TFIIH and Transcription by Pol III

Total Page:16

File Type:pdf, Size:1020Kb

TFIIH and Transcription by Pol III TFIIH complex in transcription mediated by RNA polymerase II and RNA polymerase III Anton Zadorin To cite this version: Anton Zadorin. TFIIH complex in transcription mediated by RNA polymerase II and RNA poly- merase III. Biochemistry, Molecular Biology. Université de Strasbourg, 2012. English. NNT : 2012STRAJ035. tel-00759395 HAL Id: tel-00759395 https://tel.archives-ouvertes.fr/tel-00759395 Submitted on 30 Nov 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE « des Sciences de la Vie et de la Santé » IGBMC - CNRS UMR 7104 - Inserm U 964 THÈSE présentée par : Anton ZADORIN soutenue le : 28 Septembre 2012 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Sciences du Vivant/ Aspects Moléculaires et Cellulaires de la Biologie Le complexe TFIIH dans la transcription effectuée par l'ARN polymérase II et l'ARN polymérase III THÈSE dirigée par : Dr EGLY Jean-Marc DR INSERM, IGBMC, Strasbourg RAPPORTEURS : Dr DAEGELEN Dominique DR INSERM, Institut Cochin, Paris Dr SCHUMACHER Björn DR, université de Cologne Pr LAUGEL Vincent PUPH, CHU de Strasbourg To Rexy Contents Contents i R´esum´ede la th`esede doctorat en fran¸cais iii Introduction 1 I Literature Review 4 1 Transcription by Pol II 5 1.1 DNA-directed RNA polymerase II ............. 5 1.2 Promoters of class II genes ................. 7 1.3 General transcription factors . 10 1.4 Pol II transcription cycle . 11 1.5 Chromatin and Pol II transcription . 14 2 TFIIH | a multifunctional complex 21 2.1 The composition of TFIIH . 21 2.2 TFIIH in transcription ................... 27 2.3 TFIIH in NER ....................... 28 2.4 Human disorders induced by mutations in XPD gene . 30 3 SIRT1 histone deacetylase 32 4 Transcription by Pol III 34 4.1 DNA-directed RNA polymerase III . 34 4.2 Genes transcribed by Pol III . 34 4.3 Promoter elements of class III genes . 35 4.4 Termination of class III gene transcription . 37 4.5 Transcription factors .................... 38 CONTENTS ii 4.6 Regulation of Pol III activity . 43 5 Interplay between Pol II and Pol III transcription ma- chinery 45 5.1 TBP as a universal transcription factor . 45 5.2 Pol II, its factors and chromatin marks near class III genes 46 II Results 49 6 XPD/CS mutations and regulation of housekeeping genes 50 6.1 Publication 1 ........................ 50 7 TFIIH complex and transcription of class III genes 88 7.1 Publication 2 ........................ 88 Summary 108 Conclusion 112 Acknowledgements 114 Bibliography 115 List of Symbols and Abbreviations 123 R´esum´ede la th`esede doctorat en fran¸cais Le complexe TFIIH dans la transcription effectu´eepar Pol II et Pol III Dans l'organisme des mammif`eres,il existe trois ARN polym´erasesADN- d´ependantes principales design´eescomme Pol I, Pol II et Pol III. La premi`eretranscrit la plupart des g`enesde l'ARNr, la deuxi`emeest re- sponsable de la transcription des g`enescodant les prot´eineset de cer- tains g`enesde l'ARN non codant, et la troisi`emeest n´ecessairepour la synth`esede l'ARNr 5S, des ARNt et quelques autres petits ARN non codants. Les g`eneseux-m^emessont group´esdans un classe I, classe II ou classe III selon la polym´erasequi les transcrit. Le TFIIH est un complexe prot`eiquequi, au d´ebut,a ´et´ecaract´eris´ecomme un facteur g´en´eralde transcription de Pol II. Plus tard, il a ´et´emontr´eparticiper au m´ecanismede r´eparationpar excision de nucl´eotides(NER), ainsi qu'^etreun facteur transcriptionnel de Pol I [44]. Il est constitu´ed'un cœur contenant les sous-unit´esXPB, p62, p52, p44, p34, p8, qui est reli´epar la sous-unit´eXPD au sous-complexe CAK compos´ede CDK7, cycline H et MAT1. Certaines mutations des prot´einesde TFIIH provo- quent des maladies g´en´etiquesrares avec un risque 1000 fois plus ´elev´e que la normale de d´evelopper un cancer (xeroderma pigmentosum ou XP) ou/et des anomalies s´ev´eresdu