Antarctica and Academe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
'Landscapes of Exploration' Education Pack
Landscapes of Exploration February 11 – 31 March 2012 Peninsula Arts Gallery Education Pack Cover image courtesy of British Antarctic Survey Cover image: Launch of a radiosonde meteorological balloon by a scientist/meteorologist at Halley Research Station. Atmospheric scientists at Rothera and Halley Research Stations collect data about the atmosphere above Antarctica this is done by launching radiosonde meteorological balloons which have small sensors and a transmitter attached to them. The balloons are filled with helium and so rise high into the Antarctic atmosphere sampling the air and transmitting the data back to the station far below. A radiosonde meteorological balloon holds an impressive 2,000 litres of helium, giving it enough lift to climb for up to two hours. Helium is lighter than air and so causes the balloon to rise rapidly through the atmosphere, while the instruments beneath it sample all the required data and transmit the information back to the surface. - Permissions for information on radiosonde meteorological balloons kindly provided by British Antarctic Survey. For a full activity sheet on how scientists collect data from the air in Antarctica please visit the Discovering Antarctica website www.discoveringantarctica.org.uk and select resources www.discoveringantarctica.org.uk has been developed jointly by the Royal Geographical Society, with IBG0 and the British Antarctic Survey, with funding from the Foreign and Commonwealth Office. The Royal Geographical Society (with IBG) supports geography in universities and schools, through expeditions and fieldwork and with the public and policy makers. Full details about the Society’s work, and how you can become a member, is available on www.rgs.org All activities in this handbook that are from www.discoveringantarctica.org.uk will be clearly identified. -
Region 19 Antarctica Pg.781
Appendix B – Region 19 Country and regional profiles of volcanic hazard and risk: Antarctica S.K. Brown1, R.S.J. Sparks1, K. Mee2, C. Vye-Brown2, E.Ilyinskaya2, S.F. Jenkins1, S.C. Loughlin2* 1University of Bristol, UK; 2British Geological Survey, UK, * Full contributor list available in Appendix B Full Download This download comprises the profiles for Region 19: Antarctica only. For the full report and all regions see Appendix B Full Download. Page numbers reflect position in the full report. The following countries are profiled here: Region 19 Antarctica Pg.781 Brown, S.K., Sparks, R.S.J., Mee, K., Vye-Brown, C., Ilyinskaya, E., Jenkins, S.F., and Loughlin, S.C. (2015) Country and regional profiles of volcanic hazard and risk. In: S.C. Loughlin, R.S.J. Sparks, S.K. Brown, S.F. Jenkins & C. Vye-Brown (eds) Global Volcanic Hazards and Risk, Cambridge: Cambridge University Press. This profile and the data therein should not be used in place of focussed assessments and information provided by local monitoring and research institutions. Region 19: Antarctica Description Figure 19.1 The distribution of Holocene volcanoes through the Antarctica region. A zone extending 200 km beyond the region’s borders shows other volcanoes whose eruptions may directly affect Antarctica. Thirty-two Holocene volcanoes are located in Antarctica. Half of these volcanoes have no confirmed eruptions recorded during the Holocene, and therefore the activity state is uncertain. A further volcano, Mount Rittmann, is not included in this count as the most recent activity here was dated in the Pleistocene, however this is geothermally active as discussed in Herbold et al. -
Fig. Ap. 2.1. Denton Tending His Fairy Shrimp Collection
