Expression of Mirnas from the Imprinted DLK1/DIO3 Locus Signals the Osteogenic Potential of Human Pluripotent Stem Cells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amh) Relative to Sox9a, Sox9b, and Cyp19a1a, During Gonad Development
Gene Expression Patterns 5 (2005) 655–667 www.elsevier.com/locate/modgep Characterization and expression pattern of zebrafish anti-Mu¨llerian hormone (amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development Adriana Rodrı´guez-Marı´, Yi-Lin Yan, Ruth A. BreMiller, Catherine Wilson, Cristian Can˜estro, John H. Postlethwait* Institute of Neuroscience, University of Oregon, 1425 E. 13th Avenue, Eugene, OR 97403, USA Received 28 January 2005; received in revised form 28 February 2005; accepted 28 February 2005 Available online 19 April 2005 Abstract The role of Anti-Mu¨llerian hormone (Amh) during gonad development has been studied extensively in mammals, but is less well understood in other vertebrates. In male mammalian embryos, Sox9 activates expression of Amh, which initiates the regression of the Mu¨llerian ducts and inhibits the expression of aromatase (Cyp19a1), the enzyme that converts androgens to estrogens. To better understand shared features of vertebrate gonadogenesis, we cloned amh cDNA from zebrafish, characterized its genomic structure, mapped it, analyzed conserved syntenies, studied its expression pattern in embryos, larvae, juveniles, and adults, and compared it to the expression patterns of sox9a, sox9b and cyp19a1a. We found that the onset of amh expression occurred while gonads were still undifferentiated and sox9a and cyp19a1a were already expressed. In differentiated gonads of juveniles, amh showed a sexually dimorphic expression pattern. In 31 days post-fertilization juveniles, testes expressed amh and sox9a, but not cyp19a1a, while ovaries expressed cyp19a1a and sox9b, but not amh.In adult testes, amh and sox9a were expressed in presumptive Sertoli cells. In adult ovaries, amh and cyp19a1a were expressed in granulosa cells surrounding the oocytes, and sox9b was expressed in a complementary fashion in the ooplasm of oocytes. -
Biochemical Mechanisms of Thyroid Hormone Deiodination
THYROID Volume 15, Number 8, 2005 © Mary Ann Liebert, Inc. Biochemical Mechanisms of Thyroid Hormone Deiodination George G.J.M. Kuiper, Monique H.A. Kester, Robin P. Peeters, and Theo J. Visser Deiodination is the foremost pathway of thyroid hormone metabolism not only in quantitative terms but also because thyroxine (T4) is activated by outer ring deiodination (ORD) to 3,3’,5-triiodothyronine (T3), whereas both T4 and T3 are inactivated by inner ring deiodination (IRD) to 3,3’,5-triiodothyronine and 3,3’- diiodothyronine, respectively. These reactions are catalyzed by three iodothyronine deiodinases, D1-3. Although they are homologous selenoproteins, they differ in important respects such as catalysis of ORD and/or IRD, deiodination of sulfated iodothyronines, inhibition by the thyrostatic drug propylthiouracil, and regulation during fetal and neonatal development, by thyroid state, and during illness. In this review we will briefly discuss recent developments in these different areas. These have resulted in the emerging view that the biological activity of thyroid hormone is regulated locally by tissue-specific regulation of the different deiodinases. HYROID HORMONE is essential for growth, development, thyrostatic drug 6-propyl-2-thiouracil (PTU). D1 activity is Tand regulation of energy metabolism (1–3). Amphibian positively regulated by T3, reflecting regulation of D1 ex- metamorphosis is an important example of thyroid hormone pression by T3 at the pretranslational level. actions on development (4). Equally well known is the crit- In humans, D2 activity is found in brain, anterior pitu- ical role of thyroid hormone in development and function itary, placenta, thyroid and skeletal muscle, and D2 mRNA of the human central nervous system (5,6). -
The Imprinted DLK1-MEG3 Gene Region on Chromosome 14Q32.2 Alters Susceptibility to Type 1 Diabetes
