Introduction to the Retina
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How Can Retroreflective Clothing Provide More Safety Through Visibility in a Semi-Dark Urban Environment? a Study Taking Plac
MASTER’S THESIS How can retroreflective clothing BY VIOLA SCHMITZ provide more safety through visibility in a semi-dark urban Royal Institute of Technology environment? KTH School of Architecture Master’s Program in A study taking place in Scandinavia. Architectural Lighting Design 2018-2019 24.05.2019 AF270X VT19-1 Tutor: Foteini Kyriakidou 0 Index Abstract P. 2 1. Introduction P. 2 2. Background P. 3 2.1. Urban Background P. 4 2.2. Biological background P. 4 2.2.1. Reflexes and reactions P. 4 2.2.2. Types of vision P. 4 2.2.3. Effect of pattern P. 5 recognition 2.2.4. Human field of vision P. 5 3. Analysis P. 6 3.1. Analysis: Retroreflectors P. 6 3.2. Analysis: Existing products P. 7 4. Methodology P. 9 5. Methods P. 10 5.1. Survey: P. 10 Lines defining the human body 5.2. Video Experiment: P. 10 Designs in motion 5.2.1. Analysis: Location P. 10 5.2.2. Video Experiment P. 11 5.2.3. Procedure P. 12 5.3. Experimental survey: P. 12 Size of a human 5.4. Visualization: P. 13 Pattern recognition in surroundings 6. Results P. 14 6.1. Survey: P. 14 Lines defining the human body 6.2. Video Experiment: P. 15 Designs in motion 6.2.1. Analysis: Location P. 15 6.2.2. Video Experiment P. 16 6.2.3. Observation P. 17 6.3. Experimental survey: P. 17 Size of a human 6.4. Visualization: Pattern P. 17 recognition in surroundings 7. Discussion P. -
MITOCW | 9: Receptive Fields - Intro to Neural Computation
MITOCW | 9: Receptive Fields - Intro to Neural Computation MICHALE FEE: So today, we're going to introduce a new topic, which is related to the idea of fine- tuning curves, and that is the notion of receptive fields. So most of you have probably been, at least those of you who've taken 9.01 or 9.00 maybe, have been exposed to the idea of what a receptive field is. The idea is basically that in sensory systems neurons receive input from the sensory periphery, and neurons generally have some kind of sensory stimulus that causes them to spike. And so one of the classic examples of how to find receptive fields comes from the work of Huble and Wiesel. So I'll show you some movies made from early experiments of Huble-Wiesel where they are recording in the visual cortex of the cat. So they place a fine metal electrode into a primary visual cortex, and they present. So then they anesthetize the cat so the cat can't move. They open the eye, and the cat's now looking at a screen that looks like this, where they play a visual stimulus. And they actually did this with essentially a slide projector that they could put a card in front of that had a little hole in it, for example, that allowed a spot of light to project onto the screen. And then they can move that spot of light around while they record from neurons in visual cortex and present different visual stimuli to the retina. -
The Roles and Functions of Cutaneous Mechanoreceptors Kenneth O Johnson
455 The roles and functions of cutaneous mechanoreceptors Kenneth O Johnson Combined psychophysical and neurophysiological research has nerve ending that is sensitive to deformation in the resulted in a relatively complete picture of the neural mechanisms nanometer range. The layers function as a series of of tactile perception. The results support the idea that each of the mechanical filters to protect the extremely sensitive recep- four mechanoreceptive afferent systems innervating the hand tor from the very large, low-frequency stresses and strains serves a distinctly different perceptual function, and that tactile of ordinary manual labor. The Ruffini corpuscle, which is perception can be understood as the sum of these functions. located in the connective tissue of the dermis, is a rela- Furthermore, the receptors in each of those systems seem to be tively large spindle shaped structure tied into the local specialized for their assigned perceptual function. collagen matrix. It is, in this way, similar to the Golgi ten- don organ in muscle. Its association with connective tissue Addresses makes it selectively sensitive to skin stretch. Each of these Zanvyl Krieger Mind/Brain Institute, 338 Krieger Hall, receptor types and its role in perception is discussed below. The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2689, USA; e-mail: [email protected] During three decades of neurophysiological and combined Current Opinion in Neurobiology 2001, 11:455–461 psychophysical and neurophysiological studies, evidence has accumulated that links each of these afferent types to 0959-4388/01/$ — see front matter © 2001 Elsevier Science Ltd. All rights reserved. a distinctly different perceptual function and, furthermore, that shows that the receptors innervated by these afferents Abbreviations are specialized for their assigned functions. -
Retinal Ganglion Cell Loss Is Size Dependent in Experimental Glaucoma
