Systematics of Dirca (Thymelaeaceae) Based on Its Sequences and ISSR Polymorphisms James A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thymelaeaceae)
Origin and diversification of the Australasian genera Pimelea and Thecanthes (Thymelaeaceae) by MOLEBOHENG CYNTHIA MOTS! Thesis submitted in fulfilment of the requirements for the degree PHILOSOPHIAE DOCTOR in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG Supervisor: Dr Michelle van der Bank Co-supervisors: Dr Barbara L. Rye Dr Vincent Savolainen JUNE 2009 AFFIDAVIT: MASTER'S AND DOCTORAL STUDENTS TO WHOM IT MAY CONCERN This serves to confirm that I Moleboheng_Cynthia Motsi Full Name(s) and Surname ID Number 7808020422084 Student number 920108362 enrolled for the Qualification PhD Faculty _Science Herewith declare that my academic work is in line with the Plagiarism Policy of the University of Johannesburg which I am familiar. I further declare that the work presented in the thesis (minor dissertation/dissertation/thesis) is authentic and original unless clearly indicated otherwise and in such instances full reference to the source is acknowledged and I do not pretend to receive any credit for such acknowledged quotations, and that there is no copyright infringement in my work. I declare that no unethical research practices were used or material gained through dishonesty. I understand that plagiarism is a serious offence and that should I contravene the Plagiarism Policy notwithstanding signing this affidavit, I may be found guilty of a serious criminal offence (perjury) that would amongst other consequences compel the UJ to inform all other tertiary institutions of the offence and to issue a corresponding certificate of reprehensible academic conduct to whomever request such a certificate from the institution. Signed at _Johannesburg on this 31 of _July 2009 Signature Print name Moleboheng_Cynthia Motsi STAMP COMMISSIONER OF OATHS Affidavit certified by a Commissioner of Oaths This affidavit cordons with the requirements of the JUSTICES OF THE PEACE AND COMMISSIONERS OF OATHS ACT 16 OF 1963 and the applicable Regulations published in the GG GNR 1258 of 21 July 1972; GN 903 of 10 July 1998; GN 109 of 2 February 2001 as amended. -
Frugivory in Dirca (Thymelaeaceae) As a Method of Short-Distance Dispersal
Floden, A. 2011. Frugivory in Dirca (Thymelaeaceae) as a method of short-distance dispersal. Phytoneuron 2011-8: 1–3. FRUGIVORY IN DIRCA (THYMELAEACEAE) AS A METHOD OF SHORT-DISTANCE DISPERSAL AARON FLODEN Herbarium TENN Department of Ecology and Evolutionary Biology University of Tennessee Knoxville, TN 37996 [email protected] ABSTRACT Dispersal in Dirca remains relatively understudied, with only minimal data on hydrochory and no data supporting a hypothesis of bird dispersal. Observations are presented that suggest frugivory, as evidenced by rodent seed caches, as a mechanism for short-distance dispersal in Dirca . KEYWORDS : Dirca , rodent, frugivory, endochory, dispersal Given the close association of Dirca L. species with riparian systems, it has been assumed that a major mechanism for their dispersal is hydrochory (Nevling 1962; Ward & Horn 1998; Williams and Moriarity 1998; Floden 2009; Williams 2009). Recently, hydrochory was tested as a method of seed distribution for D. palustris L. and it was determined that the buoyancy time for the species does not support hydrochory as the predominant method for dispersal (Williams 2009). Seemingly in contrast to this observation, the distribution of D. palustris in the southernmost part of its range is largely confined to riparian systems (Floden et al. 2009; Schrader & Graves 2004; Ward & Horn 1998). Phylogeographic analyses of Dirca palustris might support hydrochory as the primary mode of long-distance dispersal, based on the genetic structure of the populations. Gravity as a method for dispersal, however, is indicated by the number of randomly scattered seedlings under individuals in cultivation and in situ. Nevling (1962) suggested bird distribution as a mechanism for dispersal, but the fruits do not ripen red to signal maturity, nor is there any evidence yet that supports this (Floden et al. -
