University of Pretoria Research Report RESEARCH

Total Page:16

File Type:pdf, Size:1020Kb

University of Pretoria Research Report RESEARCH University of Pretoria Research Report RESEARCH © Nico de Bruyn Photography University of Pretoria Research Report Mission The mission of the University of Pretoria is to be an internationally recognised South African teaching and research university and a member of the international community of scholarly institutions that: • provides excellent education in a wide spectrum of academic disciplines; • promotes scholarship through: – the creation, advancement, application, transmission and preservation of knowledge; – the stimulation of critical and independent thinking; • creates flexible, lifelong learning opportunities; • encourages academically rigorous and socially meaningful research, particularly in fields relevant to emerging economies; • enables students to become well-rounded, creative people, responsible, productive citizens and future leaders by: – providing an excellent academic education; – developing their leadership abilities and potential to be world-class, innovative graduates with competitive skills; – instilling in them the importance of a sound value framework; – developing their ability to adapt to the rapidly changing environments of the information era; – encouraging them to participate in and excel in sport, cultural activities, and the arts; • is locally relevant through: – its promotion of equity, access, equal opportunities, redress, transformation and diversity; – its contribution to the prosperity, competitiveness and quality of life in South Africa; – its responsiveness to the educational, cultural, economic, scientific, technological, industrial, health, environmental and social needs of the country; – its active and constructive involvement in community development and service; – its sensitivity to the demands of our time and its proactive contribution towards shaping the future; • creates an intellectually stimulating and culturally vibrant, pleasant and safe environment in which its students and staff can flourish; and • is committed to effective, efficient, caring and innovative approaches to teaching, research and community service, client-centred management and administration, and good governance. 2011 Research Report Research Report 2011 Contents 1. Introduction 1 1.1 Message from the Vice-Chancellor and Principal 2 1.2 Message from the Vice-Principal: Research and Postgraduate Education 4 1.3 Research overview 6 2. Awards and achievements 11 3. Institutional and Faculty Research Themes 15 Introduction 17 Biotechnology and the Management of Animal and Zoonotic Diseases 18 Energy 20 Food, Nutrition and Wellbeing 22 Genomics 24 Cellular and Molecular Medicine 26 Centre for Sustainable Malaria Control 28 Institute for International and Comparative Law 30 4. Research highlights 33 Economic and Management Sciences 34 Education 46 Engineering, Built Environment and Information Technology 54 Health Sciences 86 Humanities 108 Law 124 Natural and Agricultural Sciences 134 Theology 176 Veterinary Science 186 Gordon Institute of Business Science 200 5. Acknowledgements 204 2011 Research Report i ii 2011 Research Report 1 Introduction Prof Cheryl de la Rey Message from the 1.1 Vice-Chancellor and Principal Research and the development of research capacity are defining features of the University of Pretoria’s vision and mission. Therefore, it is pleasing to report that in 2011 the University continued to make a significant contribution to the national research output of South Africa. In addition to the large number of publications reflected in this report, an especially pleasing outcome is that over 200 doctoral degrees were awarded; the highest number for any single South African university. 2 2011 Research Report In a developing country like South Africa, it is perhaps especially important that research activities at universities give focused attention to research training. The year 2011 showed continued growth in the enrolment and graduation of master’s and doctoral students. Close to a third of the University’s almost 45 000 contact students were postgraduates with approximately half of these were graduates of other universities, thus indicating that the University of Pretoria is a university of choice for postgraduate study. Creating an enabling environment for high-quality scholarship is of the utmost importance in the University’s strategy. By the end of 2011, the University had completed a number of major infrastructure developments, including a new Engineering Complex. (Engineering is one of the areas in which the University of Pretoria enjoys national and international prominence.) A new Knowledge Commons and Library Centre, partially funded by a grant from the Carnegie Corporation, was also officially opened in 2011. Almost immediately after opening, it became a hub for the growing numbers of postgraduate students. It is very pleasing to note that many of the University’s academics and postgraduate students distinguished themselves in 2011 by winning several awards and accolades. Notable too, is that there was a marked increased in the number of researchers rated by the National Research Foundation (NRF) and the proportion of high-impact publications increased. The achievements showcased in this report are due to the commitment and hard work of the University’s staff and students and I wish to express my sincere appreciation for their efforts in