Investigative Ophthalmology & Visual Science, Vol. 32, No. 3, March 1991 Copyright © Association for Research in Vision and Ophthalmology Retinal Ganglion Cell Loss Is Size Dependent in Experimental Glaucoma Yoseph Glovinsky,* Harry A. Quigley,f and Gregory R. Dunkelbergerf Thirty-two areas located in the temporal midperipheral retina were evaluated in whole-mount prepara- tions from four monkeys with monocular experimental glaucoma. Diameter frequency distributions of remaining ganglion cells in the glaucomatous eye were compared with corresponding areas in the normal fellow eye. Large cells were significantly more vulnerable at each stage of cell damage as determined by linear-regression analysis. The magnitude of size-dependent loss was moderate at an early stage (20% loss), peaked at 50% total cell loss, and decreased in advanced damage (70% loss). In glaucomatous eyes, the lower retina had significantly more large cell loss than the corresponding areas of the upper retina. In optic nerve zones that matched the retinal areas studied, large axons selectively were damaged first. Psychophysical testing aimed at functions subserved by larger ganglion cells is recommended for detection and follow-up of early glaucoma; however, assessment of functions unique to small cells is more appropriate for detecting change in advanced glaucoma. Invest Ophthalmol Vis Sci 32:484-491, 1991 Current psychophysical tests do not detect glau- tage of ideal cellular preservation. Eyes with mild, comatous damage until a substantial minority of reti- moderate, and late damage were evaluated. In addi- nal ganglion cells have died.1'2 To develop more sen- tion, we correlated the damage patterns in the retinas sitive tests, a comprehensive understanding of the and optic nerves of the glaucomatous eyes. -
Center Surround Receptive Field Structure of Cone Bipolar Cells in Primate Retina
Vision Research 40 (2000) 1801–1811 www.elsevier.com/locate/visres Center surround receptive field structure of cone bipolar cells in primate retina Dennis Dacey a,*, Orin S. Packer a, Lisa Diller a, David Brainard b, Beth Peterson a, Barry Lee c a Department of Biological Structure, Uni6ersity of Washington, Box 357420, Seattle, WA 98195-7420, USA b Department of Psychology, Uni6ersity of California Santa Barbara, Santa Barbara, CA, USA c Max Planck Institute for Biophysical Chemistry, Gottingen, Germany Received 28 September 1999; received in revised form 5 January 2000 Abstract In non-mammalian vertebrates, retinal bipolar cells show center-surround receptive field organization. In mammals, recordings from bipolar cells are rare and have not revealed a clear surround. Here we report center-surround receptive fields of identified cone bipolar cells in the macaque monkey retina. In the peripheral retina, cone bipolar cell nuclei were labeled in vitro with diamidino-phenylindole (DAPI), targeted for recording under microscopic control, and anatomically identified by intracellular staining. Identified cells included ‘diffuse’ bipolar cells, which contact multiple cones, and ‘midget’ bipolar cells, which contact a single cone. Responses to flickering spots and annuli revealed a clear surround: both hyperpolarizing (OFF) and depolarizing (ON) cells responded with reversed polarity to annular stimuli. Center and surround dimensions were calculated for 12 bipolar cells from the spatial frequency response to drifting, sinusoidal luminance modulated gratings. The frequency response was bandpass and well fit by a difference of Gaussians receptive field model. Center diameters were all two to three times larger than known dendritic tree diameters for both diffuse and midget bipolar cells in the retinal periphery. -
The Visual System: Higher Visual Processing
The Visual System: Higher Visual Processing Primary visual cortex The primary visual cortex is located in the occipital cortex. It receives visual information exclusively from the contralateral hemifield, which is topographically represented and wherein the fovea is granted an extended representation. Like most cortical areas, primary visual cortex consists of six layers. It also contains, however, a prominent stripe of white matter in its layer 4 - the stripe of Gennari - consisting of the myelinated axons of the lateral geniculate nucleus neurons. For this reason, the primary visual cortex is also referred to as the striate cortex. The LGN projections to the primary visual cortex are segregated. The axons of the cells from the magnocellular layers terminate principally within sublamina 4Ca, and those from the parvocellular layers terminate principally within sublamina 4Cb. Ocular dominance columns The inputs from the two eyes also are segregated within layer 4 of primary visual cortex and form alternating ocular dominance columns. Alternating ocular dominance columns can be visualized with autoradiography after injecting radiolabeled amino acids into one eye that are transported transynaptically from the retina. Although the neurons in layer 4 are monocular, neurons in the other layers of the same column combine signals from the two eyes, but their activation has the same ocular preference. Bringing together the inputs from the two eyes at the level of the striate cortex provide a basis for stereopsis, the sensation of depth perception provided by binocular disparity, i.e., when an image falls on non-corresponding parts of the two retinas. Some neurons respond to disparities beyond the plane of fixation (far cells), while others respond to disparities in front of the plane of the fixation (near cells). -
Birdshot Chorioretinopathy