Natural Communities of Michigan: Classification and Description
Natural Communities of Michigan: Classification and Description Prepared by: Michael A. Kost, Dennis A. Albert, Joshua G. Cohen, Bradford S. Slaughter, Rebecca K. Schillo, Christopher R. Weber, and Kim A. Chapman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Michigan Department of Natural Resources Wildlife Division and Forest, Mineral and Fire Management Division September 30, 2007 Report Number 2007-21 Version 1.2 Last Updated: July 9, 2010 Suggested Citation: Kost, M.A., D.A. Albert, J.G. Cohen, B.S. Slaughter, R.K. Schillo, C.R. Weber, and K.A. Chapman. 2007. Natural Communities of Michigan: Classification and Description. Michigan Natural Features Inventory, Report Number 2007-21, Lansing, MI. 314 pp. Copyright 2007 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status or family status. Cover photos: Top left, Dry Sand Prairie at Indian Lake, Newaygo County (M. Kost); top right, Limestone Bedrock Lakeshore, Summer Island, Delta County (J. Cohen); lower left, Muskeg, Luce County (J. Cohen); and lower right, Mesic Northern Forest as a matrix natural community, Porcupine Mountains Wilderness State Park, Ontonagon County (M. Kost). Acknowledgements We thank the Michigan Department of Natural Resources Wildlife Division and Forest, Mineral, and Fire Management Division for funding this effort to classify and describe the natural communities of Michigan. This work relied heavily on data collected by many present and former Michigan Natural Features Inventory (MNFI) field scientists and collaborators, including members of the Michigan Natural Areas Council. -
Review of Three Dirca Species with Special Emphasis on D. Occidentalis Background
Review of Three Dirca Species With Special Emphasis on D. Occidentalis Jasper Ridge Biological Preserve Docent Research Report John Kriewall May 29,2001 Table of Contents Summary Page Background 1 Why study dirca? 2 Objectives 2 Conclusions 3 Discussion Literature Search and Network 6 Biogeography 7 Species Comparisons 10 DO Compared to DP 11 DM Compared to DO and DP 13 Habitat Comparisons 14 Toxicity and Chemical Analysis 15 Locations and Quantity of DO at JRBP 16 DO at Other Bay Area Locations 17 Pollinators 21 Propagation by Other Means 22 Seed Dispersal 22 Horticultural Attempts at Propagation 22 Additional Studies Required 23 Research in the Mail 26 Next? 27 N. American Ranges of D. species 1 Figures 1. Locations ofDO at JRPB (GPS) 3a 2. Early Tertiary Paleogeographic Map 8 3A. Mexican~Appalachian Paleogeography-! 9 3B. Mexican-Appalachian Paleogeography-II 9 4A. Stem Photomicrograph 10 4B. Enlarged Stem Photomicrograph 10 5A. DO v DP Flower Comparisons 12 5B DO v DP Leaf Comparisons 12 6 DM Sketches 14 Tables 1 Key: DO and DO 11 2 DP and DO Flower-LeafMetrics 13 3. Key: DO, DP and DM 13 Appendices I Bibliography 8 pages Published Papers 1 Specimen Images (Internet) 2 Descriptions/Overview (Internet) 2 Toxicity, Agricultural (Internet) 3 Horticultural/Landscaping/Nurseries (Internet) 3 Mise (Internet) 4 Citations not Retrieved 4 Pers Communications 4-8 II Network of Contacts 1-6 III Comparison ofDO, DP, and DM 1-7 Docent Research Report John Kriewall 5/29/01 Final Edit 8/01 Review of Three Dirca Species With Special Emphasis on D. -
Open As a Single Document
