Reconstruction of Ice-Sheet Changes in the Antarctic Peninsula Since the Last Glacial Maximum * Colm O Cofaigh A, , Bethan J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Bransfield Current System
Deep-Sea Research I 58 (2011) 390–402 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri The Bransfield current system Pablo Sangra a,n, Carmen Gordo a,Mo´ nica Herna´ndez-Arencibia a, Angeles Marrero-Dı´az a, Angel Rodrı´guez-Santana a, Alexander Stegner b,c, Antonio Martı´nez-Marrero a, Josep L. Pelegrı´ d, Thierry Pichon c a Departamento de Fı´sica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas, Spain b Laboratoire de Me´te´orologie Dynamique (LMD), CNRS, Ecole Polytechnique, 91128 Palaiseau, France c Unite´ de Me´canique (UME), ENSTA Chemin de la Huniere, 91126 Palaiseau, France d Departament d’Oceanografı´aFı´sica, Institut de Ciencies del Mar, CSIC, Spain article info abstract Article history: We use hydrographic data collected during two interdisciplinary cruises, CIEMAR and BREDDIES, to Received 24 July 2010 describe the mesoscale variability observed in the Central Basin of the Bransfield Strait (Antarctica). The Received in revised form main mesoscale feature is the Bransfield Front and the related Bransfield Current, which flows 16 December 2010 northeastward along the South Shetland Island Slope. A laboratory model suggests that this current Accepted 25 January 2011 behaves as a gravity current driven by the local rotation rate and the density differences between the Available online 19 February 2011 Transitional Zonal Water with Bellingshausen influence (TBW) and the Transitional Zonal Water with Keywords: Weddell Sea influence (TWW). Below the Bransfield Front we observe a narrow (10 km wide) tongue of Bransfield Strait Circumpolar Deep Water all along the South Shetland Islands Slope. -
Changes of Wilkins Ice Shelf Over the Past 15 Years and Inferences on Its Stability M
Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability M. Braun, A. Humbert, A. Moll To cite this version: M. Braun, A. Humbert, A. Moll. Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability. The Cryosphere Discussions, Copernicus, 2008, 2 (3), pp.341-382. hal-00298543 HAL Id: hal-00298543 https://hal.archives-ouvertes.fr/hal-00298543 Submitted on 23 May 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Cryosphere Discuss., 2, 341–382, 2008 The Cryosphere www.the-cryosphere-discuss.net/2/341/2008/ Discussions TCD © Author(s) 2008. This work is distributed under 2, 341–382, 2008 the Creative Commons Attribution 3.0 License. The Cryosphere Discussions is the access reviewed discussion forum of The Cryosphere Changes of Wilkins Ice Shelf M. Braun et al. Title Page Changes of Wilkins Ice Shelf over the past Abstract Introduction 15 years and inferences on its stability Conclusions References Tables Figures M. Braun1, A. Humbert2, and A. Moll1 ◭ ◮ 1Center for Remote Sensing of Land Surfaces (ZFL), University of Bonn, Germany 2Institute for Geophysics, University of Muenster, Germany ◭ ◮ Received: 15 April 2008 – Accepted: 6 May 2008 – Published: 23 May 2008 Back Close Correspondence to: M. -
Along-Shelf Connectivity and Circumpolar Gene Flow in Antarctic
www.nature.com/scientificreports OPEN Along-shelf connectivity and circumpolar gene fow in Antarctic silverfsh (Pleuragramma Received: 16 March 2018 Accepted: 12 November 2018 antarctica) Published: xx xx xxxx Jilda Alicia Caccavo 1, Chiara Papetti1,2, Maj Wetjen3, Rainer Knust4, Julian R. Ashford5 & Lorenzo Zane1,2 The Antarctic silverfsh (Pleuragramma antarctica) is a critically important forage species with a circumpolar distribution and is unique among other notothenioid species for its wholly pelagic life cycle. Previous studies have provided mixed evidence of population structure over regional and circumpolar scales. The aim of the present study was to test the recent population hypothesis for Antarctic silverfsh, which emphasizes the interplay between life history and hydrography in shaping connectivity. A total of 1067 individuals were collected over 25 years from diferent locations on a circumpolar scale. Samples were genotyped at ffteen microsatellites to assess