Theodosius Dobzhansky: a Man for All Seasons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fizzling the Plutonium Economy: Origins of the April 1977 Carter Administration Fuel Cycle Policy Transition
Fizzling the Plutonium Economy: Origins of the April 1977 Carter Administration Fuel Cycle Policy Transition The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Williams, Peter King. 2010. Fizzling the Plutonium Economy: Origins of the April 1977 Carter Administration Fuel Cycle Policy Transition. Master's thesis, Harvard University, Extension School. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37367548 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Fizzling the Plutonium Economy: Origins of the April 1977 Carter Administration Fuel Cycle Policy Transition Peter Williams A Thesis in the Field of History for the Degree of Master of Liberal Arts in Extension Studies Harvard University May 2010 © 2010 Peter Williams Abstract This study examines the scientific advocacy that shaped President Carter’s April 1977 policy decision to block the domestic implementation of so-called “plutonium economy” technologies, and thereby mandate the use of an “open” or “once–through” fuel cycle for U.S. nuclear power reactors. This policy transition was controversial, causing friction with U.S. allies, with the nuclear power industry, and with Congress. Early in his presidential campaign, Carter criticized the excessive federal financial commitment to developing plutonium-based reactors and adopted the view that the weapons proliferation risks of plutonium economy technologies were serious and needed to be addressed. -
National States and International Science: a Comparative History of International Science Congresses in Hitler's Germany, Stalin's Russia, and Cold War United States
National States and International Science: A Comparative History of International Science Congresses in Hitler's Germany, Stalin's Russia, and Cold War United States Osiris 2005 Doel, Ronald E. Department of History (and Department of Geosciences), Oregon State University Originally published by: The University of Chicago Press on behalf of The History of Science Society and can be found at: http://www.jstor.org/action/showPublication?journalCode=osiris Citation: Doel, R. E. (2005). National states and international science; A comparative history of international science congresses in Hitler's Germany, Stalin's Russia, and Cold War United States. Osiris, 20, 49-76. Available from JSTOR website: http://www.jstor.org/stable/3655251 National States and International Science: A ComparativeHistory of International Science Congresses in Hitler's Germany, Stalin's Russia, and Cold WarUnited States Ronald E. Doel, Dieter Hoffmann, and Nikolai Krementsov* ABSTRACT Priorstudies of modem scientificinternationalism have been writtenprimarily from the point of view of scientists, with little regardto the influenceof the state. This studyexamines the state'srole in internationalscientific relations. States sometimes encouragedscientific internationalism;in the mid-twentiethcentury, they often sought to restrictit. The presentstudy examines state involvementin international scientific congresses, the primaryintersection between the national and interna- tional dimensionsof scientists'activities. Here we examine three comparativein- stancesin which such -
Darwin's Big Problem and Mendelian Genetics
Introduction to Biological Anthropology: Notes 7 Darwin’s big problem and Mendelian genetics Copyright Bruce Owen 2011 − Darwin’s big problem − We have seen that natural selection works by favoring the most successful variants among the individuals in a population − it only works if individuals vary in ways that affect their survival and reproduction − offspring must be similar to their parents, but not exactly the same − if offspring were identical to their parents, they would be identical to each other, and there would be no “more successful” and “less successful” individuals for natural selection to pick from − so there could be no change in the next generation: no evolution − Darwin had no good explanation for why offspring resemble parents, but also vary − he knew that this was a big gap in his theory − The prevalent idea of inheritance in Darwin’s time was blending inheritance − blending inheritance holds that the characteristics of offspring are mixtures of the characteristics of their parents − the idea was that the material from the two parents that controlled inherited characteristics blended like two colors of paint − this is a reasonable approximation, based on everyday experience − so, every mating should produce offspring that are intermediate between the parents − for example, if a six-foot man mates with a five-foot woman… − then the offspring should all be between five and six feet tall − no offspring are expected to be more extreme than either parent − there are two huge problems with the blending model of inheritance − First, it obviously isn't true − lots of parents have children who are taller, or shorter, than both of the parents − many kids have traits like hair color, eye color, etc. -
On Darwin's and Mendel's Concepts and Methods in Heredity
