Our Fisheries Resources And. the Role of Upwelling in Their Fluctuations

Total Page:16

File Type:pdf, Size:1020Kb

Our Fisheries Resources And. the Role of Upwelling in Their Fluctuations Our fisheries resources and . the role of upwelling in their fluctuations Part II IMARY PRODUCTIVITY AND FISHERIES POTENTIAL M. KUMARAN Pelagic Fishery Project. Cochin-16 organic matter by higher utilization of the incident light is initiates the whole marine possible only if the phytoplankton is Con­ chain, which terminates in the larger centrated in the upper layers, where light and marine mammals. The prime absorption by water is low. Plant growth "oesiiselrs of organic matter in the .sea occurs \\hereyer photosynthesis exceeds re­ the planktonic algae found in the upper spiration. Therefore , higher rates of produc­ where there is sufficient light penetra­ tion is expected in coastal waters. for photosynthesis. Tberefore. a know­ of tbe standing crop and rate of pro­ Nutrients and primary prcductil'ity of phytoplankton in different regions The availability of essential nutrients in "~g;lIi(lnS on organic production to assess the productive uPFer la yers is one of the Rlative fertility of the sea were being important fact ors governing the magnitude of out during the past two decades. orga nic producti on. The nutrients are 14 experiments on primary produc- brought up into the euphotic zone by tbe vertical mixing of the water cau sed by wind inshore and offshore and wave actio n; processes associated with ocean c~rren\S and by upwelling of deep waters. The general level of nutrieats is bigh important factors infiu­ in the Arabian Sea, especially so in the the amount of euphotic zone, \I hich is a potentially produc­ reaching the surface of the sea. A tive condition. In the Arabian Sea during n.orv, 1978 9 mon'won, the coastal water is enriched by in the Bay of Bengal and in the Andaman S the nutrients brought up from sub.;urface phosphates are almost utilised by the phyt levels. A direct correlation between the plankton. The magnitude of primary pr content of phosphates and ri ch phytoplankton duction is influenced primarily by the ava was ob,ecved during the monsoon months. ability of nutrients as other conditions a The hydrographical conditions during this never limiting. Hence a study of the seaso period seem to be mainly responsible for the variations of nutrients could provide valua rate of replenis hment of nutrients far exceed­ information on the primary productivity. ing their utilization. The precess of replenish­ ment is more intense towards the southern Regional and seasonal variations in part of the west coast of India. During the primary productivity postmonsoon the nutrient levels decreases 57 million hectares of shallow due to theincreasing vertical stability of the contiguous to the coast line of India. T waters. In the offshore regions marked continental shelf of India is much wider· variations in the nutrient levels are observed certain regions en the west coast than on t in different seasons. But in the inshore east coast. There is considerable season regions, the seasonal variations in nutrient and regional va riation in the magnitude concentration is relatively less because ofthe organic production. Some of the m constant mixing of the water. On the south­ productive regions are found on the con· west coast theemaximum production of phyto­ nental slope. plankton takes place during the south· west monsoon. There is another peak of le sser The Arabian Sea is highly productive cause of the presence of regions of deep wat magnitude in the north-east monsoon months ascent. Generally the level of organic pr between December and February. Plankton duction is high near the coast and becom production during the south-west monsoon less seaward. Studies on the primary pr on the west coast surpasses those from some duction in the seas around India have sho of the most fertile coastal regions of the that the shallow areas of the Gulf of Mann world. The nutrient concentrations in the Palk Bay and Wadge Bank are extreme Bay of Bengal is of a lower order compared productive, with an average rate to the Arabian Sea. The absence of large 2.0 gC/m'/day during most of the year a scale upwelling is presumably responsible for with the highest values of over 6.0 gC/m"/da the lower level of nutrients and phytoplank­ These high rates are almost equal to tho ton concentration here. found in some of the worlds most producti waters as in the regions of the Somali coast. A direct correlation exists between pri­ mary production and nutrient concentration - In the shelf waters of India, the avera low values of primary production coincided gross production comes to 1.19 gC/m"/da with the deficiency of nutrients. In the which amounts to an annual gross producti central part of the Arabian Sea and in the of 434 gC/m'/day. Assuming that 40% open ocean nitrates are practically absent and this is being utilized for respiration, the n 10 Seafood Export Journ uction would amount to 260 gC/m'/year. rents. The migration of these organisms or the zone between 50 m depth and the the animals that feed on them can sustain of the continental shelf, the average large stocks of pelagic li>hes in the open is 0.43 gC/m'/day which is moderately ocean where the apparent organic production In this region the annual gross pro­ is of a lower order. Hence large shoals of of carbon would amount to 157 pelagic fishes could sustain in the open parts •.