ensuring that the University of Pretoria continues to be counted among South Africa’s leading universities. On behalf of the entire University community, I also wish to thank Prof Robin Crewe, who was the Vice-Principal responsible for research and postgraduate studies for many years. Prof Crewe continues to provide outstanding leadership at the University as the Vice-Principal responsible for all faculties. Prof Stephanie Burton took office as Vice-Principal for Research and Postgraduate Education from April 2011. She has already demonstrated that she will make a marked contribution to the future success of the University. Thank you too to the many donors, sponsors and agencies who fund the University’s research through postgraduate scholarships, equipment and research grants. New large capital projects were funded in part by grants from the Department of Higher Education and Training and the Carnegie Corporation, and we are most grateful for these grants. Without additional support to complement the annual subsidy allocations from the Department of Higher Education and Training, the research outputs reflected in this report would not have been possible. By the end of 2011, the University Council had approved the University’s new long-term strategy, UP 2025, which will give increased impetus to ensuring that the University of Pretoria builds on its past achievements to make an even greater impact in the future. Prof Cheryl de la Rey Vice-Chancellor and Principal 2011 Research Report 3 Prof Stephanie Burton Message from the 1.2 Vice-Principal: Research and Post- graduate Education In offering an overview of research at the University of Pretoria during 2011, this report demonstrates the achievements of the University’s academic community and elucidates certain new developments. During 2011, the University continued to make a significant contribution to the total national research output and to improve the proportion of its research publications that are cited internationally. 4 2011 Research Report The University’s strategic plan, which has guided research since 2006, concluded at the end of 2011, and much attention was paid to the development of new strategic directions for research, which are aligned with the development of the broader academic plan that will take the University up to the year 2025. Renewed focus is being placed on the importance of research outputs in enhancing the international reputation of the University and on the need to expand its research productivity. The new developments in research at UP are reflected in this report, which highlights, among other features, the University’s progress in following the international trend of interdisciplinary research and addressing global challenges through the initiation of institutional and faculty research themes. These themes link multidisciplinary research groups through collaborative participation. The themes were developed on the basis of recognising and fostering excellence in research, and are led by recognised international leaders. They will contribute to the enhancement of the University’s research reputation by providing an enabling environment for the growth of scholarship among academic staff, postdoctoral fellows and postgraduate students. The University’s research makes excellent, internationally recognised contributions in the fields of veterinary science, agricultural and biological sciences, engineering and social sciences (as reflected in international databases), and its institutional research themes are aligned with these strengths in the focus areas of animal and zoonotic diseases, energy, food and nutrition, and genomics. The faculty research themes are based on specific areas of expertise, and include the control of malaria, molecular medicine, and international law. The University’s current research themes and the progress that has already been made are described in later sections of this report. Research at the University of Pretoria encompasses a very broad range of disciplines across its nine faculties and one business school, and more than 60 research institutes, centres and units. The Deans’ reports give accounts of the research highlights in each faculty,
Recommended publications
  • The Complexity of Piroplasms Life Cycles Marie Jalovecka, Ondrej Hajdusek, Daniel Sojka, Petr Kopacek, Laurence Malandrin
    The complexity of piroplasms life cycles Marie Jalovecka, Ondrej Hajdusek, Daniel Sojka, Petr Kopacek, Laurence Malandrin To cite this version: Marie Jalovecka, Ondrej Hajdusek, Daniel Sojka, Petr Kopacek, Laurence Malandrin. The complexity of piroplasms life cycles. Frontiers in Cellular and Infection Microbiology, Frontiers, 2018, 8, pp.1-12. 10.3389/fcimb.2018.00248. hal-02628847 HAL Id: hal-02628847 https://hal.inrae.fr/hal-02628847 Submitted on 27 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License REVIEW published: 23 July 2018 doi: 10.3389/fcimb.2018.00248 The Complexity of Piroplasms Life Cycles Marie Jalovecka 1,2,3*, Ondrej Hajdusek 2, Daniel Sojka 2, Petr Kopacek 2 and Laurence Malandrin 1 1 BIOEPAR, INRA, Oniris, Université Bretagne Loire, Nantes, France, 2 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceskéˇ Budejovice,ˇ Czechia, 3 Faculty of Science, University of South Bohemia, Ceskéˇ Budejovice,ˇ Czechia Although apicomplexan parasites of the group Piroplasmida represent commonly identified global risks to both animals and humans, detailed knowledge of their life cycles is surprisingly limited.