LETTERS The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes Chris Wallace, Deborah J Smyth, Meeta Maisuria-Armer, Neil M Walker, John A Todd & David G Clayton Genome-wide association (GWA) studies to map common score tests were based on the Cochran-Armitage test, with a Mantel disease susceptibility loci have been hugely successful, with extension to allow combination over different strata (UK region in over 300 reproducibly associated loci reported to date1. the case of the WTCCC and T1DGC samples, and estimated ancestry However, these studies have not yet provided convincing score derived from principal components in the case of the GoKinD- evidence for any susceptibility locus subject to parent-of-origin NIMH samples3). For imputed SNPs, we calculated the score statistics effects. Using imputation to extend existing GWA datasets2–4, using the expected value of the imputed SNP, given observed SNPs, we have obtained robust evidence at rs941576 for paternally with the expectation calculated under the null hypothesis. inherited risk of type 1 diabetes (T1D; ratio of allelic effects for Overall, there was some overdispersion of test statistics (λ = 1.14 and paternal versus maternal transmissions = 0.75; 95% confidence 1.09 for 1 and 2 degrees of freedom, respectively). This was consistent interval (CI) = 0.71–0.79). This marker is in the imprinted with the large sample size (almost 17,000 samples) and the overdisper- region of chromosome 14q32.2, which contains the functional sion observed in earlier analysis of these data without HapMap imputa- candidate gene DLK1. Our meta-analysis also provided support tion4. -
REVIEW Iodothyronine Deiodinase Structure and Function
189 REVIEW Iodothyronine deiodinase structure and function: from ascidians to humans Veerle M Darras and Stijn L J Van Herck Animal Physiology and Neurobiology Section, Department of Biology, Laboratory of Comparative Endocrinology, KU Leuven, Naamsestraat 61, PO Box 2464, B-3000 Leuven, Belgium (Correspondence should be addressed to V M Darras; Email: [email protected]) Abstract Iodothyronine deiodinases are important mediators of thyroid of each of them, however, varies amongst species, develop- hormone (TH) action. They are present in tissues throughout mental stages and tissues. This is especially true for 0 the body where they catalyse 3,5,3 -triiodothyronine (T3) amphibians, where the impact of D1 may be minimal. D2 production and degradation via, respectively, outer and inner and D3 expression and activity respond to thyroid status in ring deiodination. Three different types of iodothyronine an opposite and conserved way, while the response of D1 is deiodinases (D1, D2 and D3) have been identified in variable, especially in fish. Recently, a number of deiodinases vertebrates from fish to mammals. They share several have been cloned from lower chordates. Both urochordates common characteristics, including a selenocysteine residue and cephalochordates possess selenodeiodinases, although in their catalytic centre, but show also some type-specific they cannot be classified in one of the three vertebrate types. differences. These specific characteristics seem very well In addition, the cephalochordate amphioxus also expresses conserved for D2 and D3, while D1 shows more evolutionary a non-selenodeiodinase. Finally, deiodinase-like sequences diversity related to its Km, 6-n-propyl-2-thiouracil sensitivity have been identified in the genome of non-deuterostome and dependence on dithiothreitol as a cofactor in vitro. -
Regulation of Cell Polarity and Invasion by TGF-Β and BMP Signaling
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1403 Regulation of cell polarity and invasion by TGF-β and BMP signaling MAHSA SHAHIDI DADRAS ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-513-0171-6 UPPSALA urn:nbn:se:uu:diva-334409 2017 Dissertation presented at Uppsala University to be publicly examined in B42, BMC, Husargatan 3, Uppsala, Friday, 19 January 2018 at 13:00 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Professor Petra Knaus (Free University of Berlin). Abstract Shahidi Dadras, M. 2017. Regulation of cell polarity and invasion by TGF-β and BMP signaling. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1403. 