Cercis: The Redbuds by KENNETH R. ROBERTSON One of the few woody plants native to eastern North America that is widely planted as an ornamental is the eastern redbud, Cercis canadensis. This plant belongs to a genus of about eight species that is of interest to plant geographers because of its occurrence in four widely separated areas - the eastern United States southwestward to Mexico; western North America; south- ern and eastern Europe and western Asia; and eastern Asia. Cercis is a very distinctive genus in the Caesalpinia subfamily of the legume family (Leguminosae subfamily Caesalpinioi- - deae). Because the apparently simple heart-shaped leaves are actually derived from the fusion of two leaflets of an evenly pinnately compound leaf, Cercis is thought to be related to -~auhinic~, which includes the so-called orchid-trees c$~~ cultivated in tropical regions. The leaves of Bauhinia are usu- ally two-lobed with an apical notch and are made up of clearly ~ two partly fused leaflets. The eastern redbud is more important in the garden than most other spring flowering trees because the flower buds, as well as the open flowers, are colorful, and the total ornamental season continues for two to three weeks. In winter a small bud is found just above each of the leaf scars that occur along the twigs of the previous year’s growth; there are also clusters of winter buds on older branches and on the tree trunks (Figure 3). In early spring these winter buds enlarge (with the excep- tion of those at the tips of the branches) and soon open to re- veal clusters of flower buds. -
National List of Vascular Plant Species That Occur in Wetlands 1996
National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt. -
Daphne Mezereum L. Mezereon
Daphne mezereum L. Mezereon Starting references Family Thymelaeaceae IUCN category (2001) Vulnerable Habit Deciduous shrub. Habitat Calcareous woodland, often on steep, sometimes rocky slopes with little ground cover, but rarely in deep shade; also in chalk-pits, and in wet, species-rich fens. Reasons for decline Habitat loss and uprooting. Distribution in wild Country Locality & Vice County Sites Population (10km2 occurences) (plants) Wales Carmarthenshire 2 England Westmorland 1 W Lancashire 1 MW Yorkshire 3 Derbyshire 4 W Norfolk 1 E Gloucestershire 1 Oxfordshire 2 Berkshire 3 Buckinghamshire 1 Surrey 2 N Hampshire 2 W Sussex 1 Dorset 1 Ex situ Collections Gardens close to the region of distribution of the species 1 Holehird Gardens 2 Sizergh Castle (NT) 3 Sheffield Botanical Gardens 4 National Botanic Garden of Wales 5 Swansea Botanic Garden,17 6 Hidcote Manor (NT) 7 Batsford Arboretum 8 Abbotsbury Subtropical Garden 9 University of Oxford Botanic Garden 10 The Harris Garden 11 Windsor Gardens 12 Cliveden (NT) 13 High Beeches Gardens 14 Nymans Garden (NT) 15 Borde Hill Garden 16 RBG Kew 17 RHS Wisley 18 Cambridge University Botanic Garden Gardens with specialisation on genus Daphne Ness Botanic Garden Potential to grow the species in ex situ Collections In the wild, reproduces by seed and is self-fertile. From Plants For A Future • Propagation Seed - best sown in a greenhouse as soon as it is ripe with the pot sealed in a polythene bag to hold in the moisture. Remove this bag as soon as germination takes place. The seed usually germinates better if it is harvested 'green' (when it has fully developed but before it dries on the plant) and sown immediately. -
Paradise Plant Daphne Mezereum Reviewer Affiliation/Organization Date (Mm/Dd/Yyyy) Tina Markeson MNDOT 09/087/2011
MN NWAC Risk Common Name Latin Name Assessment Worksheet (04-2011) Paradise Plant Daphne mezereum Reviewer Affiliation/Organization Date (mm/dd/yyyy) Tina Markeson MNDOT 09/087/2011 Box Question Answer Outcome 1 Is the plant species or genotype Yes- Native to Europe (i.e., Go to box:?) 3 non-native? 2 Does the plant species pose significant human or livestock concerns or has the potential to significantly harm agricultural production? A. Does the plant have toxic Yes – Highly toxic to humans and livestock qualities that pose a significant risk to livestock, wildlife, or people? B. Does the plant cause significant financial losses associated with decreased yields, reduced quality, or increased production costs? 