d´eveloppement (le syndrome de Cockayne ou CS, la trichothiodystrophie, le syndrome COFS). Un pe- tit nombre de mutations sp´ecifiquesdans les g´enes XPB et XPD cause le ph´enotype combin´eXP/CS [4, 9, 26, 82]. La s´ev´erit´edu XP/CS est d´etermin´eepar le lien inh´erent entre la transcription et la NER. XPB et XPD sont deux h´elicasesdu complexe TFIIH, et leur activit´e (`adiff´erents degr´es)est n´ecessairepour la fusion de l'ADN au cours de la NER et pour l'ouverture du promoteur dans la transcription de Pol I RESUME EN FRANCAIS iv et de Pol II. Bien que la contribution de la carence de la r´eparationde l'ADN au ph´enotype du XP/CS soit irr´efutable,ces mutations causent la d´er´egulationde plusieurs voies transcriptionnelles. Au niveau cellu- laire, les cellules XP/CS partagent le m^emearr^etglobal transcriptionnel soutenu apr`esl'irradiation UV [9]. Pour les cellules CS, il a ´et´ed´emontr´e que cet arr^etprovenait d'un probl´emede remod´elisationde la chroma- tine [18, 69, 27]. Partie I. L'analyse mol´eculairedes mutations dans le XPD li´eesau ph´enotype XP-D/CS L'objectif de ces recherches f^utde mieux comprendre comment les cel- lules r´einitient la transcription apr`esune irradiation UV, et d'´etudier le m´ecanisme de l'arr^et global dans les cellules avec les mutations sp´ecifiquesdans le g`ene XPD provoquant le ph´enotype XP-D/CS. En utilisant la m´ethode de transcription inverse suivie d'une PCR quanti- tative, nous avons montr´eque les cellules XP-D/CS ne pouvaient pas r´e-initient la transcription des g´enes constitutifs tels que DHFR ou GAPDH, apr`esune irradiation UV. D'autre part, les cellules de type sauvage (WT) et les cellules NER-d´efectueusesposs´edant seulement les traits du XP ´etaient capables de le faire. Nous avons aussi observ´e que les cellules XP-D/CS ´etaient incapables de transactiver les g`enes induits par les r´ecepteursnucl´eaires(NR) apr´esune irradiation UV, alors que les autres cellules NER-d´efectueusestransactivaient les m^emes g`enesdans les m^emesconditions. Par contre, la transcription du g`ene GADD45α (p53-d´ependant), ainsi que d'autres g`enesinduits par le stress (ATF3, p21, et MDM2 ), n'est pas inhib´eedans les cellules XP-D/CS. Cette conclusion ´etaitconfirm´ee`apartir de s´equen¸cagehaut d´ebitde transcriptome (RNA-seq). Tandis que les cellules WT, 24 heures apr`es une irradiation UV, recouvraient presque enti`erement le profil initial de transcription, et un mutant XPD poss´edant seulement les traits XP fai- sait cela d'une fa¸conmoins effective, la transcription dans les cellules XP-D/CS restait compl`etement d´er´egl´eeavec une partie consid´erablede g`enesdont l'expression ´etait´elev´ee.Nos r´esultatsindiquent que l'arr^et transcriptionnel des g`enesconstitutifs dans le ph´enotype XP-D/CS peut ^etrenon seulement un sous-produit de l'absence de r´eparationde l'ADN mais aussi une cons´equencedu blocage de l'ARN pol II par les l´esions de l'ADN comme cela ´etaitsuppos´eauparavant. A cet effet, nous ´etionsint´eress´es`asavoir comment les mutations dans XPD perturbaient la formation du complexe transcriptionnel. Pour RESUME EN FRANCAIS v cela, nous avons ´etudi´ele recrutement des facteurs de transcription sur le promoteur DHFR, en utilisant la technique d'immunopr´ecipitationde la chromatine (ChIP) suivie d'une PCR quantitative. Dans les cellules WT, Pol II et tous les facteurs basals se dissocient rapidement du promoteur apr`esirradiation et sont de nouveau recrut´es6 heures apr`esl'irradiation UV. Dans les cellules XP-D/CS, la pr´esencede Pol II sur le promoteur DHFR atteint 30% de celle initiale apr`es12 heures, et ne retrouve pas un niveau normal m^eme24 heures apr`esirradiation. Cela nous a in- cit´e`aexaminer les changements dans les modifications de chromatine sur les promoteurs des g`enesconstitutifs dans les cellules XP-D/CS. L'analyse par ChIP des cellules WT nous a permis de d´ecouvrirque le promoteur DHFR accumulait les modifications