Overview of Areal Changes of the Ice Shelves on the Antarctic Peninsula Over the Past 50 Years

Total Page:16

File Type:pdf, Size:1020Kb

Overview of Areal Changes of the Ice Shelves on the Antarctic Peninsula Over the Past 50 Years The Cryosphere, 4, 77–98, 2010 www.the-cryosphere.net/4/77/2010/ The Cryosphere © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years A. J. Cook and D. G. Vaughan British Antarctic Survey, Cambridge, UK Received: 5 August 2009 – Published in The Cryosphere Discuss.: 14 August 2009 Revised: 18 December 2009 – Accepted: 12 January 2010 – Published: 2 February 2010 Abstract. In recent decades, seven out of twelve ice shelves and other ice fronts and is published as hardcopy maps with around the Antarctic Peninsula (AP) have either retreated detailed accompanying reports (Ferrigno et al., 2006; Fer- significantly or have been almost entirely lost. At least some rigno et al., 2008) and digital data (Scientific Committee of these retreats have been shown to be unusual within the on Antarctic Research, 2005). The main trends observed in context of the Holocene and have been widely attributed to the fronts of marine and tidewater glaciers of the Antarctic recent atmospheric and oceanic changes. To date, measure- Peninsula have already been discussed elsewhere (Cook et ments of the area of ice shelves on the AP have either been al., 2005), but the changes in ice shelf fronts were excluded approximated, or calculated for individual shelves over dis- from that study and are brought up to date and described here. similar time intervals. Here we present a new dataset contain- The retreat of ice shelves on the Antarctic Peninsula over ing up-to-date and consistent area calculations for each of the the past century has been widely documented and attributed twelve ice shelves on the AP over the past five decades. The to atmospheric warming (e.g., Vaughan and Doake, 1996; results reveal an overall reduction in total ice-shelf area by Doake and Vaughan, 1991a; Mercer, 1978; Rott et al., 1998; over 28 000 km2 since the beginning of the period. Individ- Skvarca et al., 1999) and several specific mechanisms have ual ice shelves show different rates of retreat, ranging from been suggested to explain particular phases of retreat and col- slow but progressive retreat to abrupt collapse. We discuss lapse (Scambos et al., 2000; Doake et al., 1998; MacAyeal the pertinent features of each ice shelf and also broad spa- et al., 2003; Vieli et al., 2006). The role of atmospheric tial and temporal patterns in the timing and rate of retreat. warming as the primary driver of ice-shelf retreat is not, how- We believe that an understanding of this diversity and what it ever, a view that is universally accepted, with some evidence implies about the underlying dynamics and control will pro- that ice-shelf thinning may, in part, be the result of oceano- vide the best foundation for developing a reliable predictive graphic change which may “pre-condition” ice shelves to re- skill for ice-shelf change. treat (Shepherd et al., 2003). Thus the question remains as to whether future ice-shelf change, not just around the Antarc- tic Peninsula, will be dominated by oceanographic or atmo- 1 Introduction spheric drivers of change. Greater clarity has, however, been achieved with regard The changing position of the margin of the Antarctic ice to another important question regarding ice-shelf retreat. It sheet, both floating and grounded, is currently being mapped has now been demonstrated quite clearly, that the loss of as part of the USGS Coastal-change and Glaciological Maps floating ice shelves and ice in fjords can cause profound of Antarctica programme (Williams and Ferrigno, 1998). As acceleration and thinning of the tributary glaciers flowing part of this programme, a comprehensive time-series of ice- from the Antarctic Peninsula plateau (Rignot et al., 2004, front changes around the Antarctic Peninsula was compiled 2005; Rott et al., 2002; Scambos et al., 2003; Pritchard and from sources dating from 1940 to 2002 (Cook et al., 2005). Vaughan, 2007; De Angelis and Skvarca, 2003; Hulbe et al., The time-series further reveal changes in glacier, ice shelf 2008; Pritchard et al., 2009). Although rates of acceleration will probably not persist indefinitely, it implies, and will al- most certainly continue to imply, a contribution to sea-level Correspondence to: A. J. Cook rise. Although the effects of ice-shelf retreat on the tributary ([email protected]) glaciers will not be extensively discussed in this paper, this is Published by Copernicus Publications on behalf of the European Geosciences Union. 