Circuit and Method for Balun Compensation

Total Page:16

File Type:pdf, Size:1020Kb

Circuit and Method for Balun Compensation Europaisches Patentamt J European Patent Office © Publication number: 0 644 605 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 94112882.9 int. CI 6: H01P 5/10 @ Date of filing: 18.08.94 © Priority: 22.09.93 US 124875 © Applicant: MOTOROLA, INC. 1303 East Algonquin Road @ Date of publication of application: Schaumburg, IL 60196 (US) 22.03.95 Bulletin 95/12 @ Inventor: Kaltenecker, Robert S. © Designated Contracting States: 2719 S. Estrella Circle DE FR GB Mesa, Arizona 85202 (US) Inventor: Pfizenmayer, Henry L. 3318 E. Turquiose Avenue Phoenix, Arizona 85028 (US) Inventor: Wernett, Frederick C. 492 Kweo Trail Flagstaff, Arizona 86001 (US) © Representative: Hudson, Peter David et al Motorola European Intellectual Property Midpoint Alencon Link Basingstoke, Hampshire RG21 1PL (GB) © Circuit and method for balun compensation. 10 © A novel circuit and method for providing am- 14 plitude and phase compensation for a balun in order P1 P2 7o,Eo | Ox to provide first and second voltage signals that are 12 1 16 balanced has been provided. The compensation is I rrm < ^ achieved by an amplitude and phase com- adding P3 pensation circuit such as a transmission line (14) or 1 mm 18 o inductive (20) and capacitive (22) lumped elements CO in series with one of the ports of the balun on the balanced side. The and amplitude phase compensa- FIG. 1 tion circuit includes a characteristic impedance CO pa- rameter (Zo) and an electrical length parameter (Eo) that are optimized such that the amplitude difference between first and second voltage signals is mini- mized, while the magnitude of the phase difference between first and second voltage signals is maxi- mized. Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) 1 EP 0 644 605 A1 2 Field of the Invention ference between first and second voltage signals is minimized. Further, the electrical length is opti- This invention relates to baluns and, in particu- mized such that the magnitude of the phase dif- lar but not limited to, a circuit and method for ference between first and second voltage signals is compensating baluns. 5 maximized. Background of the Invention Brief Description of the Drawings A balun is a well known device having a single FIG. 1 is a detailed schematic diagram illustrat- ended (unbalanced) side and a balanced side. The io ing a first embodiment of an amplitude and function of a balun is to provide voltages at first phase compensated balun in accordance with and second ports of its balanced side which are the present invention; substantially equal in amplitude and substantially FIG. 2 is a detailed schematic diagram illustrat- 180° out of phase with respect to each other. In ing a second embodiment of an amplitude and other words, the balun is to provide equal and 75 phase compensated balun in accordance with opposite voltages to a balanced load with respect the present invention; and to ground. FIG. 3 is a detailed schematic/block diagram When utilizing a balun, the balun must be utilizing the present invention to improve perfor- impedance matched with the rest of the system in mance of an amplifier. order to minimize losses and distortion and maxi- 20 mize bandwidth, for example, in balanced amplifier Detailed Description of the Drawings applications. In trying to match the balun with the system, the prior art utilizes traditional measure- Referring to FIG. 1, a detailed schematic dia- ments on the single ended side of the balun. For gram illustrating a circuit and method for providing example, in measuring the frequency response of a 25 amplitude and phase compensation for voltage sig- balun, first and second baluns are serially coupled nals appearing at first and second ports on the wherein their balanced sides are interconnected. A balanced side of balun 10 is shown. Balun 10 is signal is applied at the single ended side of the shown as a three port device having first port P1 first balun, while the signal appearing at the single coupled to terminal 12, second port P2 coupled ended side of the second balun is observed. From 30 through amplitude and phase compensation circuit this measurement, one can obtain the bandwidth, 14 to terminal 16. Further, balun 10 includes third insertion loss and return loss for each balun (as- port P3 coupled to terminal 18. It is understood that suming that each balun is substantially identical). port P1 is on the single ended side of balun 10, However, these measurements do not convey any while ports P2 and P3 are on the balanced side of information about the amplitude and phase relation- 35 balun 10. Further, it is understood that balun 10 ships appearing at the balanced side of the balun. includes three twisted wires wherein a first wire