population diferentiation and genetic structuring using clustering methods, F-statistics, and hierarchical analysis of variance. A lack of diferentiation was found between locations connected by the Antarctic Slope Front Current (ASF), indicative of high levels of gene fow. However, gene fow was signifcantly reduced at the South Orkney Islands and the western Antarctic Peninsula where the ASF is absent. This pattern of gene fow emphasized the relevance of large-scale circulation as a mechanism for circumpolar connectivity. Chaotic genetic patchiness characterized population structure over time, with varying patterns of diferentiation observed between years, accompanied by heterogeneous standard length distributions. The present study supports a more nuanced version of the genetic panmixia hypothesis that refects physical-biological interactions over the life history. -
Late Quaternary Environmental Changes in Marguerite Bay, Antarctic Peninsula, Inferred from Lake Sediments and Raised Beaches
Quaternary Science Reviews 68 (2013) 216e236 Contents lists available at SciVerse ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Late Quaternary environmental changes in Marguerite Bay, Antarctic Peninsula, inferred from lake sediments and raised beaches Dominic A. Hodgson a,*,1, Stephen J. Roberts a,1, James A. Smith a, Elie Verleyen b, Mieke Sterken b, Minke Labarque b, Koen Sabbe b, Wim Vyverman b, Claire S. Allen a, Melanie J. Leng c, Charlotte Bryant d a NERC British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK b Department of Biology, Section of Protistology and Aquatic Ecology, University of Ghent, Krijgslaan 281 S8, 9000 Gent, Belgium c NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham NG12 5GG, UK d NERC Radiocarbon Facility, Scottish Enterprise Technology Park, Rankine Avenue, East Kilbride, Scotland G75 OQF, UK article info abstract Article history: The Antarctic Peninsula is one of the fastest-warming regions on Earth, but its palaeoenvironmental Received 4 October 2012 history south of 63 latitude is relatively poorly documented, relying principally on the marine geological Received in revised form record and short ice cores. In this paper, we present evidence of late-Quaternary environmental change 30 January 2013 from the Marguerite Bay region combining data from lake sediment records on Horseshoe Island and Accepted 1 February 2013 Pourquoi-Pas Island, and raised beaches at Horseshoe Island, Pourquoi-Pas Island and Calmette Bay. Lake Available online 27 March 2013 sediments were radiocarbon dated and analysed using a combination of sedimentological, geochemical and microfossil methods. Raised beaches were surveyed and analysed for changes in clast composition, Keywords: Antarctic Peninsula size and roundness. -
Flnitflrcililcl
flNiTflRCililCl A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) svs-r^s* ■jffim Nine noses pointing home. A team of New Zealand huskies on the way back to Scott Base after a run on the sea ice of McMurdo Sound. Black Island is in the background. Pholo by Colin Monteath \f**lVOL Oy, KUNO. O OHegisierea Wellington, atNew kosi Zealand, uttice asHeadquarters, a magazine. n-.._.u—December, -*r\n*1981 SOUTH GEORGIA SOUTH SANDWICH Is- / SOUTH ORKNEY Is £ \ ^c-c--- /o Orcadas arg \ XJ FALKLAND Is /«Signy I.uk > SOUTH AMERICA / /A #Borga ) S y o w a j a p a n \ £\ ^> Molodezhnaya 4 S O U T H Q . f t / ' W E D D E L L \ f * * / ts\ xr\ussR & SHETLAND>.Ra / / lj/ n,. a nn\J c y DDRONNING d y ^ j MAUD LAND E N D E R B Y \ ) y ^ / Is J C^x. ' S/ E A /CCA« « • * C",.,/? O AT S LrriATCN d I / LAND TV^ ANTARCTIC \V DrushsnRY,a«feneral Be|!rano ARG y\\ Mawson MAC ROBERTSON LAND\ \ aust /PENINSULA'5^ *^Rcjnne J <S\ (see map below) VliAr^PSobral arg \ ^ \ V D a v i s a u s t . 3_ Siple _ South Pole • | U SA l V M I IAmundsen-Scott I U I I U i L ' l I QUEEN MARY LAND ^Mir"Y {ViELLSWORTHTTH \ -^ USA / j ,pt USSR. ND \ *, \ Vfrs'L LAND *; / °VoStOk USSR./ ft' /"^/ A\ /■■"j■ - D:':-V ^%. J ^ , MARIE BYRD\Jx^:/ce She/f-V^ WILKES LAND ,-TERRE , LAND \y ADELIE ,'J GEORGE VLrJ --Dumont d'Urville france Leningradskaya USSR ,- 'BALLENY Is ANTARCTIC PENIMSULA 1 Teniente Matienzo arg 2 Esperanza arg 3 Almirante Brown arg 4 Petrel arg 5 Deception arg 6 Vicecomodoro Marambio arg ' ANTARCTICA 7 Arturo Prat chile 8 Bernardo O'Higgins chile 9 P r e s i d e n t e F r e i c h i l e : O 5 0 0 1 0 0 0 K i l o m e t r e s 10 Stonington I. -