H3K9ac, H4K16ac, H3K4me3 et H3K79me2 apr`esirradiation. Ces marques positives de transcription sont en accord avec la pr´esencede Pol II sur ces g`enes. Au contraire, le promoteur DHFR dans les cellules XP-D/CS poss`ede un niveau bas de certaines de ces marques chromatiniennes `amettre en parall`eleavec l'absence Pol II et le niveau faible d'ARNm. De la m^eme fa¸con,nous avons d´etect´el'accumulation de marques d'h´et´erochromatine comme H3K9me2 et l'histone H1 sur le promoteur DHFR apr`esl'UV, alors que dans les cellules WT, leur niveau ne soit pas ´elev´e. Puisque H3K9ac et H4K16ac sont des substrats pour la d´eac´etylase SIRT1 [83], nous avons ´etudi´e sa pr´esence sur le promoteur DHFR par ChIP. Nous avons d´etect´eun niveau ´elev´ede SIRT1 sur ce pro- moteur dans les cellules XP-D/CS apr`sl'UV, alors que dans les cel- lules WT, l'enrichissement de la SIRT1 ´etaitinsignifiant.
Recommended publications
  • BMC Genomics Biomed Central
    BMC Genomics BioMed Central Research article Open Access The functional modulation of epigenetic regulators by alternative splicing Sergio Lois1,2, Noemí Blanco1,2, Marian Martínez-Balbás*1,2 and Xavier de la Cruz*2,3 Address: 1Instituto de Biología Molecular de Barcelona. CID. Consejo Superior de Investigaciones Científicas (CSIC); 08028 Barcelona, Spain, 2Institut de Recerca Biomèdica-PCB; 08028 Barcelona, Spain and 3Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona, Spain Email: Sergio Lois - [email protected]; Noemí Blanco - [email protected]; Marian Martínez-Balbás* - [email protected]; Xavier de la Cruz* - [email protected] * Corresponding authors Published: 25 July 2007 Received: 24 April 2007 Accepted: 25 July 2007 BMC Genomics 2007, 8:252 doi:10.1186/1471-2164-8-252 This article is available from: http://www.biomedcentral.com/1471-2164/8/252 © 2007 Lois et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Epigenetic regulators (histone acetyltransferases, methyltransferases, chromatin- remodelling enzymes, etc) play a fundamental role in the control of gene expression by modifying the local state of chromatin. However, due to their recent discovery, little is yet known about their own regulation. This paper addresses this point, focusing on alternative splicing regulation, a mechanism already known to play an important role in other protein families, e.g. transcription factors, membrane receptors, etc.
    [Show full text]
  • Essential Genes and Their Role in Autism Spectrum Disorder
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Essential Genes And Their Role In Autism Spectrum Disorder Xiao Ji University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, and the Genetics Commons Recommended Citation Ji, Xiao, "Essential Genes And Their Role In Autism Spectrum Disorder" (2017). Publicly Accessible Penn Dissertations. 2369. https://repository.upenn.edu/edissertations/2369 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2369 For more information, please contact [email protected]. Essential Genes And Their Role In Autism Spectrum Disorder Abstract Essential genes (EGs) play central roles in fundamental cellular processes and are required for the survival of an organism. EGs are enriched for human disease genes and are under strong purifying selection. This intolerance to deleterious mutations, commonly observed haploinsufficiency and the importance of EGs in pre- and postnatal development suggests a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication and repetitive behavior. More and more genetic evidence points to a polygenic model of ASD and it is estimated that hundreds of genes contribute to ASD. The central question addressed in this dissertation is whether genes with a strong effect on survival and fitness (i.e. EGs) play a specific oler in ASD risk. I compiled a comprehensive catalog of 3,915 mammalian EGs by combining human orthologs of lethal genes in knockout mice and genes responsible for cell-based essentiality.