__ .~ /year and the net production 94 gCfm'f of the Arabian Sea in vi ew of the high The net production on the western productivity in certain re gions. Generally, has been estimated at 46 x 10' tonnes the trend ~nd magnituJe uf production arc year, which is about 3 times that of the reflected in the fishery potential of the regions production on the shelf regions of the concerned. coast. Observations carried out on the In the Ba y of Bengal, the areas of highest ...- .. coast have clearly indicated a gradual phytoplankton concentration were near the in the rate of production from shore on the northern and eastern regions "olIow waters to the deeper regions of the where there was replenishment of nutrients to and slope. Beyond the shelf the level of a crrtain extent due to upwelling. The "pnic production falls to < 0.2 gCfm'/day. a verage value of 0.63 gC/n.'/day found in the _Bhc:r rates of production are found near Bay of Bengal is moderately high. However, Laccadive and Minicoy Islands. Certain it is only about one half of tbe productivity !":ciClDS of Arabian Sea is highly productive of the west coast within 50 m depth and account of the presence of unusually high slightly more than the average value for the of organic nutrients at shallow depths region outside the shelf. The total net within or in close proximity to the production over the shelf amounts to 15 x 10· zone. When these nutrient s are tonnes. T hus it could be seen that the west ~1JU1!ht to the euphotic zone a high level of coast of India \',"ith a wider continental shelf Fim.,ry production could be sustained. The and a more pronounced upwelling accounts ...soon shift provides the required energy for three· months and the east coast one· the vertical mixing of the water column fourth of the entire net primary production. brings appreciable quantities of nutri­ This disparity is reflected in the magnitude of to the surface layers. High concentration the fisheries resources along these coasts. phosphates (3.73 ug. at/ I) during May­ have been observed in the eastern Standing crop of plankton .an:tan Sea between 0 and 200 metres. In The Arabia n Sea has been found to be ...,'esltern Arabian Sea also high concentra­ the richest part of the Indian Ocean in plank­ of phosphate (>2.0 ug. at/l) have been ton production. This goes to sustain the at depths of 100-500 metres. The pelagic fisheries of oil sardine, mackerel and ri ch water from the intermediate several olhers, high seas fishery and the de­ when brought up to the surface sup­ mersal fisheries on the sbelf chiefly prawns a heavy growth of planktonic organisms which feed on the organic matter at the spread seaward with the surface cur- bottom. The presence of upwelled waters ft!l],ruB'rv 1978 11 7'ot OVtlt 4 7 'ftltl.t~ B U I L D IN GIN T ERN A T ION A L UN D E R S TAN DIN G through INTERNATIONAL TRADE We are one of the pioneers in the INDIAN FROZEN SEAFOOD TRADE We are specialists in INDIAN FROZEN SEAFOOD We want to do business with you Exclusively represented in India by our buying agents: J M M Enterprises c/o Shapoorji Pallonji & Co. Gresham House, 4th Floor, Sir P. Metha Road, BOMBAY 400001, India. ARISTA INDUSTRIES, INC. 500 Summer Street, Stamford, CT 06901 u. s. A. Telephone: (203) 327 - 2393 Cable Address : HACKBEN, Stamford, Conn. Telex: 996493 18 Seafood Export JOUTlI - along the coast between Cape Comorin to order during the south·west monsoon season. Karwar is responsible for the high nutrient several times the magnitude of that during the content of the west coast. It may be seen north-east monsoon season. The zooplankton that the standing crop of pbytoplankton is of crop does not show such sharp oscillation a high order throughout, but during the because their peak development succeeds that lOuth-west monsoon period it attains the of the primary producers. the phytoplankters peak of development. The fan in tbe stand­ and are probably being eaten up or carried ing crop of phytoplankton during the north­ away by the prevailing currents to distant east monsoon season is partly due to the places.