    [Show full text]
  • Development of a Polymerase Chain Reaction Method for Diagnosing Babesia Gibsoni Infection in Dogs
    FULL PAPER Parasitology Development of a Polymerase Chain Reaction Method for Diagnosing Babesia gibsoni Infection in Dogs Shinya FUKUMOTO1), Xuenan XUAN1), Shinya SHIGENO2), Elikira KIMBITA1), Ikuo IGARASHI1), Hideyuki NAGASAWA1), Kozo FUJISAKI1) and Takeshi MIKAMI1) 1)National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080–8555 and 2)Leo Animal Hospital, 9 Yoriai-cho, Wakayama 640–8214, Japan (Received 16 January 2001/Accepted 17 May 2001) ABSTRACT. A pair of oligonucleotide primers were designed according to the nucleotide sequence of the P18 gene of Babesia gibsoni (B. gibsoni), NRCPD strain, and were used to detect parasite DNA from blood samples of B. gibsoni-infected dogs by polymerase chain reaction (PCR). PCR was specific for B. gibsoni since no amplification was detected with DNA from B. canis or normal dog leucocytes. PCR was sensitive enough to detect parasite DNA from 2.5 µl of blood samples with a parasitemia of 0.000002%. PCR detected parasite DNA from 2 to 222 days post-infection in sequential blood samples derived from a dog experimentally infected with B. gibsoni. The detection of B. gibsoni DNA by PCR was much earlier than the detection of antibodies to B. gibsoni in blood samples by the indirect fluorescent antibody test (IFAT) or that of the parasite itself in Giemsa-stained thin blood smear film examined by microscopy. In addi- tion, 28 field samples collected from dogs in Kansai area, Japan, were tested for B. gibsoni infection. Nine samples were positive in blood smears, 9 samples were positive by IFAT and 11 samples were positive for B.
    [Show full text]
  • Babesia Infection in Dogs
    THE PET HEALTH LIBRARY By Wendy C. Brooks, DVM, DipABVP Educational Director, VeterinaryPartner.com Babesia Infection in Dogs Most people have never heard of Babesia organisms though they have caused red blood cell destruction in their canine hosts all over the world. Babesia organisms are spread by ticks and are of particular significance to racing greyhounds and pit bull terriers. Humans may also become infected. There are over 100 species of Babesia but only a few are found in the U.S. and are transmissible to dogs. Babesia canis, the “large” species of Babesia is one; Babesia gibsoni, a smaller Babesia that affects pit bull Babesia organism inside terriers almost exclusively is another; and a second but unnamed a red blood cell small Babesia has been identified in California. Babesia species continue to be classified and sub-classified worldwide. How Infection Happens and what Happens Next Infection occurs when a Babesia-infected tick bites a dog and releases Babesia sporozoites into the dog’s bloodstream. A tick must feed for two to three days to infect a dog withBabesia. The young Babesia organisms attach to red blood cells, eventually penetrating and making a new home within the cells for themselves. Inside the red blood cell, theBabesia organism divests its outer coating and begins to divide, becoming a new form called a merozoite that a new tick may ingest during a blood meal. Infected pregnant dogs can spread Babesia to their unborn puppies, and dogs can transmit the organism by biting another dog as well. (In fact, for Babesia gibsoni, which is primarily a pit bull terrier infection, ticks are a minor cause of infection and maternal transmission and bite wounds are the chief routes of transmission.) Having a parasite in your red blood cells does not go undetected by your immune system.