Ocular Inflammation Service, Oxford Eye Hospital Birdshot Chorioretinopathy Information for patients What is birdshot chorioretinopathy? Birdshot chorioretinopathy (or retinochoroidopathy), normally shortened to ‘birdshot’, is a rare, potentially blinding, posterior uveitis. This is chronic inflammation of the choroid, which also tends to affect the retina and retinal vessels. It affects both eyes. In the picture below, you can see the position of the vitreous, retina and uvea (iris, ciliary body, pars planar and choroid), which has three sections; anterior, intermediate and posterior. The dotted area represents the uvea. Choroid Retina Vitreous Cornea Macula Lens Fovea Iris Optic nerve Ciliary body anterior intermediate posterior page 2 Birdshot chorioretinopathy is characterised by inflammation of the vitreous (clear jelly in the eye) which causes orange, yellow or cream coloured oval shaped spots at the back of your eye on your retina. These affect the macula (an area near the centre of the retina used for detailed vision) and can cause vision loss. The reason this disease is called ‘birdshot’ is because these spots look like the pattern seen when you fire birdshot pellets from a shotgun. What causes birdshot? It is believed to be due to an autoimmune disease. An autoimmune disease is an illness that occurs when the body tissues are attacked by its own immune system, which causes chronic inflammation. It is most likely to develop in people aged between 45 and 55, although it can also occur in much younger and older people. Birdshot is a relatively new disease. It was first discovered in 1949 and only given the title ‘birdshot’ in 1980. -
Seeing in Three Dimensions: the Neurophysiology of Stereopsis Gregory C
Review DeAngelis – Neurophysiology of stereopsis Seeing in three dimensions: the neurophysiology of stereopsis Gregory C. DeAngelis From the pair of 2-D images formed on the retinas, the brain is capable of synthesizing a rich 3-D representation of our visual surroundings. The horizontal separation of the two eyes gives rise to small positional differences, called binocular disparities, between corresponding features in the two retinal images. These disparities provide a powerful source of information about 3-D scene structure, and alone are sufficient for depth perception. How do visual cortical areas of the brain extract and process these small retinal disparities, and how is this information transformed into non-retinal coordinates useful for guiding action? Although neurons selective for binocular disparity have been found in several visual areas, the brain circuits that give rise to stereoscopic vision are not very well understood. I review recent electrophysiological studies that address four issues: the encoding of disparity at the first stages of binocular processing, the organization of disparity-selective neurons into topographic maps, the contributions of specific visual areas to different stereoscopic tasks, and the integration of binocular disparity and viewing-distance information to yield egocentric distance. Some of these studies combine traditional electrophysiology with psychophysical and computational approaches, and this convergence promises substantial future gains in our understanding of stereoscopic vision. We perceive our surroundings vividly in three dimen- lished the first reports of disparity-selective neurons in the sions, even though the image formed on the retina of each primary visual cortex (V1, or area 17) of anesthetized cats5,6. -
The Effect of Retinal Ganglion Cell Injury on Light-Induced Photoreceptor Degeneration
The Effect of Retinal Ganglion Cell Injury on Light-Induced Photoreceptor Degeneration Robert J. Casson,1 Glyn Chidlow,1 John P. M. Wood,1 Manuel Vidal-Sanz,2 and Neville N. Osborne1 PURPOSE. To determine the effect of optic nerve transection photoreceptors against light-induced injury. An unusual aspect (ONT) and excitotoxic retinal ganglion cell (RGC) injury on of the ONT-induced photoreceptor protection is that it specif- light-induced photoreceptor degeneration. ically affects the retinal ganglion cells (RGCs), yet subsequently METHODS. Age- and sex-matched rats underwent unilateral ONT protects the outer retina. This phenomenon implies the exis- D tence of retrograde communication systems within the retina, or received intravitreal injections of N-methyl- -aspartate 5,6 (NMDA). The fellow eye received sham treatment, and 7 or 21 possibly involving Mu¨ller cells and FGF-2, but does not days later each eye was subjected to an intense photic injury. exclude the possibility that the effect is specific to ONT. A Maximum a- and b-wave amplitudes of the flash electroretino- nonspecific effect would suggest that similar responses might gram (ERG) were measured at baseline, after the RGC insult, be occurring in a wide range of optic neuropathies. We hy- and 5 days after the photic injury. Semiquantitative reverse pothesized that the protective effect of ONT may be a gener- transcription-polymerase chain reaction analysis and immuno- alizable effect and that other forms of inner retinal injury such blot analysis were used to assess rod opsin mRNA and rhodop- as excitotoxic injury may also protect against LIPD. Further- sin kinase protein levels and to measure defined trophic factors more, although FGF-2 has been implicated as the agent respon- 7 or 21 days after ONT or injection of NMDA. -
Anatomy and Physiology of the Afferent Visual System