3 Is the plant species, or a related Southern Ontario (Some of these species have the potential to become invasive exotics in Go to #6 species, documented as being a Ontario. They can reproduce aggressively on occasion but have not been shown to be a problem elsewhere? serious threat to natural areas in Ontario.) http://www.serontario.org/pdfs/exotics.pdf 4 Is the plant species’ life history & Growth requirements understood? 5 Gather and evaluate further (Comments/Notes) information: 6 Does the plant species have the Yes –successfully cultivated within Zone 3 capacity to establish and survive in Minnesota? Box Question Answer Outcome A. Is the plant, or a close Yes – Along TH61 (North Shore Dr.) Go to #7 relative, currently established in Minnesota? B. Has the plant become Yes - Ontario established in areas having a climate and growing conditions similar to those found in Minnesota? 7 Does the plant species have the Seed Germination of Daphne mezereum: Fruit Stages, Cold Treatment, and potential to reproduce and more; D. -
The Hoosier- Shawnee Ecological Assessment Area
United States Department of Agriculture The Hoosier- Forest Service Shawnee Ecological North Central Assessment Research Station General Frank R. Thompson, III, Editor Technical Report NC-244 Thompson, Frank R., III, ed 2004. The Hoosier-Shawnee Ecological Assessment. Gen. Tech. Rep. NC-244. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Research Station. 267 p. This report is a scientific assessment of the characteristic composition, structure, and processes of ecosystems in the southern one-third of Illinois and Indiana and a small part of western Kentucky. It includes chapters on ecological sections and soils, water resources, forest, plants and communities, aquatic animals, terrestrial animals, forest diseases and pests, and exotic animals. The information presented provides a context for land and resource management planning on the Hoosier and Shawnee National Forests. ––––––––––––––––––––––––––– Key Words: crayfish, current conditions, communities, exotics, fish, forests, Hoosier National Forest, mussels, plants, Shawnee National Forest, soils, water resources, wildlife. Cover photograph: Camel Rock in Garden of the Gods Recreation Area, with Shawnee Hills and Garden of the Gods Wilderness in the back- ground, Shawnee National Forest, Illinois. Contents Preface....................................................................................................................... II North Central Research Station USDA Forest Service Acknowledgments ................................................................................................... -
Malvales Nymphaeales Austrobaileyales
Amborellales Malvales Nymphaeales Austrobaileyales Acorales G Eenzaadlobbigen G Alismatales Petrosaviales Huerteales Pandanales Een recente ontwikkeling is het Dioscoreales Dipentodontaceae in een nieuw Liliales Asparagales hout- en anatomische kenmerke 2 geslachten en 5 soorten van b Arecales en samengestelde bladeren, die G Commeliniden G Dasypogonales Poales werden geplaatst. De Dipentod Commelinales sinicus, een boom uit China en Zingiberales die vroeger in de Violales werd Ceratophyllales Malvales Chloranthales De Malvales zijn voor het meren Canellales warme streken. Ze hebben vers Piperales G Magnoliiden G De bast is nogal eens vezelig, st Magnoliales veel voor. De kroonbladen ligge Laurales Ze hebben meestal een lange st Ranunculales De zaden en de binnenkant van Sabiales bezet. Deze orde omvatte al de Proteales Trochodendrales Dipterocarpaceae, Bixaceae, Ne Buxales Sphaerosepalaceae. De Lindefam Gunnerales Bombacaceae zijn nu opgenom Berberidopsidales (Malvaceae). De Muntingiaceae Dilleniales afgesplitst. Nieuwkomers in de Caryophyllales Santalales (Cistaceae), uit de Violales, en d Saxifragales (Thymelaeaceae) uit de Euphorb Cytinaceae (vroeger Rafflesiales G Geavanceerde tweezaadlobbigen G Vitales Crossosomatales ook in deze orde thuis. Geraniales Myrtales Sapindales Zygophyllales De meeste soorten in deze orde Celastrales houtige gewassen, vaak met sam Malpighiales G Fabiden G Oxalidales Fabales Rosales Bixaceae G Rosiden G Cucurbitales Malvaceae Fagales Muntingiaceae Cistaceae Huerteales Dipterocarpaceae G G Malviden Brassicales -