    [Show full text]
  • PDF Download
    TFIIIC90 Polyclonal Antibody Catalog No : YT4623 Reactivity : Human,Rat,Mouse, Applications : WB,ELISA Gene Name : GTF3C4 Protein Name : General transcription factor 3C polypeptide 4 Human Gene Id : 9329 Human Swiss Prot Q9UKN8 No : Mouse Swiss Prot Q8BMQ2 No : Immunogen : The antiserum was produced against synthesized peptide derived from human TF3C4. AA range:611-660 Specificity : TFIIIC90 Polyclonal Antibody detects endogenous levels of TFIIIC90 protein. Formulation : Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide. Source : Rabbit Dilution : Western Blot: 1/500 - 1/2000. ELISA: 1/20000. Not yet tested in other applications. Purification : The antibody was affinity-purified from rabbit antiserum by affinity- chromatography using epitope-specific immunogen. Concentration : 1 mg/ml Storage Stability : -20°C/1 year Molecularweight : 92001 Observed Band : 95 1 / 3 Background : catalytic activity:Acetyl-CoA + histone = CoA + acetylhistone.,function:Essential for RNA polymerase III to make a number of small nuclear and cytoplasmic RNAs, including 5S RNA, tRNA, and adenovirus-associated (VA) RNA of both cellular and viral origin. Has histone acetyltransferase activity (HAT) with unique specificity for free and nucleosomal H3. May cooperate with GTF3C5 in facilitating the recruitment of TFIIIB and RNA polymerase through direct interactions with BRF1, POLR3C and POLR3F. May be localized close to the A box.,sequence caution:Contaminating sequence. Potential poly-A sequence.,similarity:Belongs to the TFIIIC subunit 4 family.,subunit:Part of the TFIIIC subcomplex TFIIIC2, consisting of six subunits, GTF3C1, GTF3C2, GTF3C3, GTF3C4, GTF3C5 and GTF3C6. Interacts with BRF1, GTF3C1, GTF3C2, GTF3C5, GTF3C6, POLR3C and POLR3F., Function : catalytic activity:Acetyl-CoA + histone = CoA + acetylhistone.,function:Essential for RNA polymerase III to make a number of small nuclear and cytoplasmic RNAs, including 5S RNA, tRNA, and adenovirus-associated (VA) RNA of both cellular and viral origin.
    [Show full text]
  • A Transcriptional Signature of Postmitotic Maintenance in Neural Tissues
    Neurobiology of Aging 74 (2019) 147e160 Contents lists available at ScienceDirect Neurobiology of Aging journal homepage: www.elsevier.com/locate/neuaging Postmitotic cell longevityeassociated genes: a transcriptional signature of postmitotic maintenance in neural tissues Atahualpa Castillo-Morales a,b, Jimena Monzón-Sandoval a,b, Araxi O. Urrutia b,c,*, Humberto Gutiérrez a,** a School of Life Sciences, University of Lincoln, Lincoln, UK b Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK c Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico article info abstract Article history: Different cell types have different postmitotic maintenance requirements. Nerve cells, however, are Received 11 April 2018 unique in this respect as they need to survive and preserve their functional complexity for the entire Received in revised form 3 October 2018 lifetime of the organism, and failure at any level of their supporting mechanisms leads to a wide range of Accepted 11 October 2018 neurodegenerative conditions. Whether these differences across tissues arise from the activation of Available online 19 October 2018 distinct cell typeespecific maintenance mechanisms or the differential activation of a common molecular repertoire is not known. To identify the transcriptional signature of postmitotic cellular longevity (PMCL), Keywords: we compared whole-genome transcriptome data from human tissues ranging in longevity from 120 days Neural maintenance Cell longevity to over 70 years and found a set of 81 genes whose expression levels are closely associated with Transcriptional signature increased cell longevity. Using expression data from 10 independent sources, we found that these genes Functional genomics are more highly coexpressed in longer-living tissues and are enriched in specific biological processes and transcription factor targets compared with randomly selected gene samples.