Recommended publications
  • Grade 3 Unit 2 Overview Open Ocean Habitats Introduction
    G3 U2 OVR GRADE 3 UNIT 2 OVERVIEW Open Ocean Habitats Introduction The open ocean has always played a vital role in the culture, subsistence, and economic well-being of Hawai‘i’s inhabitants. The Hawaiian Islands lie in the Pacifi c Ocean, a body of water covering more than one-third of the Earth’s surface. In the following four lessons, students learn about open ocean habitats, from the ocean’s lighter surface to the darker bottom fl oor thousands of feet below the surface. Although organisms are scarce in the deep sea, there is a large diversity of organisms in addition to bottom fi sh such as polycheate worms, crustaceans, and bivalve mollusks. They come to realize that few things in the open ocean have adapted to cope with the increased pressure from the weight of the water column at that depth, in complete darkness and frigid temperatures. Students fi nd out, through instruction, presentations, and website research, that the vast open ocean is divided into zones. The pelagic zone consists of the open ocean habitat that begins at the edge of the continental shelf and extends from the surface to the ocean bottom. This zone is further sub-divided into the photic (sunlight) and disphotic (twilight) zones where most ocean organisms live. Below these two sub-zones is the aphotic (darkness) zone. In this unit, students learn about each of the ocean zones, and identify and note animals living in each zone. They also research and keep records of the evolutionary physical features and functions that animals they study have acquired to survive in harsh open ocean habitats.
    [Show full text]
  • Atlantic "Pelagic" Fish Underwater World
    QL DFO - Library / MPO - Bibliothèque 626 U5313 no.3 12064521 c.2 - 1 Atlantic "Pelagic" Fish Underwater World Fish that range the open sea are Pelagic species are generally very Atlantic known as " pelagic" species, to dif­ streamlined. They are blue or blue­ ferentiate them from "groundfish" gray over their backs and silvery­ "Pelagic" Fish which feed and dwell near the bot­ white underneath - a form of tom . Feeding mainly in surface or camouflage when in the open sea. middle depth waters, pelagic fish They are caught bath in inshore travel mostly in large schools, tu. n­ and offshore waters, principally with ing and manoeuvring in close forma­ mid-water trawls, purse seines, gill tion with split-second timing in their nets, traps and weirs. quest for plankton and other small species. Best known of the pelagic popula­ tions of Canada's Atlantic coast are herring, but others in order of economic importance include sal­ mon, mackerel , swordfish, bluefin tuna, eels, smelt, gaspereau and capelin. Sorne pelagic fish, notably salmon and gaspereau, migrate from freshwater to the sea and back again for spawning. Eels migrate in the opposite direction, spawning in sait water but entering freshwater to feed . Underwater World Herring comprise more than one­ Herring are processed and mar­ Atlantic Herring keted in various forms. About half of (Ctupea harengus) fifth of Atlantic Canada's annual fisheries catch. They are found all the catch is marketed fresh or as along the northwest Atlantic coast frozen whole dressed fish and fillets, from Cape Hatteras to Hudson one-quarter is cured , including Strait.
    [Show full text]
  • Forage Fish Management Plan
    Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis ....................................................................................................................................
    [Show full text]
  • Pelagic Fish Catch Or Other Means Reposting, Photocopy Machine, Is Only W Permitted Around Java E Oceanography Society
    or collective redistirbution of any portion article of any by of this or collective redistirbution Th THE INDONESIAN SEAS articleis has been in published Oceanography Seasonal Variation of 18, Number journal of Th 4, a quarterly , Volume Pelagic Fish Catch permitted only w is photocopy machine, reposting, means or other Around Java 2005 by Th e Oceanography Copyright Society. BY NANI HENDIARTI, SUWARSO, EDVIN ALDRIAN, of Th approval the ith KHAIRUL AMRI, RETNO ANDIASTUTI, gran e Oceanography is Society. All rights reserved. Permission SUHENDAR I. SACHOEMAR, or Th e Oceanography [email protected] Society. Send to: all correspondence AND IKHSAN BUDI WAHYONO ted to copy this article Repu for use copy this and research. to in teaching ted e Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. blication, systemmatic reproduction, reproduction, systemmatic blication, 112 Oceanography Vol. 18, No. 4, Dec. 2005 WE PRESENT DATA on the seasonal variability of small and 1.26 million ton/year in the Indonesian EEZ. Pelagic fi sh pelagic fi sh catches and their relation to the coastal processes play an important role in the economics of fi sherman in Indo- responsible for them around the island of Java. This study uses nesia; approximately 75 percent of the total fi sh stock, or 4.8 long fi sh-catch records (up to twenty years) collected at vari- million ton/year, is pelagic fi sh. In particular, we investigated ous points around Java that were selected from the best-qual- the waters around Java because most people live near the coast ity harbor records.