78 A. J. Cook and D. G. Vaughan: Overview of areal changes of the ice shelves Table 1. Summary of area changes found in published material for ten ice shelves located on the Antarctic Peninsula. The figures were obtained from references that recorded area changes of a particular ice shelf between the earliest and most recent dates available. There is other published material not listed here that gives areas of ice shelves on specific dates (e.g. Reynolds, 1988; Rott et al., 1998); calculations of ice loss (e.g. Braun et al., 2009) or area calculations based on different methods (Suyetova, 1986). Ice Shelf First Last Area Area Change % of Reference recorded recorded on first on last (Km2) original date date recorded date recorded date area (Km2) (Km2) remaining Muller¨ 1947 1993 51 49 −2 96 (Ward, 1995) Jones 1947 2003 25 0 −25 0 (Fox and Vaughan, 2005) Wordie 1966 1989 2000 700 −1300 35 (Doake and Vaughan, 1991a) George VI 1974 1995 ∼ 26000 ∼ 25000 −993 96 (Luchitta and Rosanova, 1998) Wilkins 1990 1995 ∼ 17400 ∼ 16000 −1360 92 (Luchitta and Rosanova, 1998) 1995 1998 −1098 85 (Scambos et al., 2000) Prince Gustav 1945 1995 2100 ∼ 100 −2000 5 (Cooper, 1997) 2000 47 2 (Rott et al., 2002) Larsen Inlet 1986 1989 407 0 −407 0 (Rott et al., 2002) Larsen A 1986 1995 2488 320 −2168 13 (Rott et al., 1996) Larsen B 1986 2000 11 500 6831 −4669 59 (Rott et al., 2002) 2002 3631 −3200 32 (Scambos et al., 2004) Larsen C 1976 1986 ∼ 60000 ∼ 50000 −9200 82 (Skvarca, 1994; Vaughan and Doake, 1996) an important underlying reason for attempting to understand also varied, so for this reason, each coastline digitised was the processes that cause ice-shelf retreat, which is the subject assigned a reliability rating (Ferrigno et al., 2006). For the of the current study. purpose of measuring how the ice shelves have changed in Individual ice shelves have been monitored and docu- area over the last 50 years, one ice front position was chosen mented elsewhere (Table 1; see Fig. 1a for locations), but for each decade. This coastline was chosen according to the until now there has been no consistent approach to measur- following scheme: ing changes for all the ice shelves on a regular time-series. We present a discussion of ice-shelf areas measured based – As close to mid-decade as possible. on the USGS coastal-change dataset, which has been updated – Where this was not possible, a coastline at either the for this study using Envisat ASAR images from 2008/9 (ac- start or end of the decade, depending on which has the 1 quired for the IPY Polar View programme ). These data have most complete, reliable ice front or most representative been collected using a consistent methodology to give reli- line. able areas of each ice shelf over the past five decades. We present an analysis of the changes and discuss the trends ob- – Where there was no coastline available within the served. decade, a coastline at the end of the previous decade as an approximate position. 2 Method – Where none of the above information was available, the decade remained blank. The methods used in compiling the coastal-change database are described in detail elsewhere (Cook et al., 2005). In sum- It should be noted that the coastline chosen could have oc- mary, historical data sources, including early maps, aerial curred prior to or following a major ice-shelf collapse event photographs and satellite images, were used to map ice fronts and it has not been selected specifically to reflect these onto a common reference, using ArcGIS. The quantity of events. source material available varied considerably across the AP. The resulting areas therefore represent the area of the ice In some regions, photography coverage and satellite im- shelf on a particular year, and do not represent an average po- ages allowed more than one coastline position to be mapped sition for the decade. Accuracies cannot be assigned to each within each decade, whilst in other regions there was little or area value as the variation within each decade is not quan- no coverage in some decades, and this implied large gaps be- tifiable using our data. The reliability rating attached to each tween recorded positions. The quality of the source material coastline indicates the likely errors in the positioning of the ice front and should be taken into account when assessing the 1http://www.polarview.org/ accuracy of the areas (Table 2). Since 87% of all coastlines The Cryosphere, 4, 77–98, 2010 www.the-cryosphere.net/4/77/2010/ A. J. Cook and D. G. Vaughan: Overview of areal changes of the ice shelves 79 (a) (b) Fig. 1. (a) Location of ice shelves on the Antarctic Peninsula (b) Contours of interpolated mean annual temperature in 2000 A.D., as compiled by Morris and Vaughan (2003). are reliable to within 150 m, and because area accuracies de- pend not only on variations in the width but also the length of the coastline, the areas are rounded to 1 km2 precision.