    [Show full text]
  • Genome-Wide Insights on Gastrointestinal Nematode
    www.nature.com/scientificreports OPEN Genome‑wide insights on gastrointestinal nematode resistance in autochthonous Tunisian sheep A. M. Ahbara1,2, M. Rouatbi3,4, M. Gharbi3,4, M. Rekik1, A. Haile1, B. Rischkowsky1 & J. M. Mwacharo1,5* Gastrointestinal nematode (GIN) infections have negative impacts on animal health, welfare and production. Information from molecular studies can highlight the underlying genetic mechanisms that enhance host resistance to GIN. However, such information often lacks for traditionally managed indigenous livestock. Here, we analysed 600 K single nucleotide polymorphism genotypes of GIN infected and non‑infected traditionally managed autochthonous Tunisian sheep grazing communal natural pastures. Population structure analysis did not fnd genetic diferentiation that is consistent with infection status. However, by contrasting the infected versus non‑infected cohorts using ROH, LR‑GWAS, FST and XP‑EHH, we identifed 35 candidate regions that overlapped between at least two methods. Nineteen regions harboured QTLs for parasite resistance, immune capacity and disease susceptibility and, ten regions harboured QTLs for production (growth) and meat and carcass (fatness and anatomy) traits. The analysis also revealed candidate regions spanning genes enhancing innate immune defence (SLC22A4, SLC22A5, IL‑4, IL‑13), intestinal wound healing/repair (IL‑4, VIL1, CXCR1, CXCR2) and GIN expulsion (IL‑4, IL‑13). Our results suggest that traditionally managed indigenous sheep have evolved multiple strategies that evoke and enhance GIN resistance and developmental stability. They confrm the importance of obtaining information from indigenous sheep to investigate genomic regions of functional signifcance in understanding the architecture of GIN resistance. Small ruminants (sheep and goats) make immense socio-economic and cultural contributions across the globe.
    [Show full text]
  • CREB-Dependent Transcription in Astrocytes: Signalling Pathways, Gene Profiles and Neuroprotective Role in Brain Injury
    CREB-dependent transcription in astrocytes: signalling pathways, gene profiles and neuroprotective role in brain injury. Tesis doctoral Luis Pardo Fernández Bellaterra, Septiembre 2015 Instituto de Neurociencias Departamento de Bioquímica i Biologia Molecular Unidad de Bioquímica y Biologia Molecular Facultad de Medicina CREB-dependent transcription in astrocytes: signalling pathways, gene profiles and neuroprotective role in brain injury. Memoria del trabajo experimental para optar al grado de doctor, correspondiente al Programa de Doctorado en Neurociencias del Instituto de Neurociencias de la Universidad Autónoma de Barcelona, llevado a cabo por Luis Pardo Fernández bajo la dirección de la Dra. Elena Galea Rodríguez de Velasco y la Dra. Roser Masgrau Juanola, en el Instituto de Neurociencias de la Universidad Autónoma de Barcelona. Doctorando Directoras de tesis Luis Pardo Fernández Dra. Elena Galea Dra. Roser Masgrau In memoriam María Dolores Álvarez Durán Abuela, eres la culpable de que haya decidido recorrer el camino de la ciencia. Que estas líneas ayuden a conservar tu recuerdo. A mis padres y hermanos, A Meri INDEX I Summary 1 II Introduction 3 1 Astrocytes: physiology and pathology 5 1.1 Anatomical organization 6 1.2 Origins and heterogeneity 6 1.3 Astrocyte functions 8 1.3.1 Developmental functions 8 1.3.2 Neurovascular functions 9 1.3.3 Metabolic support 11 1.3.4 Homeostatic functions 13 1.3.5 Antioxidant functions 15 1.3.6 Signalling functions 15 1.4 Astrocytes in brain pathology 20 1.5 Reactive astrogliosis 22 2 The transcription
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0264934 A1 GALLOURAKIS Et Al