    [Show full text]
  • Molecular Characterization of Local Strains of Bacillus Thuringiensis in the North of Algeria
    Vol. 10(45), pp. 1880-1887, 7 December, 2016 DOI: 10.5897/AJMR2016.7946 Article Number: AEEEB8A61917 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/AJMR Full Length Research Paper Molecular characterization of local strains of Bacillus thuringiensis in the North of Algeria Kebdani M.1*, Mahdjoubi M.2, Cherif A.2, Gaouar B. N.1 and Rebiahi S. A.3 1Laboratory of Ecology and Management of Naturals Ecosystems, Ecology and Environment Department, Abu Bakr Belkaid University, Imama, Tlemcen, Algeria. 2Laboratory of Biotechnology and Bio-Geo Resources Valorization, Higher Institute for Biotechnology, University of Manouba Biotechpole of Sidi Thabet Sidi Thabet, Ariana, Tunisia. 3Laboratory of Applied Microbiology and Environment, Biology Department, Abu Bakr Belkaid University, Imama, Tlemcen, Algeria. Received 1 February, 2016, Accepted 19 September, 2016. The analysis of soil samples taken from orange groves located in four cities of Northern Algeria allowed the isolation and identification of 24 strains belonging to the group Bacillus cereus, based on their physiological, biochemical and molecular characters investigated. They were divided as follow: 12 strains of Bacillus thuringiensis, 1 strain of Bacillus pumilis, 4 strains of Bacillus cereus, 5 strains of Bacillus subtilis and 2 Bacillus mycoides strains. After the molecular characterization performed with the aid of polymerase chain reaction (PCR) analysis, it was confirmed from the parasporal bodies using a scanning electron microscope that the strains of the identified collection belong to the species, B. thuringiensis. Key words: Bacillus cereus, Bacillus thuringiensis, Bacillus pumilis, Bacillus subtilis, Bacillus mycoides, polymerase chain reaction, scanning EM.
    [Show full text]
  • Patterns of Plant Diversity and Endemism in Namibia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stellenbosch University SUNScholar Repository Bothalia 36,2: 175-189(2006) Patterns of plant diversity and endemism in Namibia P. CRAVEN* and P VORSTER** Keywords: Namibia, phytogeography, plant endemism ABSTRACT Species richness, endemism and areas that are rich in both species and endemic species were assessed and mapped for Namibia. High species diversity corresponds with zones where species overlap. These are particularly obvious where there are altitudinal variations and in high-lying areas. The endemic flora o f Namibia is rich and diverse. An estimated 16% of the total plant species in Namibia are endemic to the country. Endemics are in a wide variety o f families and sixteen genera are endemic. Factors that increase the likelihood o f endemism are mountains, hot deserts, diversity o f substrates and microclimates. The distribution of plants endemic to Namibia was arranged in three different ways. Firstly, based on a grid count with the phytogeographic value of the species being equal, overall endemism was mapped. Secondly, range restricted plant species were mapped individually and those with congruent distribution patterns were combined. Thirdly, localities that are important for very range-restricted species were identified. The resulting maps of endemism and diversity were compared and found to correspond in many localities. When overall endemism is compared with overall diversity, rich localities may consist o f endemic species with wide ranges. The other methods identify important localities with their own distinctive complement of species. INTRODUCTION (1994). It was based on distributional data per magiste­ rial district following Merxmiiller (1966-1972), as well Species diversity was traditionally measured by count­ as other literature.
