Screening Effects of Methanol Extracts of Diplotaxis Tenuifolia and Reseda Lutea on Enzymatic Antioxidant Defense Systems and A

Total Page:16

File Type:pdf, Size:1020Kb

Screening Effects of Methanol Extracts of Diplotaxis Tenuifolia and Reseda Lutea on Enzymatic Antioxidant Defense Systems and A Turk J Pharm Sci 2018;15(1):97-102 DOI: 10.4274/tjps.82473 ORIGINAL ARTICLE Screening Effects of Methanol Extracts of Diplotaxis tenuifolia and Reseda lutea on Enzymatic Antioxidant Defense Systems and Aldose Reductase Activity Diplotaxis tenuifolia ve Reseda lutea Metanol Özütünün Antioksidan Savunma Sistemi Enzimleri ve Aldoz Redüktaz Aktivitesi Üzerinde Olan Etkisinin İncelenmesi Khalid Sharro ABDALRAHMAN1, Merve Gülşah GÜNEŞ1, Naznoosh SHOMALI1*, Belgin Sultan İŞGÖR2, Özlem YILDIRIM1 1Ankara University, Faculty of Science, Department of Biology, Ankara, Turkey 2Atılım University, Faculty of Engineering, Department of Chemical Engineering and Applied Chemistry, Ankara, Turkey ABSTRACT Objectives: The aim of the study was to investigate the effects of methanol extracts from the flowers and leaves of Diplotaxis tenuifolia and Reseda lutea on the activity of AR, CAT, GST, and GPx. Materials and Methods: Total phenolic and flavonoid contents of the plant samples were evaluated using Folin-Ciocalteu reagent and aluminum chloride colorimetric methods. Also, the effects of extracts on CAT, GST, GPx, and AR enzyme activities were investigated using kinetic assays. Results: The highest phenolic and flavonoid contents were detected in the methanol extract of D. tenuifolia leaves with 144.49±0.29 mg gallic acid equivalent/L and 250.485±0.002 quercetin equivalent/L, respectively. The best activity profile for GST and GPx were observed in the extract of leaves belonging to D. tenuifolia with IC50 values of 121±0.05 and 140±0.001 ng/mL, respectively. According to the results, methanol extracts from leaves of R. lutea and D. tenuifolia showed no significant activity potential on AR. Moreover, none of the studied extracts demonstrated any reasonable CAT activation potential. Conclusion: The results indicated that leaves of D. tenuifolia had good effect on the antioxidant enzymatic defense system, which it makes it a good constituent of the daily diet. Key words: Diplotaxis tenuifolia, Reseda lutea, antioxidant enzymes, aldose reductase ÖZ Amaç: Bu çalışmada Diplotaxis tenuifolia ve Reseda lutea’nın çiçek ve yapraklarından elde edilmiş olan metanol özütlerinin AR, CAT, GST ve GPx enzimlerinin aktiviteleri üzerinde olan etkilerinin araştırılması amaçlanmıştır. Gereç ve Yöntemler: Bu çalışmada, bitki örneklerinin toplam fenolik ve flavonoid içeriği; Folin-Ciocalteu ve alüminyum klorür reaktiflerinin yardımıyla kolorimetrik yöntemlerle değerlendirilmiştir. Ayrıca özütlerin CAT, GST, GPx ve AR enzimlerinin aktiviteleri üzerindeki etkileri kinetik analizler ile araştırılmıştır. Bulgular: En yüksek miktarda fenolik ve flavanoid içeriği sırasıyla 144.49±0.29 mg gallik asit eş değeri/L ve 250.485±0.002 quercetin eş değeri/L tespit edilmiştir. GST ve GPx için en iyi aktivite profilleri sırasıyla 121±0.05 ve 140±0.001 ng/mL IC50 değerleri ile D. tenuifolia yaprak özütünde gözlemlenmiştir. Elde edilen sonuçlara göre, R. lutea ve D. tenuifolia’nın yapraklarından elde edilen metanol özütleri, AR enzimi üzerinde önemli ölçüde bir aktivite potansiyeli göstermemiştir. Bununla beraber, çalışılmış olan çiçek ve yaprak özütlerinin hiçbiri yeterli düzeyde CAT aktivasyonu gösterememiştir. Sonuç: Çalışma sonucunda, D. tenuifolia’nın yapraklarının antioksidan enzimatik savunma sistemi üzerinde iyi bir etkiye sahip olduğu gösterilmiştir. Bu sebeple günlük diyet için iyi bir besin kaynağı olarak kabul edilebilir. Anahtar kelimeler: Diplotaxis tenuifolia, Reseda lutea, antioksidan enzimler, aldoz redüktaz *Correspondence: E-mail: [email protected], Phone: +90 554 281 63 36 ORCID-ID: orcid.org/0000-0002-7366-1569 Received: 18.01.2017, Accepted: 16.03.2017 ©Turk J Pharm Sci, Published by Galenos Publishing House. 