53 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0171-6. Transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signaling pathways are involved in many physiological processes during embryonic and adult life. TGF- β promotes epithelial to mesenchymal transition (EMT). We identified a gene target of TGF- β signaling, encoding the salt-inducible kinase 1 (SIK1). A potential substrate of this kinase, the polarity protein Par3, is an established regulator of tight junction assembly. SIK1 associates with Par3, can potentially phosphorylate Par3 and leads to its degradation, contributing to tight junction disassembly. Glioblastoma multiforme (GBM) is a common malignancy in the central nervous system, characterized by high heterogeneity, invasiveness, and resistance to therapy. One of the causes of heterogeneity and therapy-resistance is the existence of glioblastoma stem cells (GSCs). TGF- β signaling promotes self-renewal while BMP signaling induces differentiation of GSCs. -
Imprinted Gene Expression at the Dlk1-Dio3 Cluster Is Controlled by Both Maternal and Paternal
bioRxiv preprint doi: https://doi.org/10.1101/536102; this version posted January 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Imprinted gene expression at the Dlk1-Dio3 cluster is controlled by both maternal and paternal IG-DMRs in a tissue-specific fashion. Katherine A. Alexander 2 and María J. García-García 1* 1 Department of Molecular Biology and Genetics, Cornell University. Ithaca. NY. 14853. USA 2 Current address: Department of Cellular and Developmental Biology, University of Pennsylvania. Philadelphia PA, 19103, USA * corresponding author: [email protected] Short title: Tissue-specific imprinting control Keywords: imprinting, TRIM28, IG-DMR, Dlk1, Gtl2, PRO-seq 1 bioRxiv preprint doi: https://doi.org/10.1101/536102; this version posted January 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Imprinting at the Dlk1-Dio3 cluster is controlled by the IG-DMR, an imprinting control region differentially methylated between maternal and paternal chromosomes. The maternal IG-DMR is essential for imprinting control, functioning as a cis enhancer element. Meanwhile, DNA methylation at the paternal IG-DMR is thought to prevent enhancer activity. To explore whether suppression of enhancer activity at the methylated IG-DMR requires the transcriptional repressor TRIM28, we analyzed Trim28chatwo embryos and performed epistatic experiments with IG-DMR deletion mutants. We found that while TRIM28 regulates the enhancer properties of the paternal IG-DMR, it also controls imprinting through other mechanisms. -
Decreased Expression of the Thyroid Hormone-Inactivating Enzyme Type
www.nature.com/scientificreports OPEN Decreased expression of the thyroid hormone‑inactivating enzyme type 3 deiodinase is associated with lower survival rates in breast cancer Iuri Martin Goemann1, Vicente Rodrigues Marczyk1,5, Mariana Recamonde‑Mendoza2,3, Simone Magagnin Wajner1,5, Marcia Silveira Graudenz4,5 & Ana Luiza Maia 1,5* Thyroid hormones (THs) are critical regulators of cellular processes, while changes in their levels impact all the hallmarks of cancer. Disturbed expression of type 3 deiodinase (DIO3), the main TH‑inactivating enzyme, occurs in several human neoplasms and has been associated with adverse outcomes. Here, we investigated the patterns of DIO3 expression and its prognostic signifcance in breast cancer. DIO3 expression was evaluated by immunohistochemistry in a primary cohort of patients with breast cancer and validated in a second cohort using RNA sequencing data from the TCGA database. DNA methylation data were obtained from the same database. DIO3 expression was present in normal and tumoral breast tissue. Low levels of DIO3 expression were associated with increased mortality in the primary cohort. Accordingly, low DIO3 mRNA levels were associated with an increased risk of death in a multivariate model in the validation cohort. DNA methylation analysis revealed that the DIO3 gene promoter is hypermethylated in tumors when compared to normal tissue. In conclusion, DIO3 is expressed in normal and tumoral breast tissue, while decreased expression relates to poor overall survival in breast cancer patients. Finally, loss of DIO3 expression is associated with hypermethylation of the gene promoter and might have therapeutic implications. Breast cancer is the most common cancer in women worldwide, accounting for more than two million new cancer cases and 14.9% of all cancer-related deaths in women in 2018 1. -