    [Show full text]
  • Other Processes Regulating Ecosystem Productivity and Fish Production in the Western Indian Ocean Andrew Bakun, Claude Ray, and Salvador Lluch-Cota
    CoaStalUpwellinO' and Other Processes Regulating Ecosystem Productivity and Fish Production in the Western Indian Ocean Andrew Bakun, Claude Ray, and Salvador Lluch-Cota Abstract /1 Theseasonal intensity of wind-induced coastal upwelling in the western Indian Ocean is investigated. The upwelling off Northeast Somalia stands out as the dominant upwelling feature in the region, producing by far the strongest seasonal upwelling pulse that exists as a; regular feature in any ocean on our planet. It is surmised that the productive pelagic fish habitat off Southwest India may owe its particularly favorable attributes to coastal trapped wave propagation originating in a region of very strong wind-driven offshore trans­ port near the southern extremity of the Indian Subcontinent. Effects of relatively mild austral summer upwelling that occurs in certain coastal ecosystems of the southern hemi­ sphere may be suppressed by the effects of intense onshore transport impacting these areas during the opposite (SW Monsoon) period. An explanation for the extreme paucity of fish landings, as well as for the unusually high production of oceanic (tuna) fisheries relative to coastal fisheries, is sought in the extremely dissipative nature of the physical systems of the region. In this respect, it appears that the Gulf of Aden and some areas within the Mozambique Channel could act as important retention areas and sources of i "see6stock" for maintenance of the function and dillersitv of the lamer reoional biolooical , !I ecosystems. 103 104 large Marine EcosySlIlms ofthe Indian Ocean - . Introduction The western Indian Ocean is the site ofsome of the most dynamically varying-. large marine ecosystems (LMEs) that exist on our planet.
    [Show full text]
  • The Turtle and the Hare: Reef Fish Vs. Pelagic
    Part 5 in a series about inshore fi sh of Hawaii. The 12-part series is a project of the Hawaii Fisheries Local Action Strategy. THE TURTLE AND THE HARE: Surgeonfi sh REEF FISH VS. PELAGIC BY SCOTT RADWAY Tuna Photo: Scott Radway Photo: Reef fi sh and pelagic fi sh live in the same ocean, but lead very different lives. Here’s a breakdown of the differences between the life cycles of the two groups. PELAGIC Pelagic Fish TOPIC Photo: Gilbert van Ryckevorsel Photo: VS. REEF • Can grow up to 30 pounds in fi rst two years • Early sexual maturity WHEN TUNA COME UPON A BIG SCHOOL OF PREY FISH, IT’S FRENETIC. “Tuna can eat up to a quarter • Periodically abundant recruitment of their body weight in one day,” says University of Hawaii professor Charles Birkeland. Feeding activity is some- • Short life times so intense a tuna’s body temperature rises above the water temperature, causing “burns” in the muscle • Live in schools tissue and lowering the market value of the fi sh. • Travel long distances Other oceanic, or pelagic, fi sh, like the skipjack and the mahimahi, feed the same way, searching the ocean for (Hawaii to Philippines) pockets of food fi sh and gorging themselves. • Rapid population turnover On a coral reef, fi sh life is very different. On a reef, it might appear that there are plenty of fi sh for eating, but it is far from the all-you-can-eat buffet Reef Fish pelagic fi sh can fi nd in schooling prey fi sh.