J Gen Philos Sci (2010) 41:31–58 DOI 10.1007/s10838-010-9122-0 ARTICLE Gemmules and Elements: On Darwin’s and Mendel’s Concepts and Methods in Heredity Ute Deichmann Published online: 10 June 2010 Ó Springer Science+Business Media B.V. 2010 Abstract Inheritance and variation were a major focus of Charles Darwin’s studies. Small inherited variations were at the core of his theory of organic evolution by means of natural selection. He put forward a developmental theory of heredity (pangenesis) based on the assumption of the existence of material hereditary particles. However, unlike his proposition of natural selection as a new mechanism for evolutionary change, Darwin’s highly speculative and contradictory hypotheses on heredity were unfruitful for further research. They attempted to explain many complex biological phenomena at the same time, disregarded the then modern developments in cell theory, and were, moreover, faithful to the widespread conceptions of blending and so-called Lamarckian inheritance. In contrast, Mendel’s approaches, despite the fact that features of his ideas were later not found to be tenable, proved successful as the basis for the development of modern genetics. Mendel took the study of the transmission of traits and its causes (genetics) out of natural history; by reducing complexity to simple particulate models, he transformed it into a scientific field of research. His scientific approach and concept of discrete elements (which later gave rise to the notion of discrete genes) also contributed crucially to the explanation of the existence of stable variations as the basis for natural selection. Keywords Variations Á Discreteness Á Gradualism Á Statistical laws Á Chance Á Blending inheritance Á Soft inheritance Á Pangenesis Á Mendel Á Darwin 1 Introduction The emergence of the science of genetics began as a result of the fruitful application of both the research methods and the concept of discrete ‘‘elements’’ (which later gave rise to the concept of discrete genes) developed by Mendel around 150 years ago. -
Emanuele Serrelli Nathalie Gontier Editors Explanation, Interpretation
Interdisciplinary Evolution Research 2 Emanuele Serrelli Nathalie Gontier Editors Macroevolution Explanation, Interpretation and Evidence Interdisciplinary Evolution Research Volume 2 Series editors Nathalie Gontier, Lisbon, Portugal Olga Pombo, Lisbon, Portugal [email protected] About the Series The time when only biologists studied evolution has long since passed. Accepting evolution requires us to come to terms with the fact that everything that exists must be the outcome of evolutionary processes. Today, a wide variety of academic disciplines are therefore confronted with evolutionary problems, ranging from physics and medicine, to linguistics, anthropology and sociology. Solving evolutionary problems also necessitates an inter- and transdisciplinary approach, which is why the Modern Synthesis is currently extended to include drift theory, symbiogenesis, lateral gene transfer, hybridization, epigenetics and punctuated equilibria theory. The series Interdisciplinary Evolution Research aims to provide a scholarly platform for the growing demand to examine specific evolutionary problems from the perspectives of multiple disciplines. It does not adhere to one specific academic field, one specific school of thought, or one specific evolutionary theory. Rather, books in the series thematically analyze how a variety of evolutionary fields and evolutionary theories provide insights into specific, well-defined evolutionary problems of life and the socio-cultural domain. Editors-in-chief of the series are Nathalie Gontier and Olga Pombo. The -
The Nature of Inheritance
I THE NATURE OF INHERITANCE The consequences of the blending theory, as drawn by Darwin. Difficulties felt by Darwin. Particulate inheritance. Conservation of the variance. Theories of evolution worked by mutations. Is all inheritance particulate ? Nature and frequency of observed mutations. But at present, after drawing up a rough copy on this subject, my conclusion is that external conditions do extremely little, except in causing mere variability. This mere variability (causing the child not closely to resemble its parent) I look at as very different from the formation of a marked variety or new species. DARWIN, 1856. (Life and Letters, ii, 87.) As Samuel Butler so truly said: 'To me it seems that the "Origin of " Variation ", whatever it is, is the only true Origin of Species 'V w. BATESON, 1909. The consequences of the blending theory THAT Charles Darwin accepted the fusion or blending theory of inheritance, just as all men accept many of the undisputed beliefs of their time, is universally admitted. That his acceptance of this theory had an important influence on his views respecting variation, and consequently on the views developed by himself and others on the possible causes of organic evolution, was not, I think, apparent to himself, nor is it sufficiently appreciated in our own times. In the course of the present chapter I hope to make clear the logical con- sequences of the blending theory, and to show their influence, not only on the development of Darwin's views, but on the change of attitude towards these, and other suppositions, necessitated by the acceptance of the opposite theory of particulate inheritance. -
Curren T Anthropology
