Mines of any manufacturer’s product. When using information from this publication in other publications or presentations, due acknowledgment should be given to the Manitoba Geological Survey. The following reference format is recommended: Nicolas, M.P.B, and Barchyn, D.
    [Show full text]
  • The Stonewall Formation Timothy O
    The Stonewall Formation Timothy O. Nesheim Introduction Geology The Stonewall Formation is one of numerous sedimentary strata The Stonewall Formation consists of three carbonate-evaporitic that have commercially produced oil and gas from North Dakota’s cycles deposited during Late Ordovician through Early Silurian subsurface. The Stonewall Formation is also one of many time (fig. 2). The Stonewall Formation is conformably under- geological formations being overshadowed by the prolific Bakken- lain by the Stony Mountain Formation and overlain by the In- Three Forks play. Interestingly, the first successful production terlake Formation. Each Stonewall cycle consists of three gen- test that recovered hydrocarbons (oil and gas) from the eral lithofacies: 1) bioturbated to laminated carbonate mudstone Stonewall Formation took place in 1952, less than a year after the 2) thin greyish green dolomitic and/or shaley, silty to sandy discovery of oil in North Dakota. However, sustained commercial mudstone, and 3) nodular to laminated anhydrite that is some- production from the Stonewall Formation did not take place for times interlaminated to interbedded with dolomite (fig. 3). another 27 years until 1979. Since then, the Stonewall Formation Deposition is interpreted to have taken place within a shallow has produced approximately 10 million barrels of oil equivalent marine (carbonate facies) to hypersaline (anhydrite facies) set- (MBOE) from 65 vertical wells (fig. 1). ting. The shaly sandy mudstone intervals have previously been Figure 1. Map depicting the extent of the Stonewall Formation and Stonewall productive wells in North Dakota (Carlson and Eastwood, 1962). For regulatory reasons the Stonewall Formation has been pooled together with the lower Interlake Formation.
    [Show full text]
  • Control and Distribution of Porosity in the Red River C Laminated Member
    Control and distribution of porosity in the Red River C laminated member at the Brush Lake Field by James Roy Stimson A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences Montana State University © Copyright by James Roy Stimson (1985) Abstract: The Red River "C" cycle at the Brush Lake field consists of three distinct informal members; 1) the anhydrite member, 2) the laminated member, and 3) the burrowed member, in descending order. This cycle can be interpreted as a tidal flat deposit with the above members representing the supratidal, intertidal, and subtidal environments, respectively. The laminated member has been thoroughly dolomitized at Brush Lake and porosity values within the dolomites change rapidly. Evidence from Brush Lake reveals that the porosity distribution is primarily the result of diagenetic controls rather than structural or depositional controls. Textural evidence from the laminated member indicates that porosity has been reduced in some parts of the laminated member by 1) early precipitation of calcite cements, 2) overdolomitization, 3) early precipitation of gypsum, 4) late precipitation of replacive anhydrite, and 5) pressure solution along low amplitude stylolites. CONTROL AND DISTRIBUTION OF POROSITY IN THE RED RIVER "C" LAMINATED MEMBER AT THE BRUSH LAKE FIELD by James Roy Stimson A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences MONTANA STATE UNIVERSITY Bozeman, Montana May, 1985 St 55 Ii APPROVAL of a thesis submitted by James Roy Stimson This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies.
    [Show full text]
  • Silurian System in Eastern Montana
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1966 Silurian system in eastern Montana Frank Kendall Gibbs The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Gibbs, Frank Kendall, "Silurian system in eastern Montana" (1966). Graduate Student Theses, Dissertations, & Professional Papers. 9265. https://scholarworks.umt.edu/etd/9265 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE SILURIAN SYSTEM IN EASTERN MONTANA by Frank Kendall Gibbs Geological Bhgineer Colorado School Of Mines, 1955 Presented in partial fulfillment of the requirements for the degree of Master of Science U niversity of Montana 1966 Approved by: 1 Chairman, Board of Examiners Deary" Graduate School J A r r c '^’^ -7_____________ Date ( i ) UMI Number: EP40067 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Dissertation PuWisNng UMI EP40067 Published by ProOuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProOuest LLC.
    [Show full text]