    US 20160264934A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0264934 A1 GALLOURAKIS et al. (43) Pub. Date: Sep. 15, 2016 (54) METHODS FOR MODULATING AND Publication Classification ASSAYING MI6AIN STEM CELL POPULATIONS (51) Int. Cl. CI2N5/0735 (2006.01) (71) Applicants: THE GENERAL, HOSPITAL AOIN I/02 (2006.01) CORPORATION, Boston, MA (US); CI2O I/68 (2006.01) The Regents of the University of GOIN 33/573 (2006.01) California, Oakland, CA (US) CI2N 5/077 (2006.01) CI2N5/0793 (2006.01) (72) Inventors: Cosmas GIALLOURAKIS, Boston, (52) U.S. Cl. MA (US); Alan C. MULLEN, CPC ............ CI2N5/0606 (2013.01); CI2N5/0657 Brookline, MA (US); Yi XING, (2013.01); C12N5/0619 (2013.01); C12O Torrance, CA (US) I/6888 (2013.01); G0IN33/573 (2013.01); A0IN I/0226 (2013.01); C12N 2501/72 (73) Assignees: THE GENERAL, HOSPITAL (2013.01); C12N 2506/02 (2013.01); C12O CORPORATION, Boston, MA (US); 2600/158 (2013.01); C12Y 201/01062 The Regents of the University of (2013.01); C12Y 201/01 (2013.01) California, Oakland, CA (US) (57) ABSTRACT (21) Appl. No.: 15/067,780 The present invention generally relates to methods, assays and kits to maintain a human stem cell population in an (22) Filed: Mar 11, 2016 undifferentiated state by inhibiting the expression or function of METTL3 and/or METTL4, and mA fingerprint methods, assays, arrays and kits to assess the cell state of a human stem Related U.S. Application Data cell population by assessing mA levels (e.g. mA peak inten (60) Provisional application No.
    [Show full text]
  • Downloaded from Ensembl
    UCSF UC San Francisco Electronic Theses and Dissertations Title Detecting genetic similarity between complex human traits by exploring their common molecular mechanism Permalink https://escholarship.org/uc/item/1k40s443 Author Gu, Jialiang Publication Date 2019 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California by Submitted in partial satisfaction of the requirements for degree of in in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO AND UNIVERSITY OF CALIFORNIA, BERKELEY Approved: ______________________________________________________________________________ Chair ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ Committee Members ii Acknowledgement This project would not have been possible without Prof. Dr. Hao Li, Dr. Jiashun Zheng and Dr. Chris Fuller at the University of California, San Francisco (UCSF) and Caribou Bioscience. The Li lab grew into a multi-facet research group consist of both experimentalists and computational biologists covering three research areas including cellular/molecular mechanism of ageing, genetic determinants of complex human traits and structure, function, evolution of gene regulatory network. Labs like these are the pillar of global success and reputation
    [Show full text]
  • The Role of Lamin Associated Domains in Global Chromatin Organization and Nuclear Architecture
    THE ROLE OF LAMIN ASSOCIATED DOMAINS IN GLOBAL CHROMATIN ORGANIZATION AND NUCLEAR ARCHITECTURE By Teresa Romeo Luperchio A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March 2016 © 2016 Teresa Romeo Luperchio All Rights Reserved ABSTRACT Nuclear structure and scaffolding have been implicated in expression and regulation of the genome (Elcock and Bridger 2010; Fedorova and Zink 2008; Ferrai et al. 2010; Li and Reinberg 2011; Austin and Bellini 2010). Discrete domains of chromatin exist within the nuclear volume, and are suggested to be organized by patterns of gene activity (Zhao, Bodnar, and Spector 2009). The nuclear periphery, which consists of the inner nuclear membrane and associated proteins, forms a sub- nuclear compartment that is mostly associated with transcriptionally repressed chromatin and low gene expression (Guelen et al. 2008). Previous studies from our lab and others have shown that repositioning genes to the nuclear periphery is sufficient to induce transcriptional repression (K L Reddy et al. 2008; Finlan et al. 2008). In addition, a number of studies have provided evidence that many tissue types, including muscle, brain and blood, use the nuclear periphery as a compartment during development to regulate expression of lineage specific genes (Meister et al. 2010; Szczerbal, Foster, and Bridger 2009; Yao et al. 2011; Kosak et al. 2002; Peric-Hupkes et al. 2010). These large regions of chromatin that come in molecular contact with the nuclear periphery are called Lamin Associated Domains (LADs). The studies described in this dissertation have furthered our understanding of maintenance and establishment of LADs as well as the relationship of LADs with the epigenome and other factors that influence three-dimensional chromatin structure.