97 98 ABDALRAHMAN et al. Screening Effects of Methanol Extracts of Diplotaxis tenuifolia INTRODUCTION Phytochemical studies show that the aerial parts of D. tenuifolia Reactive oxygen species (ROS) is a term used to describe a contain significantly high concentration of flavonoids, tannins, number of reactive molecules and free radicals derived from glucosinolates, sterols, and vitamin C.9 molecular oxygen, which are generated by all aerobic species. The genus Reseda is one of the herbs in the Resedaceae family. These molecules are generated as by-products during the In Turkey, this genus is represented by 15 species including mitochondrial electron transport of aerobic respiration or Reseda lutea L. and Reseda luteola L. It is known as yellow by oxidoreductase enzymes and metal catalyzed oxidation. mignonette or wild mignonette and has economic importance. In normal physiologic conditions, a number of defense It is widely used in the carpet and rug industry as a source mechanisms have evolved to provide a balance between the of natural dye due to its high luteolin content. In addition to production and removal of ROS, but alterations of the balance its staining properties, luteolin has attracted great scientific between ROS production and the capacity to detoxify reactive interest because of its pharmacologic activities. Luteolin intermediates lead to oxidative stress. It has been caused to a displays numerous anti-inflammatory effects at micromolar wide variety of states, processess and metabolic diseases such concentrations, which cannot be completely explained by its as heart disease, severe neural disorders such as Alzheimer’s antioxidant capacities. In addition, phytochemical analysis of and Parkinson’s, and some cancers.1,2 Under oxidative stress, aerial parts of R. lutea has shown the presence of flavonoid, an organism has a variety of defense mechanisms to prevent anthocyanin, and glucosides.10 or neutralize negative ROS effects. These are mainly based on The aim of the present study was to evaluate the total amount enzymes such as catalase (CAT), superoxide dismutase (SOD), of the phenolic and flavonoid contents of methanol extract glutathione peroxidase (GPx), glutathione reductase (GR), and obtained from the flowers and leaves of D. tenuifolia and R. lutea glutathione-S-transferase (GST) or non-enzymatic components and to determine their effects on the activity of AR, CAT, GST, 3 such as vitamin E, vitamin C, glutathione, and flavonoids. and GPx. These enzymes play critical roles in the antioxidant GST is one of the phase II enzymes and plays a critical role defense system. in the detoxification and metabolism of many xenobiotic 4 compounds. GPx has an important role as a catalyst in the EXPERIMENTAL reduction of hydro peroxides, including hydrogen peroxides (H2O2), by using GSH. GPx also functions to protect the cell Chemicals materials from oxidative damage. Several studies related dysfunctional In this study, 4-aminoantipyrine, H2O2 and sodium azide (NaN3) GPx with cancer.5 CAT is a very important enzyme of living were provided by Acros, USA. Ethylenediaminetetraacetic acid organisms, which catalyzes the decomposition of H2O2 to water (EDTA), Folin-Ciocalteu reagent, reduced glutathione (GSH), and oxygen. Aldose reductase (AR) is a nicotinamide adenine GR, horseradish peroxidase, CAT, gallic acid (GA), and quercetin dinucleotide phosphate (NADPH)-dependent enzyme and it hydrate were supplied by Sigma Aldrich, Germany. Lithium has been implicated in the formation of cancer and diabetic sulphate (Li2SO4) and NADPH were purchased from Gerbu, complications such as retinopathy, neuropathy, nephropathy, Germany. All other chemicals used were analytical grade and and cardiovascular disorders.6 provided by Sigma Aldrich, Germany. Plants synthesize a vast range of organic compounds that are Plant materials traditionally classified as primary and secondary metabolites. Plant samples of D. tenuifolia and R. lutea were harvested in Primary metabolites are compounds that have essential roles July 2010 from Ankara, Turkey, and were authenticated by associated with photosynthesis, respiration, growth, and Prof. Dr. Fatmagül Geven, in the Department of Biology, development. Other phytochemicals that accumulate in high Ankara University. The plant specimens with their localities concentrations in some species are known as secondary and the necessary field records were recorded and numerated metabolites, which possess antioxidant activity. Antioxidant as voucher specimen numbers. The voucher numbers of compounds found in different parts of plants involve phenolics, D. tenuifolia and R. lutea were FG-2010-10 and