Recommended publications
  • Antarctic Peninsula
    Hucke-Gaete, R, Torres, D. & Vallejos, V. 1997c. Entanglement of Antarctic fur seals, Arctocephalus gazella, by marine debris at Cape Shirreff and San Telmo Islets, Livingston Island, Antarctica: 1998-1997. Serie Científica Instituto Antártico Chileno 47: 123-135. Hucke-Gaete, R., Osman, L.P., Moreno, C.A. & Torres, D. 2004. Examining natural population growth from near extinction: the case of the Antarctic fur seal at the South Shetlands, Antarctica. Polar Biology 27 (5): 304–311 Huckstadt, L., Costa, D. P., McDonald, B. I., Tremblay, Y., Crocker, D. E., Goebel, M. E. & Fedak, M. E. 2006. Habitat Selection and Foraging Behavior of Southern Elephant Seals in the Western Antarctic Peninsula. American Geophysical Union, Fall Meeting 2006, abstract #OS33A-1684. INACH (Instituto Antártico Chileno) 2010. Chilean Antarctic Program of Scientific Research 2009-2010. Chilean Antarctic Institute Research Projects Department. Santiago, Chile. Kawaguchi, S., Nicol, S., Taki, K. & Naganobu, M. 2006. Fishing ground selection in the Antarctic krill fishery: Trends in patterns across years, seasons and nations. CCAMLR Science, 13: 117–141. Krause, D. J., Goebel, M. E., Marshall, G. J., & Abernathy, K. (2015). Novel foraging strategies observed in a growing leopard seal (Hydrurga leptonyx) population at Livingston Island, Antarctic Peninsula. Animal Biotelemetry, 3:24. Krause, D.J., Goebel, M.E., Marshall. G.J. & Abernathy, K. In Press. Summer diving and haul-out behavior of leopard seals (Hydrurga leptonyx) near mesopredator breeding colonies at Livingston Island, Antarctic Peninsula. Marine Mammal Science.Leppe, M., Fernandoy, F., Palma-Heldt, S. & Moisan, P 2004. Flora mesozoica en los depósitos morrénicos de cabo Shirreff, isla Livingston, Shetland del Sur, Península Antártica, in Actas del 10º Congreso Geológico Chileno.