Handbook of Clinical Neurology, Vol. 102 (3rd series) Neuro-ophthalmology C. Kennard and R.J. Leigh, Editors # 2011 Elsevier B.V. All rights reserved Chapter 1 Anatomy and physiology of the afferent visual system SASHANK PRASAD 1* AND STEVEN L. GALETTA 2 1Division of Neuro-ophthalmology, Department of Neurology, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA 2Neuro-ophthalmology Division, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA INTRODUCTION light without distortion (Maurice, 1970). The tear–air interface and cornea contribute more to the focusing Visual processing poses an enormous computational of light than the lens does; unlike the lens, however, the challenge for the brain, which has evolved highly focusing power of the cornea is fixed. The ciliary mus- organized and efficient neural systems to meet these cles dynamically adjust the shape of the lens in order demands. In primates, approximately 55% of the cortex to focus light optimally from varying distances upon is specialized for visual processing (compared to 3% for the retina (accommodation). The total amount of light auditory processing and 11% for somatosensory pro- reaching the retina is controlled by regulation of the cessing) (Felleman and Van Essen, 1991). Over the past pupil aperture. Ultimately, the visual image becomes several decades there has been an explosion in scientific projected upside-down and backwards on to the retina understanding of these complex pathways and net- (Fishman, 1973). works. Detailed knowledge of the anatomy of the visual The majority of the blood supply to structures of the system, in combination with skilled examination, allows eye arrives via the ophthalmic artery, which is the first precise localization of neuropathological processes. -
Structure of Cone Photoreceptors
Progress in Retinal and Eye Research 28 (2009) 289–302 Contents lists available at ScienceDirect Progress in Retinal and Eye Research journal homepage: www.elsevier.com/locate/prer Structure of cone photoreceptors Debarshi Mustafi a, Andreas H. Engel a,b, Krzysztof Palczewski a,* a Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106-4965, USA b Center for Cellular Imaging and Nanoanalytics, M.E. Mu¨ller Institute, Biozentrum, WRO-1058, Mattenstrasse 26, CH 4058 Basel, Switzerland abstract Keywords: Although outnumbered more than 20:1 by rod photoreceptors, cone cells in the human retina mediate Cone photoreceptors daylight vision and are critical for visual acuity and color discrimination. A variety of human diseases are Rod photoreceptors characterized by a progressive loss of cone photoreceptors but the low abundance of cones and the Retinoids absence of a macula in non-primate mammalian retinas have made it difficult to investigate cones Retinoid cycle directly. Conventional rodents (laboratory mice and rats) are nocturnal rod-dominated species with few Chromophore Opsins cones in the retina, and studying other animals with cone-rich retinas presents various logistic and Retina technical difficulties. Originating in the early 1900s, past research has begun to provide insights into cone Vision ultrastructure but has yet to afford an overall perspective of cone cell organization. This review Rhodopsin summarizes our past progress and focuses on the recent introduction of special mammalian models Cone pigments (transgenic mice and diurnal rats rich in cones) that together with new investigative techniques such as Enhanced S-cone syndrome atomic force microscopy and cryo-electron tomography promise to reveal a more unified concept of cone Retinitis pigmentosa photoreceptor organization and its role in retinal diseases. -
Recognition of Retroreflective Road Signs During Night Driving
Recognition of retroreflective road signs during night driving J. Berzinsh1, M.Ozolinsh1, P.Cikmacs1, and K. Pesudovs2 1Department of the Optometry and Vision Science, University of Latvia Riga, Latvia 2Department of the Optometry, Bradford University Bradford, West Yorkshire, UK Temporal waveforms of the illumination at the driver eyes position were determined in various night traffic and weather conditions (ideal weather and correct aligned lights as compared with dirty lamps and raindrops on the windscreen). The statistics of retinal illumination were analysed, and a computer controlled technique was developed to simulate similar changes of eye illumination. The participant fixated on retroreflective optical stimuli at a distance of 5 m. The participant was then subjected to dazzle, and recovery from the glare took place. The background illumination was in the mesopic range. Experiments showed that at background illumination 0.1 Lx no dazzling took place in case of correctly installed clean headlights. The participant was dazzled if the high beam lamps were incorrectly aligned or cycloplegia was used for pupil dilation. The dazzle time depended on the background illumination level and could increase to three seconds for the illumination changes corresponding to the equivalent speed of vehicles 50 km/h. Introduction Vision plays a significant role in safe driving. Standards for vision must be met for a driver to hold a licence. These standards prescribe the vision quality in normal situations with sufficient illumination levels. Driving at night is a more difficult task (Charman, 1996; Priez et al., 1998), more accidents per vehicle happen on roads at night (Federal Office of Road Safety, 1996).