has Hence, there exists a need for recognizing that a first end coupled to port P1 and a second end the amplitude and phase of the voltage signals coupled to a first end of a second wire and to port appearing at the balanced side of a balun may P2. Further, the second end of the second wire is degrade with frequency and for further providing a 40 coupled to a first end of a third wire, while the circuit and method for providing compensation for second end of the third wire is coupled to port P3. such amplitude and phase degradation. In general, if an input signal is applied at termi- nal 12 (and hence to port P1), then ideally ports P2 Summary of the Invention and P3 of balun 10 should provide equal amplitude 45 voltage signals that are substantially 180° out of Briefly, the present invention provides a circuit phase and wherein the amplitude of these voltage and a method for amplitude and phase compensat- signals is substantially equal to one-half the am- ing first and second voltages appearing at the plitude of the voltage signal applied terminal 12 balanced side of a balun. The present invention (less any loss through balun 10 as is understood). first realizes that the amplitude and phase of the 50 The present invention realizes that as the fre- voltages appearing at the balanced side of a balun quency of operation of balun 10 increases, the do indeed degrade with frequency. Further, the voltage signals appearing at ports P2 and P3 de- present invention provides an amplitude and phase grade with respect to frequency. That is, as the compensation circuit having a predetermined op- frequency increases, the amplitude difference be- timized electrical length and characteristic imped- 55 tween the voltage signals appearing at ports P2 ance that is inserted in series with a port on the and P3 increases, while the phase difference be- balanced side of the balun. The characteristic im- tween the voltage signals appearing at ports P2 pedance is optimized such that the amplitude dif- and P3 are no longer substantially 180° out of 2 3 EP 0 644 605 A1 4 phase with respect to each other. Although FIG. 1 shows transmission line 14 Moreover, the present invention then realizes being utilized to provide the amplitude in phase that by inserting an amplitude and phase com- compensation, it is understood that a combination pensation circuit such as transmission line 14 in of lumped inductive and capacitive components series with port P2, the amplitude and phase of 5 having selected characteristic impedance and elec- first and second voltage signals respectively ap- trical length could also be utilized as shown in FIG. pearing at terminals 16 and 18 can be compen- 2. In particular, FIG. 2 illustrates the amplitude and sated with respect to frequency. In particular, by phase compensation circuit to include inductor 20 appropriately selecting optimized values for the and capacitor 22 wherein inductor 20 is coupled characteristic impedance (Zo) and the electrical io between the second port of balun 10 and terminal length (Eo) of transmission line 14, the amplitude 16 while capacitor 22 is coupled between port P2 difference between the first and second voltage and ground reference. Moreover, it should be un- signals can be minimized, while the magnitude of derstood that other variations of lumped compo- the phase difference between the first and second nents may also be utilized such as including an voltage signals can be maximized. By maximizing is additional capacitor coupled between terminal 16 the magnitude of the phase difference between the and ground reference. first and second voltage signals, it is intended to Referring to FIG. 3, a detailed schematic/block mean that the phase difference between the first diagram utilizing the circuit shown in FIG. 1 to and second voltage signals is made substantially improve performance of an amplifier is shown. It is equal to 180°. In this manner, the first and second 20 understood that components shown in FIG. 3 that voltage signals provided at terminals 16 and 18 are are identical to components shown in FIG. 1 are said to be balanced. identified by the same reference numbers. For In order to optimize the values for the char- example, baluns 10' and 10" of FIG. 3 are the acteristic impedance and the electrical length of same as balun 10 of FIG. 1. Moreover, transmis- transmission line 14, any RF linear analysis pro- 25 sion lines 14' and 14" of FIG. 3 are identical to gram capable of handling distributed elements may transmission line 14 of FIG. 1. be utilized such as Hewlett Packard's Microwave The circuit shown in FIG. 3 further includes Design System (MDS) or Touchstone. For exam- amplifier 30, for example, a cable television (CATV) ple, by taking three port measurements at ports P1 , amplifier, having balanced inputs and outputs.
