The Retracing Boomerang Attack
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cryptanalysis of Feistel Networks with Secret Round Functions Alex Biryukov, Gaëtan Leurent, Léo Perrin
Cryptanalysis of Feistel Networks with Secret Round Functions Alex Biryukov, Gaëtan Leurent, Léo Perrin To cite this version: Alex Biryukov, Gaëtan Leurent, Léo Perrin. Cryptanalysis of Feistel Networks with Secret Round Functions. Selected Areas in Cryptography - SAC 2015, Aug 2015, Sackville, Canada. hal-01243130 HAL Id: hal-01243130 https://hal.inria.fr/hal-01243130 Submitted on 14 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Cryptanalysis of Feistel Networks with Secret Round Functions ? Alex Biryukov1, Gaëtan Leurent2, and Léo Perrin3 1 [email protected], University of Luxembourg 2 [email protected], Inria, France 3 [email protected], SnT,University of Luxembourg Abstract. Generic distinguishers against Feistel Network with up to 5 rounds exist in the regular setting and up to 6 rounds in a multi-key setting. We present new cryptanalyses against Feistel Networks with 5, 6 and 7 rounds which are not simply distinguishers but actually recover completely the unknown Feistel functions. When an exclusive-or is used to combine the output of the round function with the other branch, we use the so-called yoyo game which we improved using a heuristic based on particular cycle structures. -
Improved Rectangle Attacks on SKINNY and CRAFT
Improved Rectangle Attacks on SKINNY and CRAFT Hosein Hadipour1, Nasour Bagheri2 and Ling Song3( ) 1 Department of Mathematics and Computer Science, University of Tehran, Tehran, Iran, [email protected] 2 Electrical Engineering Department, Shahid Rajaee Teacher Training University, Tehran, Iran, [email protected] 3 Jinan University, Guangzhou, China [email protected] Abstract. The boomerang and rectangle attacks are adaptions of differential crypt- analysis that regard the target cipher E as a composition of two sub-ciphers, i.e., 2 2 E = E1 ◦ E0, to construct a distinguisher for E with probability p q by concatenat- ing two short differential trails for E0 and E1 with probability p and q respectively. According to the previous research, the dependency between these two differential characteristics has a great impact on the probability of boomerang and rectangle distinguishers. Dunkelman et al. proposed the sandwich attack to formalise such dependency that regards E as three parts, i.e., E = E1 ◦ Em ◦ E0, where Em contains the dependency between two differential trails, satisfying some differential propagation with probability r. Accordingly, the entire probability is p2q2r. Recently, Song et al. have proposed a general framework to identify the actual boundaries of Em and systematically evaluate the probability of Em with any number of rounds, and applied their method to accurately evaluate the probabilities of the best SKINNY’s boomerang distinguishers. In this paper, using a more advanced method to search for boomerang distinguishers, we show that the best previous boomerang distinguishers for SKINNY can be significantly improved in terms of probability and number of rounds. -
Lecture Note 8 ATTACKS on CRYPTOSYSTEMS I Sourav Mukhopadhyay
Lecture Note 8 ATTACKS ON CRYPTOSYSTEMS I Sourav Mukhopadhyay Cryptography and Network Security - MA61027 Attacks on Cryptosystems • Up to this point, we have mainly seen how ciphers are implemented. • We have seen how symmetric ciphers such as DES and AES use the idea of substitution and permutation to provide security and also how asymmetric systems such as RSA and Diffie Hellman use other methods. • What we haven’t really looked at are attacks on cryptographic systems. Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 1 • An understanding of certain attacks will help you to understand the reasons behind the structure of certain algorithms (such as Rijndael) as they are designed to thwart known attacks. • Although we are not going to exhaust all possible avenues of attack, we will get an idea of how cryptanalysts go about attacking ciphers. Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 2 • This section is really split up into two classes of attack: Cryptanalytic attacks and Implementation attacks. • The former tries to attack mathematical weaknesses in the algorithms whereas the latter tries to attack the specific implementation of the cipher (such as a smartcard system). • The following attacks can refer to either of the two classes (all forms of attack assume the attacker knows the encryption algorithm): Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 3 – Ciphertext-only attack: In this attack the attacker knows only the ciphertext to be decoded. The attacker will try to find the key or decrypt one or more pieces of ciphertext (only relatively weak algorithms fail to withstand a ciphertext-only attack). -
Hash Functions and the (Amplified) Boomerang Attack
Hash Functions and the (Amplified) Boomerang Attack Antoine Joux1,3 and Thomas Peyrin2,3 1 DGA 2 France T´el´ecomR&D [email protected] 3 Universit´ede Versailles Saint-Quentin-en-Yvelines [email protected] Abstract. Since Crypto 2004, hash functions have been the target of many at- tacks which showed that several well-known functions such as SHA-0 or MD5 can no longer be considered secure collision free hash functions. These attacks use classical cryptographic techniques from block cipher analysis such as differential cryptanal- ysis together with some specific methods. Among those, we can cite the neutral bits of Biham and Chen or the message modification techniques of Wang et al. In this paper, we show that another tool of block cipher analysis, the boomerang attack, can also be used in this context. In particular, we show that using this boomerang attack as a neutral bits tool, it becomes possible to lower the complexity of the attacks on SHA-1. Key words: hash functions, boomerang attack, SHA-1. 1 Introduction The most famous design principle for dedicated hash functions is indisputably the MD-SHA family, firstly introduced by R. Rivest with MD4 [16] in 1990 and its improved version MD5 [15] in 1991. Two years after, the NIST publishes [12] a very similar hash function, SHA-0, that will be patched [13] in 1995 to give birth to SHA-1. This family is still very active, as NIST recently proposed [14] a 256-bit new version SHA-256 in order to anticipate the potential cryptanalysis results and also to increase its security with regard to the fast growth of the computation power. -