    [Show full text]
  • Šunų Babesia Canis Invazijos Paplitimas Alytaus Apskrityje Distribution of Canine Babesia Canis Infection in Alytus District
    LIETUVOS SVEIKATOS MOKSLŲ UNIVERSITETAS VETERINARIJOS AKADEMIJA Veterinarijos fakultetas Ieva Andriulionienė Šunų Babesia canis invazijos paplitimas Alytaus apskrityje Distribution of canine Babesia canis infection in Alytus district Veterinarinės medicinos vientisųjų studijų MAGISTRO BAIGIAMASIS DARBAS Darbo vadovas: Prof. habil. dr. S. Petkevičius KAUNAS 2015 1 DARBAS ATLIKTAS UŽKREČIAMŲJŲ LIGŲ KATEDROJE PATVIRTINIMAS APIE ATLIKTO DARBO SAVARANKIŠKUMĄ Patvirtinu, kad įteikiamas magistro baigiamasis darbas tema: Šunų Babesia canis invazijos paplitimas Alytaus apskrityje 1. Yra atliktas mano pačios; 2. Nebuvo naudotas kitame universitete Lietuvoje ir užsienyje; 3. Nenaudojau šaltinių, kurie nėra nurodyti darbe, ir pateikiu visą panaudotos literatūros sąrašą. (data) (autoriaus vardas, pavardė) (parašas) PATVIRTINIMAS APIE ATSAKOMYBĘ UŽ LIETUVIŲ KALBOS TAISYKLINGUMĄ ATLIKTAME DARBE Patvirtinu lietuvių kalbos taisyklingumą atliktame darbe. (data) (autoriaus vardas, pavardė) (parašas) MAGISTRO BAIGIAMOJO DARBO VADOVO IŠVADOS DĖL DARBO GYNIMO (data) (autoriaus vardas, pavardė) (parašas) MAGISTRO BAIGIAMASIS DARBAS APROBUOTAS KATEDROJE (aprobacijos data) (Gynimo komisijos sekretorės/riaus vardas, pavardė) (parašas) Magistro baigiamojo darbo recenzentas (vardas, pavardė) ( parašas) Magistro baigiamojųjų darbų gynimo komisijos įvertinimas: (data) (gynimokomisijos sekretorės/riaus vardas, pavardė) ( parašas) 2 TURINYS SANTRAUKA.............................................................................................................4 SUMMARY.................................................................................................................5
    [Show full text]
  • Bacillus Pseudomycoides Sp. Nov. NOTE L
    International Journal ofSystematic Bacteriology (1998),48,1031-1035 Printed in Great Britain Bacillus pseudomycoides sp. nov. NOTE L. K. Nakamura Tel: + I 309681 6395. Fax: + I 3096816672. e-mail: [email protected] Microbial Properties Previous DNA relatedness studies showed that strains identified as Bacillus Research, National Center mycoides segregated into two genetically distinct yet phenotypically similar for Agricultural Utilization Research, Agricultural groups, one being B. mycoides sensu stricto and the other, an unclassified Research Service, US taxon. In the present study, the taxonomic position of this second group was Department of assessed by measuring DNA relatedness and determining phenotypic Agriculture, Peoria, IL 61604, USA characteristics of an increased number of B. mycoides strains. Also determined was the second group's 165 RNA gene sequence. The 36 B. mycoides strains studied segregated into two genetically distinct groups showing DNA relatedness of about 30%; 18 strains represented the species proper and 18 the second group with intragroup DNA relatedness for both groups ranging from 70 to 100%. DNA relatedness to the type strains of presently recognized species with G+C contents of approximately 35 mol% (Bacillus alcalophilus, Bacillus cereus, Bacillus circulans, Bacillus lentus, Bacillus megaterium and Bacillus sphaericus) ranged from 22 to 37 %. Although shown to be genetically distinct taxa, the two B. mycoides groups exhibited highly similar (98%) 165 RNA sequences. Phylogenetic analyses showed that both B. mycoides and the second group clustered closely with B. cereus. Although not distinguishable by physiological and morphological characteristics, the two B. mycoides groups and B. cereus were clearly separable based on fatty acid composition.