    [Show full text]
  • Postrelease Survival, Vertical and Horizontal Movements, and Thermal Habitats of Five Species of Pelagic Sharks in the Central
    341 Abstract—From 2001 to 2006, 71 Postrelease survival, vertical and horizontal pop-up satellite archival tags (PSATs) were deployed on five species of movements, and thermal habitats of five species pelagic shark (blue shark [Prionace glauca]; shortfin mako [Isurus oxy- of pelagic sharks in the central Pacific Ocean rinchus]; silky shark [Carcharhinus falciformis]; oceanic whitetip shark Michael K. Musyl (contact author)1 [C. longimanus]; and bigeye thresher 2 [Alopias superciliosus]) in the central Richard W. Brill Pacific Ocean to determine species- Daniel S. Curran3 specific movement patterns and sur- 4 vival rates after release from longline Nuno M. Fragoso fishing gear. Only a single postrelease Lianne M. McNaughton1 mortality could be unequivocally doc- Anders Nielsen5 umented: a male blue shark which 3* succumbed seven days after release. Bert S. Kikkawa Meta-analysis of published reports Christopher D. Moyes6 and the current study (n=78 reporting Email address for contact author: [email protected] PSATs) indicated that the summary effect of postrelease mortality for blue * Deceased 3 Pacific Islands Fisheries Science Center sharks was 15% (95% CI, 8.5–25.1%) NOAA Fisheries 1 University of Hawaii and suggested that catch-and-release 2570 Dole Street Joint Institute for Marine and Atmospheric in longline fisheries can be a viable Honolulu, Hawaii 96822 Research (JIMAR) management tool to protect paren- Kewalo Research Facility/NOAA 4 Large Pelagics Research Center tal biomass in shark populations. 1125B Ala Moana Boulevard
    [Show full text]
  • NO. 306 Life-Cycle Spatial Patterns of Small Pelagic Fish in the Northeast Atlantic
    ICES COOPERATIVE RESEARCH REPORT RAPPORT DES RECHERCHES COLLECTIVES NO. 306 OCTOBER 2010 Life-cycle spatial patterns of small pelagic fish in the Northeast Atlantic Editor Pierre Petitgas Authors Jürgen Alheit ● Douglas Beare ● Miguel Bernal Michele Casini ● Maurice Clarke ● Unaï Cotano Mark Dickey-Collas ● Leonie Dransfeld ● Clementine Harma Mikko Heino ● Jacques Massé ● Christian Möllmann Enrique Nogueira ● Pierre Petitgas ● David Reid Alexandra Silva ● Georg Skaret ● Aril Slotte Yorgos Stratoudakis ● Andrés Uriarte ● Rüdiger Voss International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44 – 46 DK‐1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: Petitgas, P. (Ed.) 2010. Life cycle spatial patterns of small pelagic fish in the Northeast Atlantic. ICES Cooperative Research Report No. 306. 93 pp. Series Editor: Emory D. Anderson For permission to reproduce material from this publication, please apply to the General Secretary. This document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the view of the Council. ISBN 978‐87‐7482‐081‐9 ISSN 1017 – 6195 © 2010 International Council for the Exploration of the Sea ICES Cooperative Research Report No. 306 | i Contents 1 Introduction....................................................................................................................1
    [Show full text]
  • Effect of Light on Juvenile Walleye Pollock Shoaling and Their Interaction with Predators
    MARINE ECOLOGY PROGRESS SERIES Vol. 167: 215-226, 1998 Published June 18 Mar Ecol Prog Ser l Effect of light on juvenile walleye pollock shoaling and their interaction with predators Clifford H. Ryer*, Bori L. Olla Fisheries Behavioral Ecology Group, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Hatfield Marine Science Center, Newport, Oregon 97365, USA ABSTRACT: Research was undertaken to examine the influence of light lntenslty on the shoaling behavior, activity and anti-predator behavior of juvenlle walleye pollock Theragra chalcogramrna. Under a 12 h light/l2 h dark photoperiod, juveniles displayed a diurnal shoaling and activity pattern, characterized by fish swimming in cohesive groups during the day, with a cessation of shoaling and decreased swlmmlng speeds at nlght. Prior studies of school~ngfishes have demonstrated distinct light thresholds below which school~ngabruptly ceases. To see if this threshold effect occurs in a predomi- nantly shoaling species, like juvenile walleye pollock, another experiment was undertaken in which illumination was lourered by orders of magnitude, glrrlng fish 20 mln to adapt to each light intensity Juvenlle walleye pollock were not characterized by a d~stinctlight threshold for shoaling; groups grad- ually dispersed as light levels decreased and gradually recoalesced as light levels increased. At light levels below 2.8 X 10.~pE SS' m-" juvenile walleye pollock were so dispersed as to no longer constitute a shoal. Exposure to simulated predation risk had differing effects upon fish behavior under light and dark cond~tionsBrief exposure to a mndc! prerlst~r:E !he .'ark c;i;ssd fish to ~WIIIIidsier, ior 5 or 6 min, than fish which had been similarly startled In the light.