Fig. Ap. 2.1. Denton tending his fairy shrimp collection. 176 Appendix 1 Hatching and Rearing Back in the bowels of this book we noted that However, salts may leach from soils to ultimately if one takes dry soil samples from a pool basin, make the water salty, a situation which commonly preferably at its deepest point, one can then "just turns off hatching. Tap water is usually unsatis- add water and stir". In a day or two nauplii ap- factory, either because it has high TDS, or because pear if their cysts are present. O.K., so they won't it contains chlorine or chloramine, disinfectants always appear, but you get the idea. which may inhibit hatching or kill emerging If your desire is to hatch and rear fairy nauplii. shrimps the hi-tech way, you should get some As you have read time and again in Chapter 5, guidance from Brendonck et al. (1990) and temperature is an important environmental cue for Maeda-Martinez et al. (1995c). If you merely coaxing larvae from their dormant state. You can want to see what an anostracan is like, buy some guess what temperatures might need to be ap- Artemia cysts at the local aquarium shop and fol- proximated given the sample's origin. Try incu- low directions on the container. Should you wish bation at about 3-5°C if it came from the moun- to find out what's in your favorite pool, or gather tains or high desert. If from California grass- together sufficient animals for a study of behavior lands, 10° is a good level at which to start. -
Arctic and Antarctic Research Institute” Russian Antarctic Expedition
FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING State Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN ʋ2 (51) April - June 2010 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations St. Petersburg 2010 FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING State Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN ʋ2 (51) April - June 2010 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations Edited by V.V. Lukin St. Petersburg 2010 Editor-in-Chief - M.O. Krichak (Russian Antarctic Expedition –RAE) Authors and contributors Section 1 M. O. Krichak (RAE), Section 2 Ye. I. Aleksandrov (Department of Meteorology) Section 3 G. Ye. Ryabkov (Department of Long-Range Weather Forecasting) Section 4 A. I. Korotkov (Department of Ice Regime and Forecasting) Section 5 Ye. Ye. Sibir (Department of Meteorology) Section 6 I. V. Moskvin, Yu.G.Turbin (Department of Geophysics) Section 7 V. V. Lukin (RAE) Section 8 B. R. Mavlyudov (RAS IG) Section 9 V. L. Martyanov (RAE) Translated by I.I. Solovieva http://www.aari.aq/, Antarctic Research and Russian Antarctic Expedition, Reports and Glossaries, Quarterly Bulletin. Acknowledgements: Russian Antarctic Expedition is grateful to all AARI staff for participation and help in preparing this Bulletin. For more information about the contents of this publication, please, contact Arctic and Antarctic Research Institute of Roshydromet Russian Antarctic Expedition Bering St., 38, St. Petersburg 199397 Russia Phone: (812) 352 15 41; 337 31 04 Fax: (812) 337 31 86 E-mail: [email protected] CONTENTS PREFACE……………………….…………………………………….………………………….1 1. DATA OF AEROMETEOROLOGICAL OBSERVATIONS AT THE RUSSIAN ANTARCTIC STATIONS…………………………………….…………………………3 2. -
Concentrations, Particle-Size Distributions, and Dry Deposition fluxes of Aerosol Trace Elements Over the Antarctic Peninsula in Austral Summer
Atmos. Chem. Phys., 21, 2105–2124, 2021 https://doi.org/10.5194/acp-21-2105-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Concentrations, particle-size distributions, and dry deposition fluxes of aerosol trace elements over the Antarctic Peninsula in austral summer Songyun Fan1, Yuan Gao1, Robert M. Sherrell2, Shun Yu1, and Kaixuan Bu2 1Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ 07102, USA 2Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA Correspondence: Yuan Gao ([email protected]) Received: 1 July 2020 – Discussion started: 26 August 2020 Revised: 3 December 2020 – Accepted: 8 December 2020 – Published: 12 February 2021 Abstract. Size-segregated particulate air samples were col- sition processes may play a minor role in determining trace lected during the austral summer of 2016–2017 at Palmer element concentrations in surface seawater over the conti- Station on Anvers Island, western Antarctic Peninsula, to nental shelf of the western Antarctic Peninsula. characterize trace elements in aerosols. Trace elements in aerosol samples – including Al, P, Ca, Ti, V, Mn, Ni, Cu, Zn, Ce, and Pb – were determined by total digestion and a 1 Introduction sector field inductively coupled plasma mass spectrometer (SF-ICP-MS). The crustal enrichment factors (EFcrust) and Aerosols affect the climate through direct and indirect ra- k-means clustering results of particle-size distributions show diative forcing (Kaufman et al., 2002). The extent of such that these elements are derived primarily from three sources: forcing depends on both physical and chemical properties (1) regional crustal emissions, including possible resuspen- of aerosols, including particle size and chemical composi- sion of soils containing biogenic P, (2) long-range transport, tion (Pilinis et al., 1995). -