    [Show full text]
  • Predict AID Targeting in Non-Ig Genes Multiple Transcription Factor
    Downloaded from http://www.jimmunol.org/ by guest on September 26, 2021 is online at: average * The Journal of Immunology published online 20 March 2013 from submission to initial decision 4 weeks from acceptance to publication Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes Jamie L. Duke, Man Liu, Gur Yaari, Ashraf M. Khalil, Mary M. Tomayko, Mark J. Shlomchik, David G. Schatz and Steven H. Kleinstein J Immunol http://www.jimmunol.org/content/early/2013/03/20/jimmun ol.1202547 Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2013/03/20/jimmunol.120254 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 26, 2021. Published March 20, 2013, doi:10.4049/jimmunol.1202547 The Journal of Immunology Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes Jamie L. Duke,* Man Liu,†,1 Gur Yaari,‡ Ashraf M. Khalil,x Mary M. Tomayko,{ Mark J. Shlomchik,†,x David G.
    [Show full text]
  • Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2010 Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Renuka Nayak University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Computational Biology Commons, and the Genomics Commons Recommended Citation Nayak, Renuka, "Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress" (2010). Publicly Accessible Penn Dissertations. 1559. https://repository.upenn.edu/edissertations/1559 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1559 For more information, please contact [email protected]. Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Abstract Genes interact in networks to orchestrate cellular processes. Here, we used coexpression networks based on natural variation in gene expression to study the functions and interactions of human genes. We asked how these networks change in response to stress. First, we studied human coexpression networks at baseline. We constructed networks by identifying correlations in expression levels of 8.9 million gene pairs in immortalized B cells from 295 individuals comprising three independent samples. The resulting networks allowed us to infer interactions between biological processes. We used the network to predict the functions of poorly-characterized human genes, and provided some experimental support. Examining genes implicated in disease, we found that IFIH1, a diabetes susceptibility gene, interacts with YES1, which affects glucose transport. Genes predisposing to the same diseases are clustered non-randomly in the network, suggesting that the network may be used to identify candidate genes that influence disease susceptibility.
    [Show full text]
  • Proteomic Analysis Uncovers Measles Virus Protein C
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084418; this version posted May 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Proteomic Analysis Uncovers Measles Virus Protein C Interaction with p65/iASPP/p53 Protein Complex Alice Meignié1,2*, Chantal Combredet1*, Marc Santolini 3,4, István A. Kovács4,5,6, Thibaut Douché7, Quentin Giai Gianetto 7,8, Hyeju Eun9, Mariette Matondo7, Yves Jacob10, Regis Grailhe9, Frédéric Tangy1**, and Anastassia V. Komarova1, 10** 1 Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, 75015 Paris, France 2 Université Paris Diderot, Sorbonne Paris Cité, Paris, France 3 Center for Research and Interdisciplinarity (CRI), Université de Paris, INSERM U1284 4 Network Science Institute and Department of Physics, Northeastern University, Boston, MA 02115, USA 5 Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208-3109, USA 6 Department of Network and Data Science, Central European University, Budapest, H-1051, Hungary 7 Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France. 8 Bioinformatics and Biostatistics Hub, Computational Biology Department, Institut Pasteur, CNRS USR3756, Paris, France 9 Technology Development Platform, Institut Pasteur Korea, Seongnam-si, Republic of Korea 10 Laboratory of Molecular Genetics of RNA Viruses, Institut Pasteur, CNRS UMR-3569,
    [Show full text]