    [Show full text]
  • Ice Dynamics and Stability Analysis of the Ice Shelf-Glacial System on the East Antarctic Peninsula Over the Past Half Century: Multi-Sensor
    Ice dynamics and stability analysis of the ice shelf-glacial system on the east Antarctic Peninsula over the past half century: multi-sensor observations and numerical modeling A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Geography & Geographic Information Science of the College of Arts and Sciences by Shujie Wang B.S., GIS, Sun Yat-sen University, China, 2010 M.A., GIS, Sun Yat-sen University, China, 2012 Committee Chair: Hongxing Liu, Ph.D. March 2018 ABSTRACT The flow dynamics and mass balance of the Antarctic Ice Sheet are intricately linked with the global climate change and sea level rise. The dynamics of the ice shelf – glacial systems are particularly important for dominating the mass balance state of the Antarctic Ice Sheet. The flow velocity fields of outlet glaciers and ice streams dictate the ice discharge rate from the interior ice sheet into the ocean system. One of the vital controls that affect the flow dynamics of the outlet glaciers is the stability of the peripheral ice shelves. It is essential to quantitatively analyze the interconnections between ice shelves and outlet glaciers and the destabilization process of ice shelves in the context of climate warming. This research aims to examine the evolving dynamics and the instability development of the Larsen Ice Shelf – glacial system in the east Antarctic Peninsula, which is a dramatically changing area under the influence of rapid regional warming in recent decades. Previous studies regarding the flow dynamics of the Larsen Ice Shelf – glacial system are limited to some specific sites over a few time periods.
    [Show full text]
  • James Clark Ross
    BAS Ref.: JR104 Copy No: CRUISE REPORT JR 104 JAMES CLARK ROSS JAMES CLARK ROSS STANLEY F I RRS JAMES CLARK ROSS Marine geology and geophysics Bellingshausen Sea January – February 2004 BAS Ref.: JR104 Copy No: CRUISE REPORT RRS James Clark Ross Cruise JR104 January to February 2004 Multibeam echo sounding, TOPAS sub-bottom profiling and sediment coring Continental shelf and slope in the Bellingshausen Sea R.D. Larter with contributions from A. Tait, C.J. Pudsey, M.O. Preston, C. Ó Cofaigh, P. Morris, C.-D. Hillenbrand, J. Evans, J.A. Dowdeswell and S.F. Bremner Distribution: 1. Headquarters - Archives 2. Headquarters - Geological Sciences Division (for circulation) 3. RRS James Clark Ross (for circulation) 4. Dr R D Larter 5. Dr C J Pudsey 6. JR50 participants (for circulation) 7. Directorate (for circulation) 8. BAS Technical Services (for circulation) 9. Prof. J A Dowdeswell (Scott Polar Research Institute) This unpublished report contains initial observations and conclusions. It is not to be cited without written permission of the Director, British Antarctic Survey. Frontispiece: ice conditions in the Bellingshausen Sea, (a) as seen from space (top, MODIS satellite image, 1400 on 28th January 2004) showing open water in the Ronne Entrance and Eltanin Bay, and (b) from the ship (~0400 on 31st January at core station BC356, NW of Smyley Island; photo courtesy of Emma Wilson). Back cover: four scientists, a doc and a core. Carol, Emma, Claus-Dieter, Jeff and Colm with freshly recovered sections of core GC380 (photo courtesy of Steve Bremner).
    [Show full text]
  • The Geological Society Books
    The Geological Society Books Chapter 4.1a Antarctic Peninsula I. Volcanology --Manuscript Draft-- Manuscript Number: GSLBooks18-059 Full Title: Chapter 4.1a Antarctic Peninsula I. Volcanology Article Type: Chapter Corresponding Author: John Laidlaw Smellie University of Leicester Leicester, Leicestershire UNITED KINGDOM Other Authors: Malcolm Hole Section/Category: Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-Up Abstract: The Antarctic Peninsula is distinguished by late Neogene volcanic activity related to a series of northerly-younging ridge crest—trench collisions and the progressive opening of ‘no-slab windows’ in the subjacent mantle. The outcrops were amongst the last to be discovered in the region, with many occurrences not visited until the 1970’s and 1980’s. The volcanism consists of several monogenetic volcanic fields and small isolated centres. It is sodic alkaline to tholeiitic in composition and ranges in age between 7.7 Ma and present. No eruptions have been observed (with the possible, but dubious, exception of Seal Nunataks in 1893), but very young isotopic ages for some outcrops suggest that future eruptions are a possibility. The eruptions were overwhelmingly glaciovolcanic and the outcrops have been a major source of information on glaciovolcano construction. They have also been highly instrumental in advancing our understanding of the configuration of the Plio-Pleistocene Antarctic Peninsula Ice Sheet. However, our knowledge is hindered by a paucity of modern, precise isotopic ages. In particular, there is no obvious relationship between the age of ridge crest—trench collisions and the timing of slab-window volcanism, a puzzle that may only be resolved by new dating.