Recommended publications
  • W5GI MYSTERY ANTENNA (Pdf)
    W5GI Mystery Antenna A multi-band wire antenna that performs exceptionally well even though it confounds antenna modeling software Article by W5GI ( SK ) The design of the Mystery antenna was inspired by an article written by James E. Taylor, W2OZH, in which he described a low profile collinear coaxial array. This antenna covers 80 to 6 meters with low feed point impedance and will work with most radios, with or without an antenna tuner. It is approximately 100 feet long, can handle the legal limit, and is easy and inexpensive to build. It’s similar to a G5RV but a much better performer especially on 20 meters. The W5GI Mystery antenna, erected at various heights and configurations, is currently being used by thousands of amateurs throughout the world. Feedback from users indicates that the antenna has met or exceeded all performance criteria. The “mystery”! part of the antenna comes from the fact that it is difficult, if not impossible, to model and explain why the antenna works as well as it does. The antenna is especially well suited to hams who are unable to erect towers and rotating arrays. All that’s needed is two vertical supports (trees work well) about 130 feet apart to permit installation of wire antennas at about 25 feet above ground. The W5GI Multi-band Mystery Antenna is a fundamentally a collinear antenna comprising three half waves in-phase on 20 meters with a half-wave 20 meter line transformer. It may sound and look like a G5RV but it is a substantially different antenna on 20 meters.
    [Show full text]
  • California State University, Northridge
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Design of a 5.8 GHz Two-Stage Low Noise Amplifier A graduate project submitted in partial fulfillment of the requirements For the degree of Master of Science in Electrical Engineering By Yashika Parwath August 2020 The graduate project of Yashika Parwath is approved: Dr. John Valdovinos Date Dr. Jack Ou Date Dr. Brad Jackson, Chair Date California State University, Northridge ii Acknowledgement I would like to express my sincere gratitude to Dr. Brad Jackson for his unwavering support and mentorship that aided me to finish my master’s project. With his deep understanding of the subject and valuable inputs this design project has been quite a learning wheel expanding my knowledge horizons. I would also like to thank Dr. John Valdovinos and Dr. Jack Ou for being the esteemed members of the committee. iii Table of Contents Signature page ii Acknowledgement iii List of Figures v List of Tables vii Abstract viii Chapter 1: Introduction 1 1.1 Communication System 1 1.2 Low Noise Amplifier 2 1.3 Design Goals 2 Chapter 2: LNA Theory and Background 4 2.1 Introduction 4 2.2 Terminology 4 2.3 Design Procedure 10 Chapter 3: LNA Design Procedure 12 3.1 Transistor 12 3.2 S-Parameters 12 3.3 Stability 13 3.4 Noise and Noise Figure 16 3.5 Cascaded Noise Figure 16 3.6 Noise Circles 17 3.7 Unilateral Figure of Merit 18 3.8 Gain 20 Chapter 4: Source and Load Reflection Coefficient 23 4.1 Reflection Coefficient 23 4.2 Source Reflection Coefficient 24 4.3 Load Reflection Coefficient 26 Chapter 5: Impedance Matching
    [Show full text]
  • Design and Application of a New Planar Balun
    DESIGN AND APPLICATION OF A NEW PLANAR BALUN Younes Mohamed Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS May 2014 APPROVED: Shengli Fu, Major Professor and Interim Chair of the Department of Electrical Engineering Hualiang Zhang, Co-Major Professor Hyoung Soo Kim, Committee Member Costas Tsatsoulis, Dean of the College of Engineering Mark Wardell, Dean of the Toulouse Graduate School Mohamed, Younes. Design and Application of a New Planar Balun. Master of Science (Electrical Engineering), May 2014, 41 pp., 2 tables, 29 figures, references, 21 titles. The baluns are the key components in balanced circuits such balanced mixers, frequency multipliers, push–pull amplifiers, and antennas. Most of these applications have become more integrated which demands the baluns to be in compact size and low cost. In this thesis, a new approach about the design of planar balun is presented where the 4-port symmetrical network with one port terminated by open circuit is first analyzed by using even- and odd-mode excitations. With full design equations, the proposed balun presents perfect balanced output and good input matching and the measurement results make a good agreement with the simulations. Second, Yagi-Uda antenna is also introduced as an entry to fully understand the quasi-Yagi antenna. Both of the antennas have the same design requirements and present the radiation properties. The arrangement of the antenna’s elements and the end-fire radiation property of the antenna have been presented. Finally, the quasi-Yagi antenna is used as an application of the balun where the proposed balun is employed to feed a quasi-Yagi antenna.