Fast Recession of the Northern Larsen Ice Shelf Monitored by Space Illlages
Annals of Glaciology 17 1993 © International Glaciological Society Fast recession of the northern Larsen Ice Shelf monitored by space illlages PEDRO SKY AReA Instituto Antdrtico Argentino, Cerrito 1248, 1010 Buenos Aires, Argentina. ABSTRACT. The rapid retreat and disintegration of the Larsen Ice Shelf sector extending north of Seal Nunataks (65° S), documented from the mid 1970s onwards by remote sensing, is presented and related to the Antarctic Peninsula climatic warming recorded over several past decades. A 1975 KOSMOS satellite photograph and a series of LANDS AT MSS and TM images taken in 1978, 1979, 1986, 1988 and 1989 were used to monitor the retreat of the ice shelf between Seal Nunataks and Prince Gustav Channel. The ice shelf has decreased by more than 30% during the period 1975-89 within the Christensen Island to Cape Longing region. Measure ments of the ice front position carried out in the field during late 1991 indicate that the recession between Lindenberg Island and Sobral Peninsula is still continuing, in some places at a rate of up to 2.5 km a,l. INTRODUCTION Until the late 1940s the Larsen Ice Shelf front extended from Cape Foster, the southern most tip of The Larsen Ice Shelf sector north of Robertson Island James Ross Island, and beyond Cape Longing to (Fig. I) represents the northernmost shelf ice in the Robertson Island (Koerner, 1964). The recession history Antarctic. In this region mean annual isotherms, normal since then until 1969, as well as the evidence of further ized at sea-level, range from about - 8°C to -5°C retreat observed by British Antarctic Survey (BAS) field (Reynolds, 1981 ). -
ARTICLE in PRESS + Model
ARTICLE IN PRESS + model YQRES-02696; No. of pages: 11: 4C: 2, 4 Quaternary Research xx (2006) xxx–xxx www.elsevier.com/locate/yqres A high resolution relative paleointensity record from the Gerlache-Boyd paleo-ice stream region, northern Antarctic Peninsula ⁎ Verónica Willmott a,b, Eugene W. Domack b, Miquel Canals a, , Stefanie Brachfeld c a Department of Stratigraphy, Paleontology and Marine Geosciences, University of Barcelona, Barcelona, Spain b Department of Geosciences, Hamilton College, Clinton, NY 13323, USA c Department of Earth and Environmental Studies, Montclair State University, NJ 07043, USA Received 9 August 2005 Abstract Herein we document and interpret an absolute chronological dating attempt using geomagnetic paleointensity data from a post-glacial sediment drape on the western Antarctic Peninsula continental shelf. Our results demonstrate that absolute dating can be established in Holocene Antarctic shelf sediments that lack suitable material for radiocarbon dating. Two jumbo piston cores of 10-m length were collected in the Western Bransfield Basin. The cores preserve a strong, stable remanent magnetization and meet the magnetic mineral assemblage criteria recommended for reliable paleointensity analyses. The relative paleomagnetic intensity records were tuned to published absolute and relative paleomagnetic stacks, which yielded a record of the last ∼8500 years for the post-glacial drape. Four tephra layers associated with documented eruptions of nearby Deception Island have been dated at 3.31, 3.73, 4.44, and 6.86 ± 0.07 ka using the geomagnetic paleointensity method. This study establishes the dual role of geomagnetic paleointensity and tephrochronology in marine sediments across both sides of the northern Antarctic Peninsula. -
Antarctic Peninsula—Weddell Sea 11Th March—22Nd March 2019 M/V Plancius