Forthcoming Current Anthropology Wenner-Gren Symposium Curren Supplementary Issues (in order of appearance) t Human Biology and the Origins of Homo. Susan Antón and Leslie C. Aiello, Anthropolog Current eds. e Anthropology of Potentiality: Exploring the Productivity of the Undened and Its Interplay with Notions of Humanness in New Medical Anthropology Practices. Karen-Sue Taussig and Klaus Hoeyer, eds. y THE WENNER-GREN SYMPOSIUM SERIES Previously Published Supplementary Issues April THE BIOLOGICAL ANTHROPOLOGY OF LIVING HUMAN Working Memory: Beyond Language and Symbolism. omas Wynn and 2 POPULATIONS: WORLD HISTORIES, NATIONAL STYLES, 01 Frederick L. Coolidge, eds. 2 AND INTERNATIONAL NETWORKS Engaged Anthropology: Diversity and Dilemmas. Setha M. Low and Sally GUEST EDITORS: SUSAN LINDEE AND RICARDO VENTURA SANTOS Engle Merry, eds. V The Biological Anthropology of Living Human Populations olum Corporate Lives: New Perspectives on the Social Life of the Corporate Form. Contexts and Trajectories of Physical Anthropology in Brazil Damani Partridge, Marina Welker, and Rebecca Hardin, eds. e Birth of Physical Anthropology in Late Imperial Portugal 5 Norwegian Physical Anthropology and a Nordic Master Race T. Douglas Price and Ofer 3 e Origins of Agriculture: New Data, New Ideas. The Ainu and the Search for the Origins of the Japanese Bar-Yosef, eds. Isolates and Crosses in Human Population Genetics Supplement Practicing Anthropology in the French Colonial Empire, 1880–1960 Physical Anthropology in the Colonial Laboratories of the United States Humanizing Evolution Human Population Biology in the Second Half of the Twentieth Century Internationalizing Physical Anthropology 5 Biological Anthropology at the Southern Tip of Africa The Origins of Anthropological Genetics Current Anthropology is sponsored by e Beyond the Cephalic Index Wenner-Gren Foundation for Anthropological Anthropology and Personal Genomics Research, a foundation endowed for scientific, Biohistorical Narratives of Racial Difference in the American Negro educational, and charitable purposes. -
Goings on in Mendel's Garden
40 Evolutionary Anthropology CROTCHETS & QUIDDITIES Goings on in Mendel’s Garden KENNETH WEISS The honorable monk probably didn’t cheat. But he led us astray in other ways. Gregor Mendel gave us the tools by discussed. But this may have inadver- which to do modern genetics, and we tently led us astray, in ways for which have a century of progress to show for we are paying a price today. The arti- it. We properly credit Mendel and his ficial nature of his experiments lured peas for showing us the particulate us into confusing the inheritance of nature of inheritance, but his work traits with the inheritance of genes. both enabled and disabled evolution- And this in turn has led to an unwar- ary thinking for several decades after ranted phenogenetic (see Note 1) de- its rediscovery. Since the factors he terminism that impairs our under- studied didn’t change over genera- standing of biology. tions, Mendel’s discoveries solved the problem that perplexed Darwin, that BLENDING IN blending inheritance would swamp variation and prevent evolution from Mendel wasn’t trying to explain evo- happening. Yet, for the same reason, lution. He knew of traits that varied Mendel’s work impeded evolutionary continuously in his experimental pea thought because evolution requires species, Pisum sativum, and appeared Figure 1. Mendel. change, and discrete variation was to blend in darwinian fashion from also incompatible with darwinian one generation to the next. But he gradualism. Eventually things were wanted to breed agriculturally valu- worked out, we got our unified theory able strains, so he avoided such traits used pea strains that differed only by (the neodarwinian Synthesis), and it and instead selected strains of pea the single traits he reported for each rested on Mendel’s discoveries. -
THEODOSIUS DOBZHANSKY January 25, 1900-December 18, 1975
NATIONAL ACADEMY OF SCIENCES T H E O D O S I U S D O B ZHANSKY 1900—1975 A Biographical Memoir by F R A N C I S C O J . A Y A L A Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1985 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. THEODOSIUS DOBZHANSKY January 25, 1900-December 18, 1975 BY FRANCISCO J. AYALA HEODOSIUS DOBZHANSKY was born on January 25, 1900 Tin Nemirov, a small town 200 kilometers southeast of Kiev in the Ukraine. He was the only child of Sophia Voinarsky and Grigory Dobrzhansky (precise transliteration of the Russian family name includes the letter "r"), a teacher of high school mathematics. In 1910 the family moved to the outskirts of Kiev, where Dobzhansky lived through the tumultuous years of World War I and the Bolshevik revolu- tion. These were years when the family was at times beset by various privations, including hunger. In his unpublished autobiographical Reminiscences for the Oral History Project of Columbia University, Dobzhansky states that his decision to become a biologist was made around 1912. Through his early high school (Gymnasium) years, Dobzhansky became an avid butterfly collector. A schoolteacher gave him access to a microscope that Dob- zhansky used, particularly during the long winter months. In the winter of 1915—1916, he met Victor Luchnik, a twenty- five-year-old college dropout, who was a dedicated entomol- ogist specializing in Coccinellidae beetles. -
Lecture 1 Revised2009