    [Show full text]
  • University of Cincinnati
    UNIVERSITY OF CINCINNATI _____________ , 20 _____ I,______________________________________________, hereby submit this as part of the requirements for the degree of: ________________________________________________ in: ________________________________________________ It is entitled: ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ Approved by: ________________________ ________________________ ________________________ ________________________ ________________________ Digital Direction Finding System Design and Analysis A thesis submitted to the Division of Graduate Studies and Research of the University of Cincinnati in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE (M.S.) in the Department of Electrical & Computer Engineering and Computer Science of the College of Engineering 2003 by Huazhou Liu B.E., Xi’an Jiaotong University P. R. China, 2000 Committee Chair: Professor Howard Fan ABSTRACT Direction Finding (DF) system is used in many military and civilian operations such as surveillance, reconnaissance, and rescue, etc. In the past years, direction finding system is implemented usually using analog RF techniques such as Butler matrix and analog beamforming. Analog direction finding systems have drawbacks inherent from their analog properties such as expensive implementation, inflexibility to adjust or change functionality, intensive calibration procedures and
    [Show full text]
  • High-Performance Indoor VHF-UHF Antennas
    High‐Performance Indoor VHF‐UHF Antennas: Technology Update Report 15 May 2010 (Revised 16 August, 2010) M. W. Cross, P.E. (Principal Investigator) Emanuel Merulla, M.S.E.E. Richard Formato, Ph.D. Prepared for: National Association of Broadcasters Science and Technology Department 1771 N Street NW Washington, DC 20036 Mr. Kelly Williams, Senior Director Prepared by: MegaWave Corporation 100 Jackson Road Devens, MA 01434 Contents: Section Title Page 1. Introduction and Summary of Findings……………………………………………..3 2. Specific Design Methods and Technologies Investigated…………………..7 2.1 Advanced Computational Methods…………………………………………………..7 2.2 Fragmented Antennas……………………………………………………………………..22 2.3 Non‐Foster Impedance Matching…………………………………………………….26 2.4 Active RF Noise Cancelling……………………………………………………………….35 2.5 Automatic Antenna Matching Systems……………………………………………37 2.6 Physically Reconfigurable Antenna Elements………………………………….58 2.7 Use of Metamaterials in Antenna Systems……………………………………..75 2.8 Electronic Band‐Gap and High Impedance Surfaces………………………..98 2.9 Fractal and Self‐Similar Antennas………………………………………………….104 2.10 Retrodirective Arrays…………………………………………………………………….112 3. Conclusions and Design Recommendations………………………………….128 2 1.0 Introduction and Summary of Findings In 1995 MegaWave Corporation, under an NAB sponsored project, developed a broadband VHF/UHF set‐top antenna using the continuously resistively loaded printed thin‐film bow‐tie shown in Figure 1‐1. It featured a low VSWR (< 3:1) and a constant dipole‐like azimuthal pattern across both the VHF and UHF television bands. Figure 1‐1: MegaWave 54‐806 MHz Set Top TV Antenna, 1995 In the 15 years since then much technical progress has been made in the area of broadband and low‐profile antenna design methods and actual designs.
    [Show full text]
  • 3.1Loop Antennas All Antennas Used Radiating Elements That Were Linear Conductors
    SECX1029 ANTENNAS AND WAVE PROPAGATION UNIT III SPECIAL PURPOSE ANTENNAS PREPARED BY: MS.L.MAGTHELIN THERASE 3.1Loop Antennas All antennas used radiating elements that were linear conductors. It is also possible to make antennas from conductors formed into closed loops. Thereare two broad categories of loop antennas: 1. Small loops which contain no morethan 0.086λ wavelength,s of wire 2. Large loops, which contain approximately 1 wavelength of wire. Loop antennas have the same desirable characteristics as dipoles and monopoles in that they areinexpensive and simple to construct. Loop antennas come in a variety of shapes (circular,rectangular, elliptical, etc.) but the fundamental characteristics of the loop antenna radiationpattern (far field) are largely independent of the loop shape.Just as the electrical length of the dipoles and monopoles effect the efficiency of these antennas,the electrical size of the loop (circumference) determines the efficiency of the loop antenna.Loop antennas are usually classified as either electrically small or electrically large based on thecircumference of the loop. electrically small loop = circumference λ/10 electrically large loop - circumference λ The electrically small loop antenna is the dual antenna to the electrically short dipole antenna. That is, the far-field electric field of a small loop antenna isidentical to the far-field magnetic Page 1 of 17 SECX1029 ANTENNAS AND WAVE PROPAGATION UNIT III SPECIAL PURPOSE ANTENNAS PREPARED BY: MS.L.MAGTHELIN THERASE field of the short dipole antenna and the far-field magneticfield of a small loop antenna is identical to the far-field electric field of the short dipole antenna.