Antarctic Peninsula—Weddell Sea 11th March—22nd March 2019 M/V Plancius MV Plancius was named after the Dutch astronomer, cartographer, geologist and vicar Petrus Plancius (1552– 1622). Plancius was built in 1976 as an oceanographic research vessel for the Royal Dutch Navy and was named Hr. Ms. Tydeman. The ship sailed for the Royal Dutch Navy until June 2004 when she was purchased by Oceanwide Expeditions and completely refit in 2007, being converted into a 114-passenger expedition vessel. Plancius is 89 m (267 feet) long, 14.5 m (43 feet) wide and has a maximum draft of 5 m, with an Ice Strength rating of 1D, top speed of 12+ knots and three diesel engines generating 1230 hp each. Captain Artur Iakovlev and his international crew Including: Chief Officer: Francois Kwekkeboom [Netherlands] 2nd Officer: Matei Mocanu [Romania] 3rd Officer: Warren Villanueva [Philippines] Hotel Manager: Michael Frauendorfer [Austria] Assist. Hotel Manager: Alex Lyebyedyev [Ukraine] Head Chef: Khabir Moraes [India] Sous Chef: Ivan Yuriychuk [Ukraine] Ship’s Physician: Lisa van Turenhout [Netherlands] and: Expedition Leader: Katja Riedel [Germany/New-Zealand] Assist. Expedition Leader: Marijke de Boer [Netherlands] Expedition Guide: Hans Verdaat [Netherlands] Expedition Guide: Joselyn Fenstermacher [USA] Expedition Guide Martin Berg [Sweden] Expedition Guide: Nina Gallo [Australia] Expedition Guide: Laura Mony [Canada] Expedition Guide: Andrea Herbert [Germany] Welcome you on board! Day 1—March 11th, 2019 Embarkation—Ushuaia, Argentina GPS 08.00 Position: 54 °53’S/067°42’W Wind: SW 7 Sea State: Port Weather: Cloudy Air Temp: +8 °C Sea Temp: +9 °C So here we are at last in Tierra del Fuego, at the bottom of the world. -
Holocene Glacial and Climate History of Prince Gustav Channel, Northeastern Antarctic Peninsula
Quaternary Science Reviews 31 (2012) 93e111 Contents lists available at SciVerse ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Holocene glacial and climate history of Prince Gustav Channel, northeastern Antarctic Peninsula Mieke Sterken a,1, Stephen J. Roberts b,1, Dominic A. Hodgson b,1,*, Wim Vyverman a, Andrea L. Balbo b,2, Koen Sabbe a, Steven G. Moreton c, Elie Verleyen a a Laboratory of Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281-S8, B-9000 Gent, Belgium b British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK c Natural Environment Research Council Radiocarbon Facility, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, UK article info abstract Article history: The Antarctic Peninsula is one of the most rapidly warming regions on Earth, as evidenced by a recent Received 25 October 2010 increase in the intensity and duration of summer melting, the recession of glaciers and the retreat and Received in revised form collapse of ice shelves. Despite this, only a limited number of well-dated near shore marine and lake 26 October 2011 sediment based palaeoenvironmental records exist from this region; so our understanding of the longer- Accepted 31 October 2011 term context of this rapid climate change is limited. Here we provide new well-dated constraints on the Available online 12 December 2011 deglaciation history, and changes in sea ice and climate based on analyses of sedimentological proxies, diatoms and fossil pigments in a sediment core collected from an isolation basin on Beak Island in Prince Keywords: 0 0 Antarctic Peninsula Gustav Channel, NE Antarctic Peninsula (63 36 S, 57 20 W). -
ABSTRACT TAYLOR, RICHARD STANLEY. Evaluating the Effects Of
ABSTRACT TAYLOR, RICHARD STANLEY. Evaluating the Effects of Regional Climate Trends Along the West Antarctic Peninsula Shelf Based on the Distributions of Naturally Occurring Radiochemical Tracers within the Seabed. (Under the direction of Drs. David DeMaster and Christopher Osburn). Measurements of 230Th, 210Pb and 234Th activities were made on sediment cores collected along a N-S transect (exhibiting a sea-ice gradient) off the West Antarctic Peninsula. The resultant data, together with existing 14C sediment data, were used to evaluate the effects of regional warming on particle flux reaching the seabed on timescales from millennial to seasonal. Shelf samples were collected at five stations, over three cruises, between February 2008 and March 2009, as part of the FOODBANCS-2 Project. Sea-ice conditions (the number of days ice-free prior to core collection) were evaluated at the five stations to understand the relationship between ice abundance and particle flux. Based on the millennial tracer, 14C, particle flux along the peninsula decreases southward, consistent with the observed sea-ice gradient. 