    [Show full text]
  • Antarctic Primer
    Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state.
    [Show full text]
  • Rfvotsfroeat a NEWS BULLETI N
    ?7*&zmmt ■ ■ ^^—^mmmmml RfvOTsfroeaT A NEWS BULLETI N p u b l i s h e d q u a r t e r l y b y t h e NEW ZEALAND ANTARCTIC SOCIETY (INC) AN AUSTRALIAN FLAG FLIES AGAIN OVER THE MAIN HUT BUILT AT CAPE DENISON IN 1911 BY SIR DOUGLAS MAWSON'S AUSTRALASIAN ANTARC TIC EXPEDITION, 1911-14. WHEN MEMBERS OF THE AUSTRALIAN NATIONAL ANTARCTIC RESEARCH EXPEDITION VISITED THE HUT THEY FOUND IT FILLED WITH ICE AND SNOW BUT IN A FAIR STATE OF REPAIR AFTER MORE THAN 60 YEARS OF ANTARCTIC BLIZZARDS WITHOUT MAINTENANCE. Australian Antarctic Division Photo: D. J. Lugg Vol. 7 No. 2 Registered at Post Office Headquarters. Wellington, New Zealand, as a magazine. June, 1974 . ) / E I W W AUSTRALIA ) WELLINGTON / I ^JlCHRISTCHURCH I NEW ZEALAND TASMANIA * Cimpbtll I (NZ) • OSS DEPENDE/V/cy \ * H i l l e t t ( U S ) < t e , vmdi *N** "4#/.* ,i,rN v ( n z ) w K ' T M ANTARCTICA/,\ / l\ Ah U/?VVAY). XA Ten,.""" r^>''/ <U5SR) ,-f—lV(SA) ' ^ A ^ /j'/iiPI I (UK) * M«rion I (IA) DRAWN BY DEPARTMENT OF LANDS & SURVEY WELLINGTON. NEW ZEALAND. AUG 1969 3rd EDITION .-• v ©ex (Successor to "Antarctic News Bulletin") Vol. 7 No. 2 74th ISSUE June, 1974 Editor: J. M. CAFFIN, 35 Chepstow Avenue, Christchurch 5. Address all contributions, enquiries, etc., to the Editor. All Business Communications, Subscriptions, etc., to: Secretary, New Zealand Antarctic Society (Inc.), P.O. Box 1223, Christchurch, N.Z. CONTENTS ARTICLE TOURIST PARTIES 63, 64 POLAR ACTIVITIES NEW ZEALAND ..