    [Show full text]
  • Equine Piroplasmosis
    EAZWV Transmissible Disease Fact Sheet Sheet No. 119 EQUINE PIROPLASMOSIS ANIMAL TRANS- CLINICAL SIGNS FATAL TREATMENT PREVENTION GROUP MISSION DISEASE ? & CONTROL AFFECTED Equines Tick-borne Acute, subacute Sometimes Babesiosis: In houses or chronic disease fatal, in Imidocarb Tick control characterised by particular in (Imizol, erythrolysis: fever, acute T.equi Carbesia, in zoos progressive infections. Forray) Tick control anaemia, icterus, When Dimenazene haemoglobinuria haemoglobinuria diaceturate (in advanced develops, (Berenil) stages). prognosis is Theileriosis: poor. Buparvaquone (Butalex) Fact sheet compiled by Last update J. Brandt, Royal Zoological Society of Antwerp, February 2009 Belgium Fact sheet reviewed by D. Geysen, Animal Health, Institute of Tropical Medicine, Antwerp, Belgium F. Vercammen, Royal Zoological Society of Antwerp, Belgium Susceptible animal groups Horse (Equus caballus), donkey (Equus asinus), mule, zebra (Equus zebra) and Przewalski (Equus przewalskii), likely all Equus spp. are susceptible to equine piroplasmosis or biliary fever. Causative organism Babesia caballi: belonging to the phylum of the Apicomplexa, order Piroplasmida, family Babesiidae; Theileria equi, formerly known as Babesia equi or Nutallia equi, apicomplexa, order Piroplasmida, family Theileriidae. Babesia canis has been demonstrated by molecular diagnosis in apparently asymptomatic horses. A single case of Babesia bovis and two cases of Babesia bigemina have been detected in horses by a quantitative PCR. Zoonotic potential Equine piroplasmoses are specific for Equus spp. yet there are some reports of T.equi in asymptomatic dogs. Distribution Widespread: B.caballi occurs in southern Europe, Russia, Asia, Africa, South and Central America and the southern states of the US. T.equi has a more extended geographical distribution and even in tropical regions it occurs more frequent than B.caballi, also in the Mediterranean basin, Switzerland and the SW of France.
    [Show full text]
  • Canine Babesiosis – a Never-Ending Story
    No.4 July 2009 CVBD® DIGEST www.cvbd.org Canine babesiosis – a never-ending story Cutting-edge information brought to you by the CVBD® World Forum ® No.4 July 2009 CVBD DIGEST Canine babesiosis – a never-ending story Introduction When Bayer HealthCare, Animal Health Division, called for the 1st International CVBD® Symposium in 2006, it was the first and initial step to address the global threat of canine vector-borne diseases (CVBD®). This was based on the belief that vector-borne diseases of the dog should be treated as one topic and dealt with on a global level and in an interdisciplinary way. During the past years, CVBD® have become a global issue and have even sparked public interest. Many of the parasite-transmitted diseases affect humans as well as animals. The dog as man’s best friend plays an important role – as dogs serve as host for some of the zoonotic pathogens and are greatly affected by them. At the first symposium, the participants agreed to form the CVBD® World Forum. Besides gathering knowledge, the main task for this group of inter- national experts has been to raise awareness for the specific regional risks of CVBD® and to foster preventative measures. For this reason, the CVBD® World Forum created a website (www.cvbd.org) to provide the veterinary practitioner with cutting-edge and clinically relevant scientific information on CVBD®. In the CVBD® Digest, relevant findings from CVBD® symposia are presented perio di cally to veterinary practitioners. The Fourth International CVBD® Symposium has taken place, yet again reviving the intense discussion about the current trends and prospects.
    [Show full text]
  • Babesia Canis
    Q&A Babesia canis 1) What is Babesia canis? Babesia sp. are tick-borne protozoal parasites which infect red blood cells of mammals and can cause in some cases severe anaemia. Babesia canis specifically infects dogs. Other species of Babesia are host-specific and may infect livestock in which it is commonly known as piroplasmosis or red water fever. 2) Does this pose a human health risk? According to Public Health England Babesia canis is not considered to cause human disease and therefore does not present a risk to human health 3) How is the disease transmitted? Babesia parasites are generally spread by ticks although they can be spread by other means such as blood transfusions, contaminated veterinary equipment and possibly between dogs through fighting. Pregnant dogs can give Babesia canis to their unborn puppies (transplacental transmission). 4) How do dogs become infected? i. A dog could acquire the infection when living in, or travelling to, countries where B.canis occurs; ii. A dog could also acquire the infection in the UK from an infected tick that has been inadvertently brought into the UK. The Dermacentor tick species can be carried on other animals, including cattle, horses, sheep and pigs and the immature stages feed on small rodents. Unless the tick is removed by the dog’s owner and then destroyed, the infected tick continues the life cycle, laying eggs which may be infected and can develop into new infectious ticks. There is not direct dog to dog transmission with the same tick feeding on both animals; iii. A dog that has contracted B.