DLK (DLK1) (NM 003836) Human Tagged ORF Clone Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC202923 DLK (DLK1) (NM_003836) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: DLK (DLK1) (NM_003836) Human Tagged ORF Clone Tag: Myc-DDK Symbol: DLK1 Synonyms: Delta1; DLK; DLK-1; FA1; pG2; Pref-1; PREF1; ZOG Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC202923 ORF sequence Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGACCGCGACCGAAGCCCTCCTGCGCGTCCTCTTGCTCCTGCTGGCTTTCGGCCACAGCACCTATGGGG CTGAATGCTTCCCGGCCTGCAACCCCCAAAATGGATTCTGCGAGGATGACAATGTTTGCAGGTGCCAGCC TGGCTGGCAGGGTCCCCTTTGTGACCAGTGCGTGACCTCTCCCGGCTGCCTTCACGGACTCTGTGGAGAA CCCGGGCAGTGCATTTGCACCGACGGCTGGGACGGGGAGCTCTGTGATAGAGATGTTCGGGCCTGCTCCT CGGCCCCCTGTGCCAACAACGGGACCTGCGTGAGCCTGGACGATGGCCTCTATGAATGCTCCTGTGCCCC CGGGTACTCGGGAAAGGACTGCCAGAAAAAGGACGGGCCCTGTGTGATCAACGGCTCCCCCTGCCAGCAC GGAGGCACCTGCGTGGATGATGAGGGCCGGGCCTCCCATGCCTCCTGCCTGTGCCCCCCTGGCTTCTCAG GCAATTTCTGCGAGATCGTGGCCAACAGCTGCACCCCCAACCCATGCGAGAACGACGGCGTCTGCACTGA CATCGGGGGCGACTTCCGCTGCCGGTGCCCAGCCGGCTTCATCGACAAGACCTGCAGCCGCCCGGTGACC AACTGCGCCAGCAGCCCGTGCCAGAACGGGGGCACCTGCCTGCAGCACACCCAGGTGAGCTACGAGTGTC TGTGCAAGCCCGAGTTCACAGGTCTCACCTGTGTCAAGAAGCGCGCGCTGAGCCCCCAGCAGGTCACCCG TCTGCCCAACGGCTATGGGCTGGCCTACCGCCTGACCCCTGGGGTGCACGAGCTGCCGGTGCAGCAGCCG -
The Long Non-Coding RNA Meg3 Is Dispensable for Hematopoietic Stem Cells
www.nature.com/scientificreports OPEN The long non-coding RNA Meg3 is dispensable for hematopoietic stem cells Received: 10 October 2018 Pia Sommerkamp1,2,3, Simon Renders1,2, Luisa Ladel1,2, Agnes Hotz-Wagenblatt 4, Accepted: 2 January 2019 Katharina Schönberger1,2,5, Petra Zeisberger1,2, Adriana Przybylla1,2, Markus Sohn1,2, Published: xx xx xxxx Yunli Zhou6, Anne Klibanski6, Nina Cabezas-Wallscheid1,2,5 & Andreas Trumpp1,2 The long non-coding RNA (lncRNA) Maternally Expressed Gene 3 (Meg3) is encoded within the imprinted Dlk1-Meg3 gene locus and is only maternally expressed. Meg3 has been shown to play an important role in the regulation of cellular proliferation and functions as a tumor suppressor in numerous tissues. Meg3 is highly expressed in mouse adult hematopoietic stem cells (HSCs) and strongly down-regulated in early progenitors. To address its functional role in HSCs, we used MxCre to conditionally delete Meg3 in the adult bone marrow of Meg3mat-fox/pat-wt mice. We performed extensive in vitro and in vivo analyses of mice carrying a Meg3 defcient blood system, but neither observed impaired hematopoiesis during homeostatic conditions nor upon serial transplantation. Furthermore, we analyzed VavCre Meg3mat-fox/pat-wt mice, in which Meg3 was deleted in the embryonic hematopoietic system and unexpectedly this did neither generate any hematopoietic defects. In response to interferon-mediated stimulation, Meg3 defcient adult HSCs responded highly similar compared to controls. Taken together, we report the fnding, that the highly expressed imprinted lncRNA Meg3 is dispensable for the function of HSCs during homeostasis and in response to stress mediators as well as for serial reconstitution of the blood system in vivo. -
The Dlk1 and Gtl2 Genes Are Linked and Reciprocally Imprinted
Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION entially methylated cis-acting imprinting control ele- The Dlk1 and Gtl2 genes are ment (Thorvaldson et al. 1998). Third, a majority of im- linked and reciprocally printed genes for which a function has been identified imprinted code for proteins involved in the control of embryonic growth (Tilghman 1999). Jennifer V. Schmidt,1,2 Paul G. Matteson,2 Given the role of imprinted genes in fetal growth it is Beverly K. Jones, Xiao-Juan Guan, not surprising that they are often expressed in the pla- and Shirley M. Tilghman3 centa, the primary tissue regulating nutrient transfer be- tween mother and fetus. To identify new imprinted Howard Hughes Medical Institute and Department genes, we designed an allelic differential display strategy of Molecular Biology, Princeton University, Princeton, (Hagiwara et al. 1997) using placental mRNA derived New Jersey 08544 USA from two closely related species of North American deer mice, Peromyscus maniculatus (BW) and Peromyscus Genes subject to genomic imprinting exist in large chro- polionotus (PO). These mice display a high degree of mosomal domains, probably reflecting coordinate regu- polymorphism (Vrana et al. 1998), making them useful lation of the genes within a cluster. Such regulation has for screens that depend on allelic differences. been demonstrated for the H19, Igf2, and Ins2 genes that We report here the paternal-specific expression of the share a bifunctional imprinting control region. We have Delta-like (Dlk1) gene in both Peromyscus and the labo- identified the Dlk1 gene as a new imprinted gene that is ratory mouse genus Mus. -