FG-2010-13, flavonoids, alkaloids, glycosides, tocopherols, carotenoids, and respectively. They were deposited in the herbarium department ascorbic acid. These are structurally diverse and many are at Ankara University. distributed among a very limited number of species within the plant kingdom.7 Secondary metabolite compounds have played Extraction of plant an important role in treating and preventing human diseases. Different parts of fresh plant samples (flowers and leaves) were They are important sources for new drugs and are also washed with tap water and dried at room temperature before suitable lead compounds for further modification during drug analysis. For methanol extraction, 2 g of dried samples were 4 development. weighed and ground into a fine powder with liquid nitrogen, then Diplotaxis tenuifolia (L.) DC., commonly known as ‘wild rocket’, mixed with 20 mL methyl alcohol at room temperature in 160 rpm belongs to the Brassicaceae family. It was originally found as for 24 h. The obtained extract was filtered over Whatman No. 1 a crop in Mediterranean and Middle Eastern countries and paper and the filtrate was collected. Methanol
Recommended publications
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Towards an Updated Checklist of the Libyan Flora
    Towards an updated checklist of the Libyan flora Article Published Version Creative Commons: Attribution 3.0 (CC-BY) Open access Gawhari, A. M. H., Jury, S. L. and Culham, A. (2018) Towards an updated checklist of the Libyan flora. Phytotaxa, 338 (1). pp. 1-16. ISSN 1179-3155 doi: https://doi.org/10.11646/phytotaxa.338.1.1 Available at http://centaur.reading.ac.uk/76559/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.11646/phytotaxa.338.1.1 Identification Number/DOI: https://doi.org/10.11646/phytotaxa.338.1.1 <https://doi.org/10.11646/phytotaxa.338.1.1> Publisher: Magnolia Press All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Phytotaxa 338 (1): 001–016 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.1.1 Towards an updated checklist of the Libyan flora AHMED M. H. GAWHARI1, 2, STEPHEN L. JURY 2 & ALASTAIR CULHAM 2 1 Botany Department, Cyrenaica Herbarium, Faculty of Sciences, University of Benghazi, Benghazi, Libya E-mail: [email protected] 2 University of Reading Herbarium, The Harborne Building, School of Biological Sciences, University of Reading, Whiteknights, Read- ing, RG6 6AS, U.K.
    [Show full text]
  • Understanding and Conserving the Past and Recreating Natural Dyes
    Understanding and Conserving the Past and Recreating Natural Dyes for Today Recep Karadag1 and Emine Torgan2 1Marmara University, Laboratory of Natural Dyes, Faculty of Fine Arts, 34718 Kadikoy- Istanbul-Turkey. 2Turkish Cultural Foundation, Cultural Heritage Preservation and Natural Dyes Laboratory, 34775 Umraniye-Istanbul-Turkey. Abstract We aim to use the natural dyeing of textiles from the past as a basis of modern dye natural dyeing of textiles. The natural dyes and methods used in the historical textiles were determined. We adapt these to the recent natural dyes in modern textiles by using different analysis techniques. In this study, the metal thread, dyestuff and technical analysis of historical textiles by micro and nondestructive analysis methods were determined. Historical samples were provided from many museum collection. Optical microscopy for the technical analysis, CIEL*a*b* spectrophotometer/colorimeter for the color measurements, HPLC-PAD for the dyestuff analysis and SEM-EDX for the metal thread analysis were performed. According to the results of this analysis, the fabrics that are made in modern times have the same characteristics as the fabrics analyzed due to the use of the same natural dyes. Keywords: Historical textiles, reproduction, natural dyes, dyestuff analysis, elemental analysis, color measurement, technical analysis. 1. INTRODUCTION Identification of an art object material of cultural heritage had received significant attention, because of its importance for the development of appropriate restoration and conservation strategies. Natural dyes have advantages since their production implies renewable resources causing minimum environmental pollution and has a low risk factor in relation to human health. Some of natural dyes are used by pharmaceutical industry as a basis for drug products and by the food industry [1].