2. Disc Resources
An early map of the world Resource D1 A map of the world drawn in 1570 shows ‘Terra Australis Nondum Cognita’ (the unknown south land). National Library of Australia Expeditions to Antarctica 1770 –1830 and 1910 –1913 Resource D2 Voyages to Antarctica 1770–1830 1772–75 1819–20 1820–21 Cook (Britain) Bransfield (Britain) Palmer (United States) ▼ ▼ ▼ ▼ ▼ Resolution and Adventure Williams Hero 1819 1819–21 1820–21 Smith (Britain) ▼ Bellingshausen (Russia) Davis (United States) ▼ ▼ ▼ Williams Vostok and Mirnyi Cecilia 1822–24 Weddell (Britain) ▼ Jane and Beaufoy 1830–32 Biscoe (Britain) ★ ▼ Tula and Lively South Pole expeditions 1910–13 1910–12 1910–13 Amundsen (Norway) Scott (Britain) sledge ▼ ▼ ship ▼ Source: Both maps American Geographical Society Source: Major voyages to Antarctica during the 19th century Resource D3 Voyage leader Date Nationality Ships Most southerly Achievements latitude reached Bellingshausen 1819–21 Russian Vostok and Mirnyi 69˚53’S Circumnavigated Antarctica. Discovered Peter Iøy and Alexander Island. Charted the coast round South Georgia, the South Shetland Islands and the South Sandwich Islands. Made the earliest sighting of the Antarctic continent. Dumont d’Urville 1837–40 French Astrolabe and Zeelée 66°S Discovered Terre Adélie in 1840. The expedition made extensive natural history collections. Wilkes 1838–42 United States Vincennes and Followed the edge of the East Antarctic pack ice for 2400 km, 6 other vessels confirming the existence of the Antarctic continent. Ross 1839–43 British Erebus and Terror 78°17’S Discovered the Transantarctic Mountains, Ross Ice Shelf, Ross Island and the volcanoes Erebus and Terror. The expedition made comprehensive magnetic measurements and natural history collections. -
A NEWS BULLETIN Published Quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC)
A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) An English-born Post Office technician, Robin Hodgson, wearing a borrowed kilt, plays his pipes to huskies on the sea ice below Scott Base. So far he has had a cool response to his music from his New Zealand colleagues, and a noisy reception f r o m a l l 2 0 h u s k i e s . , „ _ . Antarctic Division photo Registered at Post Ollice Headquarters. Wellington. New Zealand, as a magazine. II '1.7 ^ I -!^I*"JTr -.*><\\>! »7^7 mm SOUTH GEORGIA, SOUTH SANDWICH Is- . C I R C L E / SOUTH ORKNEY Is x \ /o Orcadas arg Sanae s a Noydiazarevskaya ussr FALKLAND Is /6Signyl.uK , .60"W / SOUTH AMERICA tf Borga / S A A - S O U T H « A WEDDELL SHETLAND^fU / I s / Halley Bav3 MINING MAU0 LAN0 ENOERBY J /SEA uk'/COATS Ld / LAND T> ANTARCTIC ••?l\W Dr^hnaya^^General Belgrano arg / V ^ M a w s o n \ MAC ROBERTSON LAND\ '■ aust \ /PENINSULA' *\4- (see map betowi jrV^ Sobldl ARG 90-w {■ — Siple USA j. Amundsen-Scott / queen MARY LAND {Mirny ELLSWORTH" LAND 1, 1 1 °Vostok ussr MARIE BYRD L LAND WILKES LAND ouiiiv_. , ROSS|NZJ Y/lnda^Z / SEA I#V/VICTORIA .TERRE , **•»./ LAND \ /"AOELIE-V Leningradskaya .V USSR,-'' \ --- — -"'BALLENYIj ANTARCTIC PENINSULA 1 Tenitnte Matianzo arg 2 Esptrarua arg 3 Almirarrta Brown arc 4PttrtlAHG 5 Otcipcion arg 6 Vtcecomodoro Marambio arg * ANTARCTICA 7 Arturo Prat chile 8 Bernardo O'Higgins chile 1000 Miles 9 Prasid«fTtB Frei chile s 1000 Kilometres 10 Stonington I. -
Final Report of the Thirty-Second Antarctic Treaty Consultative Meeting
