Rollins College Rollins Scholarship Online Student-Faculty Collaborative Research 6-2015 Axial Vibrations of Brass Wind Instrument Bells and Their Acoustical Influence: Theory and Simulations Wilfried Kausel Institut fÄur Wiener Klangstil (Musikalische Akustik), UniversitÄat fÄur Musik und darstellende Kunst Wein , Austria Vasileios Chatziioannou UniversitÄat fÄur Musik und darstellende Kunst Wein, Austria Thomas R. Moore Department of Physics, Rollins College,
[email protected] Britta R. Gorman Rollins College Michelle Rokni Rollins College Follow this and additional works at: http://scholarship.rollins.edu/stud_fac Part of the Other Physics Commons Published In Wilfried Kausel, Vasileios Chatziioannou, Thomas R. Moore, Britta R. Gorman, and Michelle Rokni. J. Acoust. Soc. Am. 137, 3149 (2015). This Article is brought to you for free and open access by Rollins Scholarship Online. It has been accepted for inclusion in Student-Faculty Collaborative Research by an authorized administrator of Rollins Scholarship Online. For more information, please contact
[email protected]. Axial vibrations of brass wind instrument bells and their acoustical influence: Theory and simulations Wilfried Kausel and Vasileios Chatziioannou Institute of Music Acoustics (Wiener Klangstil), University of Music and Performing Arts, Vienna, Austria Thomas R. Moore,a) Britta R. Gorman, and Michelle Rokni Department of Physics, Rollins College, Winter Park, Florida 32789, USA (Received 6 October 2014; revised 26 April 2015; accepted 28 April 2015) Previous work has demonstrated that structural vibrations of brass wind instruments can audibly affect the radiated sound. Furthermore, these broadband effects are not explainable by assuming perfect coincidence of the frequency of elliptical structural modes with air column resonances. In this work a mechanism is proposed that has the potential to explain the broadband influences of structural vibrations on acoustical characteristics such as input impedance, transfer function, and radiated sound.