    [Show full text]
  • Impact of Increasing Antarctic Ice-Shelf Melting on Southern Ocean Hydrography
    Journal of Glaciology, Vol. 58, No. 212, 2012 doi: 10.3189/2012JoG12J009 1191 Impact of increasing Antarctic ice-shelf melting on Southern Ocean hydrography Caixin WANG,1,2 Keguang WANG3 1Department of Physics, University of Helsinki, Helsinki, Finland E-mail: [email protected] 2Norwegian Polar Institute, Tromsø, Norway 3Norwegian Meteorological Institute, Tromsø, Norway ABSTRACT. Southern Ocean hydrography has undergone substantial changes in recent decades, concurrent with an increase in the rate of Antarctic ice-shelf melting (AISM). We investigate the impact of increasing AISM on hydrography through a twin numerical experiment, with and without AISM, using a global coupled sea-ice/ocean climate model. The difference between these simulations gives a qualitative understanding of the impact of increasing AISM on hydrography. It is found that increasing AISM tends to freshen the surface water, warm the intermediate and deep waters, and freshen and warm the bottom water in the Southern Ocean. Such effects are consistent with the recent observed trends, suggesting that increasing AISM is likely a significant contributor to the changes in the Southern Ocean. Our analyses indicate potential positive feedback between hydrography and AISM that would amplify the effect on both Southern Ocean hydrography and Antarctic ice-shelf loss caused by external factors such as changing Southern Hemisphere winds. 1. INTRODUCTION ice thermodynamic model following Semtner (1976). The 8 The Southern Ocean has undergone significant changes in model has a mean resolution of 2 in the horizontal, and recent decades (see review by Jacobs, 2006): for example, 31 vertical layers in the ocean model with grid spacing from rising temperature in the upper 3000 m (Levitus and others, 10 m in the top 100 m to 500 m at the bottom, and 1 (for 2000, 2005; Gille, 2002, 2003), and decreasing salinity in dynamics) or 3 (for thermodynamics) vertical layers in the 8 high-latitude waters (Jacobs and others, 2002; Whitworth, sea-ice model.
    [Show full text]
  • Joint Conference of the History EG and Humanities and Social Sciences
    Joint conference of the History EG and Humanities and Social Sciences EG "Antarctic Wilderness: Perspectives from History, the Humanities and the Social Sciences" Colorado State University, Fort Collins (USA), 20 - 23 May 2015 A joint conference of the History Expert Group and the Humanities and Social Sciences Expert Group on "Antarctic Wilderness: Perspectives from History, the Humanities and the Social Sciences" was held at Colorado State University in Fort Collins (USA) on 20-23 May 2015. On Wednesday (20 May) we started with an excursion to the Rocky Mountain National Park close to Estes. A hike of two hours took us along a former golf course that had been remodelled as a natural plain, and served as a fitting site for a discussion with park staff on “comparative wilderness” given the different connotations of that term in isolated Antarctica and comparatively accessible Colorado. After our return to Fort Collins we met a group of members of APECS (Association of Polar Early Career Scientists), with whom we had a tour through the New Belgium Brewery. The evening concluded with a screening of the film “Nightfall on Gaia” by the anthropologist Juan Francisco Salazar (Australia), which provides an insight into current social interactions on King George Island and connections to the natural and political complexities of the sixth continent. The conference itself was opened by on Thursday (21 May) by Diana Wall, head of the School of Global Environmental Sustainability at the Colorado State University (CSU). Andres Zarankin (Brazil) opened the first session on narratives and counter narratives from Antarctica with his talk on sealers, marginality, and official narratives in Antarctic history.