Final Report of the Thirty-second Antarctic Treaty Consultative Meeting ANTARCTIC TREATY CONSULTATIVE MEETING Final Report of the Thirty-second Antarctic Treaty Consultative Meeting Baltimore, United States 6–17 April 2009 Secretariat of the Antarctic Treaty Buenos Aires 2009 Antarctic Treaty Consultative Meeting (32nd : 2009 : Baltimore) Final Report of the Thirtieth Antarctic Treaty Consultative Meeting. Baltimore, United States, 6–17 April 2009. Buenos Aires : Secretariat of the Antarctic Treaty, 2009. 292 p. ISBN 978-987-1515-08-0 1. International law – Environmental issues. 2. Antarctic Treaty system. 3. Environmental law – Antarctica. 4. Environmental protection – Antarctica. DDC 341.762 5 ISBN 978-987-1515-08-0 Contents VOLUME 1 (in hardcopy and CD) Acronyms and Abbreviations 11 PART I. FINAL REPORT 13 1. Final Report 15 2. CEP XII Report 85 3. Appendices 159 Declaration on the 50th Anniversary of the Antarctic Treaty 161 Declaration on the International Polar Year and Polar Science 163 Preliminary Agenda for ATCM XXXIII 165 PART II. MEASURES, DECISIONS AND RESOLUTIONS 167 1. Measures 169 Measure 1 (2009): ASMA No 3 – Cape Denison, Commonwealth Bay, George V Land, East Antarctica 171 Measure 2 (2009): ASMA No 7 – South-west Anvers Island and Palmer Basin 173 Measure 3 (2009): ASPA No 104 – Sabrina Island, Balleny Islands 175 Measure 4 (2009): ASPA No 113 – Litchfi eld Island, Arthur Harbour, Anvers Island, Palmer Archipelago 177 Measure 5 (2009): ASPA No 121 – Cape Royds, Ross Island 179 Measure 6 (2009): ASPA No 125 – Fildes Peninsula, -
Memoria Antártica Nacional Campaña Antártica 2014-2015 Santiago Diciembre De 2015 Presentación Del Ministro De Relaciones Exteriores
Memoria Antártica Nacional Campaña Antártica 2014-2015 Santiago Diciembre de 2015 Presentación del Ministro de Relaciones Exteriores Sr. Heraldo Muñoz Valenzuela El 16 de diciembre de 2014, el Consejo de Política Antártica, que tengo el honor de presidir, reunido en Punta Arenas, entregó un mandato a las instituciones antárticas nacionales para la elaboración de una Memoria Antártica Nacional. El documento que presentamos, compilación inédita de las tareas que se desarrollan anualmente en ese continente, da cumplimiento a dicho mandato. El quehacer antártico nacional involucra a un amplio espectro de instituciones, las que destinan personas y recursos a la ejecución de las tareas que nuestra legislación les confiere. Cada una de estas entidades cumple un papel fundamental en el logro de los objetivos establecidos en la Política Antártica Nacional, documento rector de nuestros trabajos. El Ministerio de Relaciones Exteriores, en su rol de coordinador de la Política Antártica Nacional, ha enfatizado la difusión hacia la ciudadanía de la labor que las instituciones nacionales realizan en ese continente. Junto con describir de manera general las perspectivas que se abren para los intereses nacionales en este ámbito, este documento resalta los profundos vínculos históricos, geográficos y políticos que desde los inicios de nuestra historia patria nos unen con la Antártica. Al presentar esta primera Memoria Anual, es oportuno recordar el destacado papel de Chile durante las negociaciones del Tratado Antártico, instrumento internacional que cumplirá 55 años de vigencia en 2016, a través de sus delegados Marcial Mora, Enrique Gallardo y Julio Escudero; así como durante la evolución de las cuestiones antárticas en el ámbito multilateral, gracias a figuras como Oscar Pinochet de la Barra y Jorge Berguño. -
Plan Anual Antártico Del Programa Antártico Argentino 2018-2019
Programa Antártico Argentino Plan Anual Antártico 2018-2019 INTRODUCCIÓN La Argentina reivindica soberanía sobre el Sector Antártico Argentino, comprendido entre los meridianos 25° y 74° de longitud Oeste al sur del paralelo de 60° de latitud Sur, con fundamento en títulos históricos, geográficos, geológicos y jurídicos. La Argentina tiene presencia permanente e ininterrumpida en la Antártida desde el 22 de febrero de 1904, en que se estableciera la primera estación científica (Base Orcadas) en la Isla Laurie, Archipiélago de las Islas Orcadas del Sur. La Argentina, por tanto, tiene la presencia continua más antigua en la Antártida. La Argentina tiene seis bases permanentes (Carlini, Orcadas, Esperanza, Marambio, San Martín y Belgrano II) y siete bases temporarias (Brown, Primavera, Decepción, Melchior, Matienzo, Cámara y Petrel). Todas están situadas en el Sector Antártico Argentino. La Dirección Nacional del Antártico administra dos de ellas (las Bases Carlini y Brown) y el Ministerio de Defensa, a través del Comando Conjunto Antártico, administra las otras once. La Argentina es uno de los doce países que participaron en la Conferencia de Washington sobre la Antártida de 1959, y eso la