    [Show full text]
  • Antibacterial Activity of Moroccan Plants Extracts Against Clavibacter Michiganensis Subsp
    Journal of Medicinal Plants Research Vol. 5(17), pp. 4332-4338, 9 September, 2011 Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875 ©2011 Academic Journals Full Length Research Paper Antibacterial activity of moroccan plants extracts against Clavibacter michiganensis subsp . michiganensis, the causal agent of tomatoes’ bacterial canker Talibi I., Amkraz N.*, Askarne L., Msanda F., Saadi B., Boudyach E. H., Boubaker H., Bouizgarne B. and Ait Ben Aoumar A. Faculté des Sciences, LBVRN ; Laboratoire de Biotechnologie et Valorisation des Ressources Naturelles, BP 8106, cité Dakhla, Agadir, 80 000, Morocco. Accepted 23 June, 2011 In search for alternative ways of tomatoes’ bacterial canker control, we screened here forty medicinal and aromatic plants (MAP) sampled from 15 families, currently used in southern Moroccan traditional medicine, for their activity against Clavibacter michiganensis subsp . michiganensis the causal agent of this disease. The antibacterial efficacy of powders of these plants was determined in vitro using the agar plate’s methods. Results obtained show that all the forty plants tested inhibited the bacterial growth of this pathogen with inhibition zone diameter ranging from 5 to 50 mm. Determination of the minimal inhibitory concentrations (MIC) and the minimal bactericidal concentrations (MBC) of the most effective plants indicates that there plants gender Rubus, Anvillea and Pistacia have the lower MIC which is equal to 3,125 mg ml -1. The other plants ( Lavandula coronopifolia, Lavandula stoechas, Rosa canina, Cistus monspliensis and Cistus crispus ) had a MIC equal to 6.25 mg ml -1. The MBC for different plants tested are between 6.25 mg ml -1, case of Rubus ulmifolius and 25 mg ml -1.
    [Show full text]
  • Sterol Addition During Pollen Collection by Bees
    Sterol addition during pollen collection by bees: another possible strategy to balance nutrient deficiencies? Maryse Vanderplanck, Pierre-Laurent Zerck, Georges Lognay, Denis Michez To cite this version: Maryse Vanderplanck, Pierre-Laurent Zerck, Georges Lognay, Denis Michez. Sterol addition during pollen collection by bees: another possible strategy to balance nutrient deficiencies?. Apidologie, 2020, 51 (5), pp.826-843. 10.1007/s13592-020-00764-3. hal-02784696 HAL Id: hal-02784696 https://hal.archives-ouvertes.fr/hal-02784696 Submitted on 3 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2020) 51:826–843 Original article * INRAE, DIB and Springer-Verlag France SAS, part of Springer Nature, 2020 DOI: 10.1007/s13592-020-00764-3 Sterol addition during pollen collection by bees: another possible strategy to balance nutrient deficiencies? 1,2 1 3 1 Maryse VANDERPLANCK , Pierre-Laurent ZERCK , Georges LOGNAY , Denis MICHEZ 1Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium 2CNRS, UMR 8198 - Evo-Eco-Paleo, Univ. Lille, F-59000, Lille, France 3Analytical Chemistry, Agro Bio Chem Department, Gembloux Agro-Bio Tech University of Liège, 2 Passage des Déportés, 5030, Gembloux, Belgium Received 10 July 2019 – Revised2March2020– Accepted 30 March 2020 Abstract – Sterols are essential nutrients for bees which are thought to obtain them exclusively from pollen.