BIOL2007 MENDELIAN GENETICS AND EVOLUTION Part 1 = review historical background/milestones of evolutionary biology. Part 2 = examine a simple model as an illustrative example. Evolutionary biology aims to understand the factors that shape the diversity of life. Evolutionary processes occurring rapidly within populations are called microevolution. Processes occurring on a longer timescale to generate diversity in the fossil record and in the relationships of living species are called macroevolution. Note three striking aspects of evolution: 1) Focus of selection is not survival but reproductive success (see e.g. of sexual cannibalism). 2) Strong selection may produce rapid evolution in large populations (e.g. guppies) 3) Organisms are mosaics of parts with different ages. - for points 1) to 3), see further details/text/pictures on supporting handout - Darwin’s theory of natural selection Observations 1) Variation, in the form of individual differences, exists in every species, 2) All organisms produce more offspring than survive to reproductive age. Conclusions 1) A competition for survival causes the elimination of many individuals, 2) The characteristics of the surviving individuals are passed onto future generations. Darwin’s ‘The Origin of Species’ was a triumph, but it was not without problems. In general, biologists accepted the concept of evolution: species were not fixed in form and were not separately created. However, Darwin lacked a satisfactory explanation of the scientific basis of the concepts of variation and inheritance. In Darwin’s theory, the evolution of characters takes place gradually and each successive stage has to be advantageous for it to be favoured by natural selection. Many biologists argued that this was difficult to imagine for the evolution of an organ such as the wing of a bird. -
The “Plant Drosophila”: E. B. Babcock, the Genus Crepis, and the Evolution of a Genetics Research Program at Berkeley, 1915–1947
HSNS3903_02 6/26/09 11:04 AM Page 300 ∗ VASSILIKI BETTY SMOCOVITIS The “Plant Drosophila”: E. B. Babcock, the Genus Crepis, and the Evolution of a Genetics Research Program at Berkeley, 1915–1947 The student of genetics must be ready to resort to the use of any living organism that gives promise of revealing the natural laws upon which the future science of breeding will be grounded. E. B. Babcock, 19131 The Crepis investigations carried on by the Babcock group are the American evolutionary investigations that seem to have attracted the largest attention outside of America next to the Drosophila investigations. One reason for this is their wider systematical aspect. Jens Clausen, 19342 *Departments of Zoology and History, Affiliate in Botany, University of Florida, Bartram Hall, Gainesville, FL 32611; [email protected]fl.edu, [email protected]fl.edu. The following abbreviations are used: APS, American Philosophical Society Library, Philadel- phia, PA; CAS, California Academy of Sciences, San Francisco, CA; CIW, Carnegie Institution of Washington; CP, Carnegie Papers, Missouri Botanical Garden Archives, St. Louis, MO; EBB, Ernest Brown Babcock Papers, TBL; JHB, Journal of the History of Biology; JAJ, James Angus Jenkins Papers, TBL; RG, Rockefeller Foundation Archives, Sleepy Hollow, NY, http://www.rockarch.org/collections/rf/; TBL, The Bancroft Library, University of California, Berkeley; UC, University of California; UCGD, University of California, Berkeley, Genetics Department, APS. Interviews with G. Ledyard Stebbins are transcribed and in the author’s possession. 1. “Division of Genetics: Report to the Director of the Experiment Station, 11 June 1913,” EBB, Folder The Division of Genetics of the Department of Agriculture. -
Perspectives
Copyright Ó 2009 by the Genetics Society of America DOI: 10.1534/genetics.109.109991 Perspectives Anecdotal, Historical and Critical Commentaries on Genetics Darwin and Genetics Brian Charlesworth1 and Deborah Charlesworth Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh EH9 3JT, United Kingdom ABSTRACT Darwin’s theory of natural selection lacked an adequate account of inheritance, making it logically incomplete. We review the interaction between evolution and genetics, showing how, unlike Mendel, Darwin’s lack of a model of the mechanism of inheritance left him unable to interpret his own data that showed Mendelian ratios, even though he shared with Mendel a more mathematical and probabilistic outlook than most biologists of his time. Darwin’s own ‘‘pangenesis’’ model provided a mechanism for generating ample variability on which selection could act. It involved, however, the inheritance of characters acquired during an organism’s life, which Darwin himself knew could not explain some evolutionary situations. Once the particulate basis of genetics was understood, it was seen to allow variation to be passed intact to new generations, and evolution could then be understood as a process of changes in the frequencies of stable variants. Evolutionary genetics subsequently developed as a central part of biology. Darwinian principles now play a greater role in biology than ever before, which we illustrate with some examples of studies of natural selection that use DNA sequence data and with some recent advances in answering questions first asked by Darwin. The power of Selection, whether exercised by man or brought into play under nature through the struggle for existence and the The key is man’s power of cumulative selection: nature consequent survival of the fittest, absolutely depends on the gives successive variations; man adds them up in certain variability of organic beings.