    [Show full text]
  • 2019 Weddell Sea Expedition
    Initial Environmental Evaluation SA Agulhas II in sea ice. Image: Johan Viljoen 1 Submitted to the Polar Regions Department, Foreign and Commonwealth Office, as part of an application for a permit / approval under the UK Antarctic Act 1994. Submitted by: Mr. Oliver Plunket Director Maritime Archaeology Consultants Switzerland AG c/o: Maritime Archaeology Consultants Switzerland AG Baarerstrasse 8, Zug, 6300, Switzerland Final version submitted: September 2018 IEE Prepared by: Dr. Neil Gilbert Director Constantia Consulting Ltd. Christchurch New Zealand 2 Table of contents Table of contents ________________________________________________________________ 3 List of Figures ___________________________________________________________________ 6 List of Tables ___________________________________________________________________ 8 Non-Technical Summary __________________________________________________________ 9 1. Introduction _________________________________________________________________ 18 2. Environmental Impact Assessment Process ________________________________________ 20 2.1 International Requirements ________________________________________________________ 20 2.2 National Requirements ____________________________________________________________ 21 2.3 Applicable ATCM Measures and Resolutions __________________________________________ 22 2.3.1 Non-governmental activities and general operations in Antarctica _______________________________ 22 2.3.2 Scientific research in Antarctica __________________________________________________________
    [Show full text]
  • S41467-018-05625-3.Pdf
    ARTICLE DOI: 10.1038/s41467-018-05625-3 OPEN Holocene reconfiguration and readvance of the East Antarctic Ice Sheet Sarah L. Greenwood 1, Lauren M. Simkins2,3, Anna Ruth W. Halberstadt 2,4, Lindsay O. Prothro2 & John B. Anderson2 How ice sheets respond to changes in their grounding line is important in understanding ice sheet vulnerability to climate and ocean changes. The interplay between regional grounding 1234567890():,; line change and potentially diverse ice flow behaviour of contributing catchments is relevant to an ice sheet’s stability and resilience to change. At the last glacial maximum, marine-based ice streams in the western Ross Sea were fed by numerous catchments draining the East Antarctic Ice Sheet. Here we present geomorphological and acoustic stratigraphic evidence of ice sheet reorganisation in the South Victoria Land (SVL) sector of the western Ross Sea. The opening of a grounding line embayment unzipped ice sheet sub-sectors, enabled an ice flow direction change and triggered enhanced flow from SVL outlet glaciers. These relatively small catchments behaved independently of regional grounding line retreat, instead driving an ice sheet readvance that delivered a significant volume of ice to the ocean and was sustained for centuries. 1 Department of Geological Sciences, Stockholm University, Stockholm 10691, Sweden. 2 Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX 77005, USA. 3 Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA. 4 Department
    [Show full text]
  • Changes of Wilkins Ice Shelf Over the Past 15 Years and Inferences on Its Stability M
    Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability M. Braun, A. Humbert, A. Moll To cite this version: M. Braun, A. Humbert, A. Moll. Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability. The Cryosphere Discussions, Copernicus, 2008, 2 (3), pp.341-382. hal-00298543 HAL Id: hal-00298543 https://hal.archives-ouvertes.fr/hal-00298543 Submitted on 23 May 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Cryosphere Discuss., 2, 341–382, 2008 The Cryosphere www.the-cryosphere-discuss.net/2/341/2008/ Discussions TCD © Author(s) 2008. This work is distributed under 2, 341–382, 2008 the Creative Commons Attribution 3.0 License. The Cryosphere Discussions is the access reviewed discussion forum of The Cryosphere Changes of Wilkins Ice Shelf M. Braun et al. Title Page Changes of Wilkins Ice Shelf over the past Abstract Introduction 15 years and inferences on its stability Conclusions References Tables Figures M. Braun1, A. Humbert2, and A. Moll1 ◭ ◮ 1Center for Remote Sensing of Land Surfaces (ZFL), University of Bonn, Germany 2Institute for Geophysics, University of Muenster, Germany ◭ ◮ Received: 15 April 2008 – Accepted: 6 May 2008 – Published: 23 May 2008 Back Close Correspondence to: M.
    [Show full text]
  • Aberystwyth University Speedup and Fracturing of George VI Ice Shelf
    Aberystwyth University Speedup and fracturing of George VI Ice Shelf, Antarctic Peninsula Holt, Thomas Owen; Glasser, Neil Franklin; Quincey, Duncan Joseph; Siegfrieg, Matthew Published in: Cryosphere DOI: 10.5194/tc-7-797-2013 Publication date: 2013 Citation for published version (APA): Holt, T. O., Glasser, N. F., Quincey, D. J., & Siegfrieg, M. (2013). Speedup and fracturing of George VI Ice Shelf, Antarctic Peninsula. Cryosphere, 7, 797-816. https://doi.org/10.5194/tc-7-797-2013 General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 10. Oct. 2021 EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics
    [Show full text]