    [Show full text]
  • Phenotypic Landscape Inference Reveals Multiple Evolutionary Paths to C4 Photosynthesis
    RESEARCH ARTICLE elife.elifesciences.org Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis Ben P Williams1†, Iain G Johnston2†, Sarah Covshoff1, Julian M Hibberd1* 1Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom; 2Department of Mathematics, Imperial College London, London, United Kingdom Abstract C4 photosynthesis has independently evolved from the ancestral C3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a meta-analysis of 18 lineages containing species that use C3, C4, or intermediate C3–C4 forms of photosynthesis to parameterise a 16-dimensional phenotypic landscape. We then developed and experimentally verified a novel Bayesian approach based on a hidden Markov model that predicts how the C4 phenotype evolved. The alternative evolutionary histories underlying the appearance of C4 photosynthesis were determined by ancestral lineage and initial phenotypic alterations unrelated to photosynthesis. We conclude that the order of C4 trait acquisition is flexible and driven by non-photosynthetic drivers. This flexibility will have facilitated the convergent evolution of this complex trait. DOI: 10.7554/eLife.00961.001 Introduction *For correspondence: Julian. The convergent evolution of complex traits is surprisingly common, with examples including camera- [email protected] like eyes of cephalopods, vertebrates, and cnidaria (Kozmik et al., 2008), mimicry in invertebrates and †These authors contributed vertebrates (Santos et al., 2003; Wilson et al., 2012) and the different photosynthetic machineries of equally to this work plants (Sage et al., 2011a).
    [Show full text]
  • Biogeography and Diversification of Brassicales
    Molecular Phylogenetics and Evolution 99 (2016) 204–224 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Biogeography and diversification of Brassicales: A 103 million year tale ⇑ Warren M. Cardinal-McTeague a,1, Kenneth J. Sytsma b, Jocelyn C. Hall a, a Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada b Department of Botany, University of Wisconsin, Madison, WI 53706, USA article info abstract Article history: Brassicales is a diverse order perhaps most famous because it houses Brassicaceae and, its premier mem- Received 22 July 2015 ber, Arabidopsis thaliana. This widely distributed and species-rich lineage has been overlooked as a Revised 24 February 2016 promising system to investigate patterns of disjunct distributions and diversification rates. We analyzed Accepted 25 February 2016 plastid and mitochondrial sequence data from five gene regions (>8000 bp) across 151 taxa to: (1) Available online 15 March 2016 produce a chronogram for major lineages in Brassicales, including Brassicaceae and Arabidopsis, based on greater taxon sampling across the order and previously overlooked fossil evidence, (2) examine Keywords: biogeographical ancestral range estimations and disjunct distributions in BioGeoBEARS, and (3) determine Arabidopsis thaliana where shifts in species diversification occur using BAMM. The evolution and radiation of the Brassicales BAMM BEAST began 103 Mya and was linked to a series of inter-continental vicariant, long-distance dispersal, and land BioGeoBEARS bridge migration events. North America appears to be a significant area for early stem lineages in the Brassicaceae order. Shifts to Australia then African are evident at nodes near the core Brassicales, which diverged Cleomaceae 68.5 Mya (HPD = 75.6–62.0).
    [Show full text]
  • Flora Mediterranea 26
    FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.
    [Show full text]
  • Preliminary Review of the Rare Plants of the Niagara River Gorge, USA
    PRELIMINARY REVIEW OF THE RARE PLANTS OF THE NIAGARA RIVER GORGE, U.S.A. AND CANADA Patricia M. Eckel Res Botanica A Missouri Botanical Garden Web Site http://www.mobot.org/plantscience/ResBot/index.htm May 26, 2004 Home PRELIMINARY REVIEW OF THE RARE PLANTS OF THE NIAGARA RIVER GORGE, U.S.A. AND CANADA by P.M. Eckel Clinton Herbarium Buffalo Museum of Science [Originally published in Clintonia (Botanical Magazine of the Niagara Frontier Botanical Society) 6(2, Supplement): 1-8. 1991. Reprinted with permission.] Because of a number of recent proposals to develop the Niagara River gorge and its environment by government and private interests, it was thought important to put together certain information accumulated during work done by the author over the past decade regarding the value of the gorge as a natural resource to the governments of Ontario and New York. The Niagara River is a strait connecting Lakes Ontario and Erie. The gorge section of the Niagara River extends seven miles from the cataracts of the river, situated beside the cities of Niagara Falls, New York, and Niagara Falls, Ontario, north to the cities of Lewiston, New York, and Queenston, Ontario (Bastedo, in Tesmer, 1981). The Niagara River, including its gorge, forms the international territorial boundary between the United States of America and the Dominion of Canada. It is not the purpose of this paper to describe in detail the geophysical and biological characteristics of this gorge except in the most general terms. It is oriented generally north-south, with east/west exposures of the steep gorge walls.