    [Show full text]
  • Development of Electric and Magnetic Near-Field Probes
    National Bureau of Standards Library. £-01 Admin. Bldg. OCT 6 1981 191108 ~&h /CO sm 8 NBS TECHNICAL NOTE 658 6 $ , a £i "ffAU O* U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards Development of Electric and Magnetic Near-Field Probes tx NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress March 3. 1901. The Bureau's overall goal is to strengthen and advance (he Nation's science and technology and facilitate their effective application for public benefit. To this end. the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system. (2) scientific and technological services for industry and government. (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas- urement Services and the following divisions: Applied Mathematics — Electricity — Mechanics
    [Show full text]
  • A Portable Twin-Lead 20-Meter Dipole
    By Rich Wadsworth, KF6QKI A Portable Twin-Lead 20-Meter Dipole With its relatively low loss and no need for a tuner, this resonant portable dipole for 14.060 MHz is perfect for portable QRP. first attempt at a portable problem is that its 300 ohm impedance to 70 ohms, a feed line that is an electri- dipole was using 20 AWG normally requires a tuner or 4:1 balun at cal half wave long will also measure 50 My speaker wire, with the leads the rig end. to 70 ohms at the transceiver end, elimi- simply pulled apart for the length re- But, since I want approximately a half nating the need for a tuner or 4:1 balun. 1 quired for a /2 wavelength top and the wavelength of feed line anyway, I decided To determine the electrical length of rest used for the feed line. The simplic- to experiment with the concept of mak- a wire, you must adjust for the velocity ity of no connections, no tuner and mini- ing it an exact electrical half wavelength factor (VF), the ratio of the speed of the mal bulk was compelling. And it worked long. Any feed line will reflect the im- signal in the wire compared to the speed (I made contacts)! pedance of its load at points along the of light in free space. For twin lead, it is Jim Duffey’s antenna presentation at the feed line that are multiples of a half wave- 0.82. This means the signal will travel at 1999 PacifiCon QRP Symposium made me length.
    [Show full text]
  • Wireless Sensing and Identification of Passive Electromagnetic Sensors Based on Millimetre-Wave FMCW RADAR
    Wireless Sensing and Identification of Passive Electromagnetic Sensors based on Millimetre-wave FMCW RADAR Hervé Aubert, Franck Chebila, Mohamed Mehdi Jatlaoui, Trang Thai, Hamida Hallil, Anya Traille, Sofiene Bouaziz, Ayoub Rifai, Patrick Pons, Philippe Menini, et al. To cite this version: Hervé Aubert, Franck Chebila, Mohamed Mehdi Jatlaoui, Trang Thai, Hamida Hallil, et al.. Wire- less Sensing and Identification of Passive Electromagnetic Sensors based on Millimetre-wave FMCW RADAR. IEEE RFID Technology & Applications, Nov 2012, Nice, France. 5p. hal-00796002 HAL Id: hal-00796002 https://hal.archives-ouvertes.fr/hal-00796002 Submitted on 1 Mar 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Wireless Sensing and Identification of Passive Electromagnetic Sensors based on Millimetre-wave FMCW RADAR H. AUBERT, Senior Member, IEEE , F. CHEBILA, M. JATLAOUI, T. THAI, H. HALLIL, A. TRAILLE, S. BOUAZIZ, A. RIFAÏ , P. PONS, P. MENINI , M. TENTZERIS, Fellow, IEEE Abstract — The wireless measurement of various physical spectrum synthesized by the FMCW RADAR [12]. The quantities from the analysis of the RADAR Cross Sections wireless identification of sensors may then be based on variability of passive electromagnetic sensors is presented.