The Nuclear Receptor REVERB Represses the Transcription of Growthdifferentiation Factor 10 and 15 Genes in Rat Endometrium Strom
Physiological Reports ISSN 2051-817X ORIGINAL RESEARCH The nuclear receptor REV-ERBa represses the transcription of growth/differentiation factor 10 and 15 genes in rat endometrium stromal cells Lijia Zhao1, Keishiro Isayama1, Huatao Chen1,*, Nobuhiko Yamauchi1, Yasufumi Shigeyoshi2, Seiichi Hashimoto3 & Masa-aki Hattori1 1 Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan 2 Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka, Japan 3 Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Keywords Abstract Circadian clock, decidualization, growth/ differentiation factors, REV-ERBa. Cellular oscillators in the uterus play critical roles in the gestation processes of mammals through entraining of the clock proteins to numerous downstream Correspondence genes, including growth/differentiation factor (Gdf)10 and Gdf15. The expres- Masa-aki Hattori, Department of Animal and sion of Gdf10 and Gdf15 is significantly increased in the uterus during decidu- Marine Bioresource Sciences, Graduate alization, but the mechanism underlying the regulation of Gdf gene expression School of Agriculture, Kyushu University, in the uterus is poorly understood. Here, we focused on the function of the Hakozaki, Higashi-ku, Fukuoka 812-8581, cellular oscillators in the expression of Gdf family by using uterine endome- Japan. Tel: +81-92-642-2938 trial stromal cells (UESCs) isolated from pregnant Per2-dLuc transgenic rats. Fax: +81-92-642-2938 A significant decline of Per2-dLuc bioluminescence activity was induced in E-mail: [email protected] in vitro decidualized UESCs, and concomitantly the expression of canonical clock genes was downregulated. Conversely, the expression of Gdf10 and ⁄ Present address Gdf15 of the Gdf was upregulated. -
New Mesh Headings for 2018 Single Column After Cutover
New MeSH Headings for 2018 Listed in alphabetical order with Heading, Scope Note, Annotation (AN), and Tree Locations 2-Hydroxypropyl-beta-cyclodextrin Derivative of beta-cyclodextrin that is used as an excipient for steroid drugs and as a lipid chelator. Tree locations: beta-Cyclodextrins D04.345.103.333.500 D09.301.915.400.375.333.500 D09.698.365.855.400.375.333.500 AAA Domain An approximately 250 amino acid domain common to AAA ATPases and AAA Proteins. It consists of a highly conserved N-terminal P-Loop ATPase subdomain with an alpha-beta-alpha conformation, and a less-conserved C- terminal subdomain with an all alpha conformation. The N-terminal subdomain includes Walker A and Walker B motifs which function in ATP binding and hydrolysis. Tree locations: Amino Acid Motifs G02.111.570.820.709.275.500.913 AAA Proteins A large, highly conserved and functionally diverse superfamily of NTPases and nucleotide-binding proteins that are characterized by a conserved 200 to 250 amino acid nucleotide-binding and catalytic domain, the AAA+ module. They assemble into hexameric ring complexes that function in the energy-dependent remodeling of macromolecules. Members include ATPASES ASSOCIATED WITH DIVERSE CELLULAR ACTIVITIES. Tree locations: Acid Anhydride Hydrolases D08.811.277.040.013 Carrier Proteins D12.776.157.025 Abuse-Deterrent Formulations Drug formulations or delivery systems intended to discourage the abuse of CONTROLLED SUBSTANCES. These may include physical barriers to prevent chewing or crushing the drug; chemical barriers that prevent extraction of psychoactive ingredients; agonist-antagonist combinations to reduce euphoria associated with abuse; aversion, where controlled substances are combined with others that will produce an unpleasant effect if the patient manipulates the dosage form or exceeds the recommended dose; delivery systems that are resistant to abuse such as implants; or combinations of these methods.