    [Show full text]
  • First Steps Towards a Floral Structural Characterization of the Major Rosid Subclades
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2006 First steps towards a floral structural characterization of the major rosid subclades Endress, P K ; Matthews, M L Abstract: A survey of our own comparative studies on several larger clades of rosids and over 1400 original publications on rosid flowers shows that floral structural features support to various degrees the supraordinal relationships in rosids proposed by molecular phylogenetic studies. However, as many apparent relationships are not yet well resolved, the structural support also remains tentative. Some of the features that turned out to be of interest in the present study had not previously been considered in earlier supraordinal studies. The strongest floral structural support is for malvids (Brassicales, Malvales, Sapindales), which reflects the strong support of phylogenetic analyses. Somewhat less structurally supported are the COM (Celastrales, Oxalidales, Malpighiales) and the nitrogen-fixing (Cucurbitales, Fagales, Fabales, Rosales) clades of fabids, which are both also only weakly supported in phylogenetic analyses. The sister pairs, Cucurbitales plus Fagales, and Malvales plus Sapindales, are structurally only weakly supported, and for the entire fabids there is no clear support by the present floral structural data. However, an additional grouping, the COM clade plus malvids, shares some interesting features but does not appear as a clade in phylogenetic analyses. Thus it appears that the deepest split within eurosids- that between fabids and malvids - in molecular phylogenetic analyses (however weakly supported) is not matched by the present structural data. Features of ovules including thickness of integuments, thickness of nucellus, and degree of ovular curvature, appear to be especially interesting for higher level relationships and should be further explored.
    [Show full text]
  • REVIEWS Algeria, Egypt, France, Greece, Iran, Iraq, I Srael, Itaiy, Jordan, Lebanon, Libya, Morocco, Spain, Syria, Turkey and Yugos­ Lavia
    178 Plant ProtectIOn Quanerly Vol . 2(4) 1987 Distribution R. lutea is indigenous [0 the Medit erranean Basin and Asia Minor, occurring in REVIEWS Algeria, Egypt, France, Greece, Iran, Iraq, i srael, itaiy, Jordan, Lebanon, Libya, Morocco, Spain, Syria, Turkey and Yugos­ lavia. It has spread widely around the world and has been recorded in Australia, Austria, Belgium, Czechoslovakia, Den­ mark, Finland, Germany, Great Britain, Hungary, Norway, Romania, Sweden, Switzerland, U.S.A. and U.S.S.R. (Abdal· iah and De Wi. 1978). Although R. Iwea is present in Queens­ The Biology of Australian Weeds land, New South Wales, Victoria and Tas­ 17. Reseda lutea L. mania (Figure 2) , it has not become an important weed there. There is only a single record rrom Western Australi a (Dalwal­ linu) (Pearce 1982). R. lutea is round only rarely on the Tas­ manian main land. but is more common on Fiinders Island (8. Hyde-Wyau, pers. comm.). In South Australia, R. lutea is a serious pest plant wh ich occurs, as eit her sporadic outbreaks or areas or dense inrestations, over most or the agricultural areas such as the lower North, Yorke Peninsula and parts or the Eyre Peninsula. It is a weed whi ch is spreadi ng to new parts within South Australia (Figure 3). J . W. Heap, M. C. Willcocks· and P.M. Kloot Annual rainrall does not appear 10 con­ SA Department 01 Agricutture. G.P.O. Box 1671 . Adelaide. SA 5001 trol its distribution in the agri cultural areas, • Present address: School 01 Wool and Pastoral Sciences.
    [Show full text]