    [Show full text]
  • Multiband RF Circuits and Techniques for Wireless Transmitters Multiband RF Circuits and Techniques for Wireless Transmitters Wenhua Chen • Karun Rawat Fadhel M
    Wenhua Chen · Karun Rawat Fadhel M. Ghannouchi Multiband RF Circuits and Techniques for Wireless Transmitters Multiband RF Circuits and Techniques for Wireless Transmitters Wenhua Chen • Karun Rawat Fadhel M. Ghannouchi Multiband RF Circuits and Techniques for Wireless Transmitters 123 Wenhua Chen Fadhel M. Ghannouchi Tsinghua University University of Calgary Beijing Calgary, AB China Canada Karun Rawat Indian Institute of Technology Roorkee Roorkee India ISBN 978-3-662-50438-3 ISBN 978-3-662-50440-6 (eBook) DOI 10.1007/978-3-662-50440-6 Library of Congress Control Number: 2016940120 © Springer-Verlag Berlin Heidelberg 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Wideband UHF Antenna for Partial Discharge Detection
    applied sciences Article Wideband UHF Antenna for Partial Discharge Detection Zhen Cui 1, Seungyong Park 1, Hosung Choo 2 and Kyung-Young Jung 1,* 1 Department of Electronics Computer Engineering, Hanyang University, Seoul 04763, Korea; [email protected] (Z.C.); [email protected] (S.P.) 2 School of Electronic and Electrical Engineering, Hongik University, Seoul 04066, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-2220-2320 Received: 29 January 2020; Accepted: 27 February 2020; Published: 2 March 2020 Abstract: This paper presents a ultra-high frequency (UHF) antenna for partial discharge (PD) detection and the antenna sensor can be used near a conducting ground wire. The proposed UHF antenna has advantages of easy setup and higher-frequency detection over the high-frequency current transformer (HFCT) sensor. First, a variety of loop-shaped antennas are designed to compare each near field coupling capability. Then, a new UHF antenna is designed based on the loop-shaped antenna, which has the best near field coupling capability. Finally, the proposed UHF antenna is fabricated and measured. It provides a wide impedance bandwidth of 760 MHz (740–1500 MHz). Its simple setup configuration and wide bandwidth frequency response in the UHF band can provide a more efficient means for PD detection. Keywords: partial discharge; ultra-high frequency (UHF) antenna 1. Introduction With the significant increase in electric power consumption, power equipment is currently being developed towards large capacity, ultra-high voltage, and unmanned control. If such large capacity power equipment fails to work, in general, it takes considerable time to repair the entire system and resume electric power supply.
    [Show full text]
  • Improvement in Radiation Pattern of Yagi-Uda Antenna
    Research Inventy: International Journal Of Engineering And Science Vol.2, Issue 12 (May 2013), Pp 26-35 Issn(e): 2278-4721, Issn(p):2319-6483, Www.Researchinventy.Com Improvement in Radiation Pattern Of Yagi-Uda Antenna 1,Ankit Agnihotri , 2,Akshay Prabhu , 3,Dheerendra Mishra B.tech (EC), Kanpur Institute of Technology, A-1 UPSIDC, Industrial Area, Rooma, Kanpur (U.P.) (affiliated to GBTU University, Lucknow), India Abstract : An Antenna is used to transmit and receive electromagnetic waves. Antennas are employed in systems such as radio and television broadcasting, point-to-point radio communication, wireless LAN, radar, and space exploration. Antennas usually work in air or outer space, but can also be operated under water or even through soil and rock at certain frequencies for short distances. The origin of the word antenna relative to wireless apparatus is attributed to Guglielmo Marconi. Several critical parameters affecting an antenna's performance are resonant frequency, impedance, gain, aperture or radiation pattern, polarization, efficiency and bandwidth. Transmit antennas may also have a maximum power rating, and receive antennas differ in their noise rejection properties. We have simulated the radiation pattern of Yagi-Uda antenna in MATLAB. We have designed this antenna and have made improvements in the previous designs to have better electric field intensity and directivity. Our basic approach was to simulate the radiation pattern for a symmetrically shaped antenna and then maximizing the output parameters by using various techniques such as using reflector surfaces wherever the loss in antenna was due to side lobes. Polarization of an antenna is a very important parameter in determining the loss in transmission.
    [Show full text]