    [Show full text]
  • Albuca Spiralis
    Flowering Plants of Africa A magazine containing colour plates with descriptions of flowering plants of Africa and neighbouring islands Edited by G. Germishuizen with assistance of E. du Plessis and G.S. Condy Volume 62 Pretoria 2011 Editorial Board A. Nicholas University of KwaZulu-Natal, Durban, RSA D.A. Snijman South African National Biodiversity Institute, Cape Town, RSA Referees and other co-workers on this volume H.J. Beentje, Royal Botanic Gardens, Kew, UK D. Bridson, Royal Botanic Gardens, Kew, UK P. Burgoyne, South African National Biodiversity Institute, Pretoria, RSA J.E. Burrows, Buffelskloof Nature Reserve & Herbarium, Lydenburg, RSA C.L. Craib, Bryanston, RSA G.D. Duncan, South African National Biodiversity Institute, Cape Town, RSA E. Figueiredo, Department of Plant Science, University of Pretoria, Pretoria, RSA H.F. Glen, South African National Biodiversity Institute, Durban, RSA P. Goldblatt, Missouri Botanical Garden, St Louis, Missouri, USA G. Goodman-Cron, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, RSA D.J. Goyder, Royal Botanic Gardens, Kew, UK A. Grobler, South African National Biodiversity Institute, Pretoria, RSA R.R. Klopper, South African National Biodiversity Institute, Pretoria, RSA J. Lavranos, Loulé, Portugal S. Liede-Schumann, Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany J.C. Manning, South African National Biodiversity Institute, Cape Town, RSA A. Nicholas, University of KwaZulu-Natal, Durban, RSA R.B. Nordenstam, Swedish Museum of Natural History, Stockholm, Sweden B.D. Schrire, Royal Botanic Gardens, Kew, UK P. Silveira, University of Aveiro, Aveiro, Portugal H. Steyn, South African National Biodiversity Institute, Pretoria, RSA P. Tilney, University of Johannesburg, Johannesburg, RSA E.J.
    [Show full text]
  • Diagnosis and Treatment of Canine Babesiosis in Pakistan, a Case Report
    Approaches Copyright ©in Razia Poultry, Kausar CRIMSON PUBLISHERS C Wings to the Research Dairy & Veterinary Sciences ISSN: 2576-9162 Case Report Diagnosis and Treatment of Canine Babesiosis in Pakistan, A Case Report Sami Ullah Khan Bahadur1, Razia Kausar2*, Hunain Ahmed1 and Usman Talib1 1Department of Veterinary Medicine, University of Agriculture Faisalabad, Pakistan 2Department of Veterinary Anatomy, University of Agriculture Faisalabad, Pakistan *Corresponding author: Razia Kausar, Assistant Professor, Department of Veterinary Anatomy, Faculty of Veterinary Science, Pakistan Submission: July 05, 2018; Published: September 12, 2018 Summary A German shepherd bitch of age 2 years, weighing 20kg, was presented at Clinical Medicine and Surgery Department of University of Agriculture Faisalabad, Pakistan. Anamnesis revealed of anorexia since 12 days, 2 episodes of emesis, brown urine and excessive water intake and intermittent lethargy. Visually, bitch was emaciated with dull hair coat. Clinical examination showed increased temperature, heart rate and respiration rate of 104.2 oF, 128/min and 54/min, respectively along with pale conjunctiva and mucous membrane, increased CRT and skin tent twisting time. For diagnosis, examination of stained thin blood smear under microscope and complete blood count (CBC) was performed. The blood examination and CBC report declared the case of canine babesiosis which was treated with single shot of IMIDOCARB DIPROPIONATE, Doxycycline Monohydrate for 21 days and metronidazole for 7 days. Supportive therapy was also given until proper feed intake. Bitch recovered completely when the treatment regime of 21 days ended. Introduction Babesiosis is tick borne, intraerythrocytic parasitic, economi- with increased tick population in this season. Due to hot and humid More than 100 species of Babesia weather of Pakistan, occurrence of babesiosis is being increased.
    [Show full text]