    [Show full text]
  • Pelagic Fish Stocks of Lake Tanganyika: Biology & Exploitation
    RESEARCH FOR THE MANAGEMENT OF THE FISHERIES ON LAKE TANGANYIKA GCP/RAF/271/FIN-TD/53 (En) GCP/RAF/271/FIN-TD/53 (En) November 1996 PELAGIC FISH STOCKS OF LAKE TANGANYIKA: BIOLOGY AND EXPLOITATION by P. Mannini, E. Aro, I. Katonda, B. Kassaka, C. Mambona, G. Milindi, P. Paffen, P. Verburg FINNISH INTERNATIONAL DEVELOPMENT AGENCY FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Bujumbura, November 1996 The conclusions and recommendations given in this and other reports in the Research for the Management of the Fisheries on Lake Tanganyika Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or FINNIDA concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. PREFACE The Research for the Management of the Fisheries on Lake Tanganyika Project (Lake Tanganyika Research) became fully operational in January 1992. It is executed by the Food and Agriculture organization of the United Nations (FAO) and funded by the Finnish International Developmental Agency (FINNIDA) and the Arab Gulf Programme for United Nations Development Organizations (AGFUND). This project aims at the determination of the biological basis for fish production on Lake Tanganyika, in order to permit the formulation of a coherent lake—wide fisheries management policy for the four riparian States (Burundi, Tanzania, Zaïre and Zambia). Particular attention will be also given to the reinforcement of the skills and physical facilities of the fisheries research units in all four beneficiary countries as well as to the build- up of effective coordination mechanisms to ensure full collaboration between the Governments concerned.
    [Show full text]
  • Taxonomy and Ecology of the Deep-Pelagic Fish Family Melamphaidae, with Emphasis on Interactions with a Mid- Ocean Ridge System
    TAXONOMY AND ECOLOGY OF THE DEEP-PELAGIC FISH FAMILY MELAMPHAIDAE, WITH EMPHASIS ON INTERACTIONS WITH A MID- OCEAN RIDGE SYSTEM by Kyle Allen Bartow A Dissertation Submitted to the Faculty of The Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, FL December 2010 Copyright by Kyle Bartow 2010 ii ACKNOWLEDGEMENTS The research in this dissertation is due to funding from Tracey Sutton from the U.S. National Science Foundation Ocean Sciences Division – Biological Oceanography Program (OCE 0623568). Funding for travel and tuition were received for various parts of this project from Florida Atlantic University and Virginia Institute of Marine Science. I am grateful to the crew of the RV G.O. Sars, MAR-ECO and the staff of the Bergen Museum for the collection and curation of samples. I would also like to thank the U.S. National Museum of Natural History - Division of Fishes for allowing me into their enormous collection of melamphaid fishes and being so flexible and accommodating during the largest blizzard I've ever been in. The final entity that I would like to thank is MAR-ECO, through whose association I have been afforded many of these opportunities. I would like to thank Tracey Sutton for initially believing in me and my interest in deep-sea fish and research. Tracey not only offered me a place to fulfill my goals, but offered much support and encouragement during many of my trials and tribulations. Thanks are also due to the members of my advisory committee: Edie Widder, Jon Moore, C.
    [Show full text]
  • Small Pelagics in Upwelling Systems: Patterns of Interaction and Structural Changes in ‘‘Wasp-Waist’’ Ecosystems
    ICES Journal of Marine Science, 57: 603–618. 2000 doi:10.1006/jmsc.2000.0712, available online at http://www.idealibrary.com on Small pelagics in upwelling systems: patterns of interaction and structural changes in ‘‘wasp-waist’’ ecosystems Philippe Cury, Andrew Bakun, Robert J. M. Crawford, Astrid Jarre, Renato A. Quin˜ones, Lynne J. Shannon, and Hans M. Verheye Cury, P., Bakun, A., Crawford, R. J. M., Jarre, A., Quin˜ones, R. A., Shannon, L. J., and Verheye, H. M. 2000. Small pelagics in upwelling systems: patterns of interaction and structural changes in ‘‘wasp-waist’’ ecosystems. – ICES Journal of Marine Science, 57: 603–618. In upwelling ecosystems, there is often a crucial intermediate trophic level, occupied by small, plankton-feeding pelagic fish dominated by one or a few schooling species. Their massive populations may vary radically in size under intensive exploitation. We have used decadal-scale time series to explore patterns of interactions between these fish, their prey, and their predators so as to quantify functional roles of small pelagic fish in those ecosystems. Top-down control of zooplankton is detected off South Africa, Ghana, Japan, and in the Black Sea. Conversely, bottom-up control of predators, such as predatory fish and marine birds, is observed in the Benguela, Guinea, and Humboldt currents. Thus small pelagic fish exert a major control on the trophic dynamics of upwelling ecosystems and constitute midtrophic-level ‘‘wasp-waist’’ populations. Ecosystem effects of fishing are addressed by considering potential structural changes at different scales of observation, ranging from individ- uals, via school dynamics, to food webs.
    [Show full text]