llevó a ser uno de los doce signatarios originarios del Tratado Antártico. El Tratado establece que la Antártida se utilizará exclusivamente para fines pacíficos y erige a la ciencia en el centro de la actividad antártica. El artículo IV del Tratado resguarda adecuadamente las reivindicaciones de soberanía en la Antártida. Por tanto, uno de los ejes de la política exterior argentina es continuo fortalecimiento del conjunto de normas surgidas a partir del Tratado Antártico. Los lineamientos de la Política Antártica Nacional (PAN) están definidos por el Decreto 2316/90, cuyo objetivo principal es el P á g i n a 2 | 265 Programa Antártico Argentino Plan Anual Antártico 2018-2019 afianzamiento de los derechos argentinos de soberanía en la Antártida. -
Seabirds of Human Settlements in Antarctica: a Case Study of the Mirny Station
CZECH POLAR REPORTS 11 (1): 98-113, 2021 Seabirds of human settlements in Antarctica: A case study of the Mirny Station Sergey Golubev Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Nekouzskii raion, Yaroslavl oblast, 152742, Russia Abstract Antarctica is free of urbanisation, however, 40 year-round and 32 seasonal Antarctic stations operate there. The effects of such human settlements on Antarctic wildlife are insufficiently studied. The main aim of this study was to determine the organization of the bird population of the Mirny Station. The birds were observed on the coast of the Davis Sea in the Mirny (East Antarctica) from January 8, 2012 to January 7, 2013 and from January 9, 2015 to January 9, 2016. The observations were carried out mainly on the Radio and Komsomolsky nunataks (an area of about 0.5 km²). The duration of observations varied from 1 to 8 hours per day. From 1956 to 2016, 13 non-breeding bird species (orders Sphenisciformes, Procellariiformes, Charadriiformes) were recorded in the Mirny. The South polar skuas (Catharacta maccormicki) and Adélie penguins (Pygoscelis adeliae) form the basis of the bird population. South polar skuas are most frequently recorded at the station. Less common are Brown skuas (Catharacta antarctica lonnbergi) and Adélie penguins. Adélie penguins, Wilson's storm petrels (Oceanites oceanicus), South polar and Brown skuas are seasonal residents, the other species are visitors. Adélie penguins, Emperor (Aptenodytes forsteri), Macaroni (Eudyptes chrysolophus) and Chinstrap penguins (Pygoscelis antarctica), Wilson's storm petrels, South polar and Brown skuas interacted with the station environment, using it for com- fortable behavior, feeding, molting, shelter from bad weather conditions, and possible breeding. -
The Bransfield Current System
Deep-Sea Research I 58 (2011) 390–402 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri The Bransfield current system Pablo Sangra a,n, Carmen Gordo a,Mo´ nica Herna´ndez-Arencibia a, Angeles Marrero-Dı´az a, Angel Rodrı´guez-Santana a, Alexander Stegner b,c, Antonio Martı´nez-Marrero a, Josep L. Pelegrı´ d, Thierry Pichon c a Departamento de Fı´sica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas, Spain b Laboratoire de Me´te´orologie Dynamique (LMD), CNRS, Ecole Polytechnique, 91128 Palaiseau, France c Unite´ de Me´canique (UME), ENSTA Chemin de la Huniere, 91126 Palaiseau, France d Departament d’Oceanografı´aFı´sica, Institut de Ciencies del Mar, CSIC, Spain article info abstract Article history: We use hydrographic data collected during two interdisciplinary cruises, CIEMAR and BREDDIES, to Received 24 July 2010 describe the mesoscale variability observed in the Central Basin of the Bransfield Strait (Antarctica). The Received in revised form main mesoscale feature is the Bransfield Front and the related Bransfield Current, which flows 16 December 2010 northeastward along the South Shetland Island Slope. A laboratory model suggests that this current Accepted 25 January 2011 behaves as a gravity current driven by the local rotation rate and the density differences between the Available online 19 February 2011 Transitional Zonal Water with Bellingshausen influence (TBW) and the Transitional Zonal Water with Keywords: Weddell Sea influence (TWW). Below the Bransfield Front we observe a narrow (10 km wide) tongue of Bransfield Strait Circumpolar Deep Water all along the South Shetland Islands Slope.