230Th data provide evidence that sediment focusing (i.e., lateral transport) occurs to a greater extent in the northern reaches of the study area as compared to the southernmost stations. 210Pb-based particle flux measurements (representing centurial trends) display a similar trend as 14C, showing higher particle flux in the northern study area stations (where sea-ice conditions are diminished) and lower flux southward as sea-ice conditions increase. Additionally, 210Pb data suggest that lateral transport plays an important role in sediment distributions on hundred-year timescales, which is explainable by the relatively short circulation times of peninsular waters relative to 210Pb’s half-life. -
The Bransfield Current System
Deep-Sea Research I ] (]]]]) ]]]–]]] Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri The Bransfield current system Pablo Sangra a,n, Carmen Gordo a,Mo´ nica Herna´ndez-Arencibia a, Angeles Marrero-Dı´az a, Angel Rodrı´guez-Santana a, Alexander Stegner b,c, Antonio Martı´nez-Marrero a, Josep L. Pelegrı´ d, Thierry Pichon c a Departamento de Fı´sica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas, Spain b Laboratoire de Me´te´orologie Dynamique (LMD), CNRS, Ecole Polytechnique, 91128 Palaiseau, France c Unite´ de Me´canique (UME), ENSTA Chemin de la Huniere, 91126 Palaiseau, France d Departament d’Oceanografı´aFı´sica, Institut de Ciencies del Mar, CSIC, Spain article info abstract Article history: We use hydrographic data collected during two interdisciplinary cruises, CIEMAR and BREDDIES, to Received 24 July 2010 describe the mesoscale variability observed in the Central Basin of the Bransfield Strait (Antarctica). The Received in revised form main mesoscale feature is the Bransfield Front and the related Bransfield Current, which flows 16 December 2010 northeastward along the South Shetland Island Slope. A laboratory model suggests that this current Accepted 25 January 2011 behaves as a gravity current driven by the local rotation rate and the density differences between the Transitional Zonal Water with Bellingshausen influence (TBW) and the Transitional Zonal Water with Keywords: Weddell Sea influence (TWW). Below the Bransfield Front we observe a narrow (10 km wide) tongue of Bransfield Strait Circumpolar Deep Water all along the South Shetland Islands Slope. -
Configuration of the Northern Antarctic Peninsula Ice Sheet at LGM Based on a New Synthesis of Seabed Imagery
The Cryosphere, 9, 613–629, 2015 www.the-cryosphere.net/9/613/2015/ doi:10.5194/tc-9-613-2015 © Author(s) 2015. CC Attribution 3.0 License. Configuration of the Northern Antarctic Peninsula Ice Sheet at LGM based on a new synthesis of seabed imagery C. Lavoie1,2, E. W. Domack3, E. C. Pettit4, T. A. Scambos5, R. D. Larter6, H.-W. Schenke7, K. C. Yoo8, J. Gutt7, J. Wellner9, M. Canals10, J. B. Anderson11, and D. Amblas10 1Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante, Sgonico, 34010, Italy 2Department of Geosciences/CESAM, University of Aveiro, Aveiro, 3810-193, Portugal 3College of Marine Science, University of South Florida, St. Petersburg, Florida 33701, USA 4Department of Geosciences, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA 5National Snow and Ice Data Center, University of Colorado, Boulder, Colorado 80309, USA 6British Antarctic Survey, Cambridge, Cambridgeshire, CB3 0ET, UK 7Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27568, Germany 8Korean Polar Research Institute, Incheon, 406-840, Republic of Korea 9Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204, USA 10Departament d’Estratigrafia, Paleontologia i Geociències Marines/GRR Marine Geosciences, Universitat de Barcelona, Barcelona 08028, Spain 11Department of Earth Science, Rice University, Houston, Texas 77251, USA Correspondence to: C. Lavoie ([email protected]) or E. W. Domack ([email protected]) Received: 13 September 2014 – Published in The Cryosphere Discuss.: 15 October 2014 Revised: 18 February 2015 – Accepted: 9 March 2015 – Published: 1 April 2015 Abstract. We present a new seafloor map for the northern centered on the continental shelf at LGM.