Soil Seed Bank Characteristics in Relation to Different Shrub Species In
Soil seed bank characteristics in relation to different shrub species in semiarid regions Reza Erfanzadeh1, Mahbubeh Hadinezhad1, and Hassan Ghelichnia2 1Tarbiat Modares University 2Natural Resources Department, Mazandaran Agriculture Research, Education and Extension Organization May 6, 2020 Abstract Little information is available about the effects of different species of shrubs on the composition of the soil seed bank (SSB) in semiarid regions. We determined the role of three dominant shrub species on SSB characteristics and evaluated their potential for their possible use in rangeland restoration projects. Fifteen sites, each containing three shrub species (Amygdalus scoparia, Daphne mezereum and Ebenus stellata) and a herbaceous patch (control) in close proximity, were sampled and their SSB density, species richness and diversity at 0-10 cm depth were determined. The results showed that the density of the SSB was highest under A. scoparia (1133 seeds per m2) and lowest in herbaceous vegetation (110 seeds per m2). Species richness and diversity of the SSB was significantly greater under E. stellata than under the other shrubs and control. This study revealed that the extent to which vegetation affected SSB characteristics did not only depend on the presence of shrubs, but also on the species of shrub. These different roles of different species of shrubs on SSB are advised to be considered in the restoration of degraded areas through planting of shrubs in semiarid regions. Planting and the extension of E. stellata cover in degraded sites could be of priority due to its prominent role in herbaceous SSB reservoir and species diversity and richness. Introduction Arid and semi-arid ecosystems occupy 36% of the land area of the globe and shrubs function as foundation species within these ecosystems (Yang and Williams, 2015). -
A Review on Medicinal Plants for Cancer Therapy
International Journal of MediPharm Research ISSN:2395-423X www.medipharmsai.com Vol.02, No.02, pp 105-112, 2016 A Review on Medicinal Plants for Cancer Therapy Sejal.G.Patel*, Department of Pharmacognosy, Nootan Pharmacy College, Visnagar, Gujarat, India. Abstract : Cancer is major health problem in both developed and developing countries. Cancer after cardiovascular disease is the second leading cause of death. Cancer is the abnormal growth of cells in our bodies that can lead to death. A huge reservoir of bioactive compounds exists in many species of plants of Earth, only a small percentage of which have been examined and continued to be an important source of anticancer agents. Worldwide effects are ongoing to identify new anticancer compounds from plants. With the current decline in the number of new molecular entities from the pharmaceutical industry, novel anticancer agents are being sought from traditional medicines. This article reveals a detailed review of ethno medicinally important plants in cancer from medicinal plants which will be useful to treat various types of cancer. It will be helpful to explore the medicinal value of the plants and for the new drug discovery from them for the researchers and scientists around the globe. Key words: Cancer, Medicinal plants, bioactive compounds, Anticancer. 1. Introduction Cell growth and cell multiply process is known as cell division. It must be extremely controlled that all the cells in the body should grow at the right place, and for all the organs and tissues to function properly. When the cells divide too quickly, consequences can be disastrous. When a cell divides, it first makes an exact copy of its DNA via a process called DNA replication, before splitting into half, to form two 'daughter' cells, that are genetically identical.