Boomerang Analysis Method Based on Block Cipher
International Journal of Security and Its Application Vol.11, No.1 (2017), pp.165-178 http://dx.doi.org/10.14257/ijsia.2017.11.1.14 Boomerang Analysis Method Based on Block Cipher Fan Aiwan and Yang Zhaofeng Computer School, Pingdingshan University, Pingdingshan, 467002 Henan province, China { Fan Aiwan} [email protected] Abstract This paper fused together the related key analysis and differential analysis and did multiple rounds of attack analysis for the DES block cipher. On the basis of deep analysis of Boomerang algorithm principle, combined with the characteristics of the key arrangement of the DES block cipher, the 8 round DES attack experiment and the 9 round DES attack experiment were designed based on the Boomerang algorithm. The experimental results show that, after the design of this paper, the value of calculation complexity of DES block cipher is only 240 and the analysis performance is greatly improved by the method of Boomerang attack. Keywords: block cipher, DES, Boomerang, Computational complexity 1. Introduction With the advent of the information society, especially the extensive application of the Internet to break the traditional limitations of time and space, which brings great convenience to people. However, at the same time, a large amount of sensitive information is transmitted through the channel or computer network, especially the rapid development of e-commerce and e-government, more and more personal information such as bank accounts require strict confidentiality, how to guarantee the security of information is particularly important [1-2]. The essence of information security is to protect the information system or the information resources in the information network from various types of threats, interference and destruction, that is, to ensure the security of information [3]. -
Report on the AES Candidates
Rep ort on the AES Candidates 1 2 1 3 Olivier Baudron , Henri Gilb ert , Louis Granb oulan , Helena Handschuh , 4 1 5 1 Antoine Joux , Phong Nguyen ,Fabrice Noilhan ,David Pointcheval , 1 1 1 1 Thomas Pornin , Guillaume Poupard , Jacques Stern , and Serge Vaudenay 1 Ecole Normale Sup erieure { CNRS 2 France Telecom 3 Gemplus { ENST 4 SCSSI 5 Universit e d'Orsay { LRI Contact e-mail: [email protected] Abstract This do cument rep orts the activities of the AES working group organized at the Ecole Normale Sup erieure. Several candidates are evaluated. In particular we outline some weaknesses in the designs of some candidates. We mainly discuss selection criteria b etween the can- didates, and make case-by-case comments. We nally recommend the selection of Mars, RC6, Serp ent, ... and DFC. As the rep ort is b eing nalized, we also added some new preliminary cryptanalysis on RC6 and Crypton in the App endix which are not considered in the main b o dy of the rep ort. Designing the encryption standard of the rst twentyyears of the twenty rst century is a challenging task: we need to predict p ossible future technologies, and wehavetotake unknown future attacks in account. Following the AES pro cess initiated by NIST, we organized an op en working group at the Ecole Normale Sup erieure. This group met two hours a week to review the AES candidates. The present do cument rep orts its results. Another task of this group was to up date the DFC candidate submitted by CNRS [16, 17] and to answer questions which had b een omitted in previous 1 rep orts on DFC. -
State of the Art in Lightweight Symmetric Cryptography
State of the Art in Lightweight Symmetric Cryptography Alex Biryukov1 and Léo Perrin2 1 SnT, CSC, University of Luxembourg, [email protected] 2 SnT, University of Luxembourg, [email protected] Abstract. Lightweight cryptography has been one of the “hot topics” in symmetric cryptography in the recent years. A huge number of lightweight algorithms have been published, standardized and/or used in commercial products. In this paper, we discuss the different implementation constraints that a “lightweight” algorithm is usually designed to satisfy. We also present an extensive survey of all lightweight symmetric primitives we are aware of. It covers designs from the academic community, from government agencies and proprietary algorithms which were reverse-engineered or leaked. Relevant national (nist...) and international (iso/iec...) standards are listed. We then discuss some trends we identified in the design of lightweight algorithms, namely the designers’ preference for arx-based and bitsliced-S-Box-based designs and simple key schedules. Finally, we argue that lightweight cryptography is too large a field and that it should be split into two related but distinct areas: ultra-lightweight and IoT cryptography. The former deals only with the smallest of devices for which a lower security level may be justified by the very harsh design constraints. The latter corresponds to low-power embedded processors for which the Aes and modern hash function are costly but which have to provide a high level security due to their greater connectivity. Keywords: Lightweight cryptography · Ultra-Lightweight · IoT · Internet of Things · SoK · Survey · Standards · Industry 1 Introduction The Internet of Things (IoT) is one of the foremost buzzwords in computer science and information technology at the time of writing. -
Cs 255 (Introduction to Cryptography)
CS 255 (INTRODUCTION TO CRYPTOGRAPHY) DAVID WU Abstract. Notes taken in Professor Boneh’s Introduction to Cryptography course (CS 255) in Winter, 2012. There may be errors! Be warned! Contents 1. 1/11: Introduction and Stream Ciphers 2 1.1. Introduction 2 1.2. History of Cryptography 3 1.3. Stream Ciphers 4 1.4. Pseudorandom Generators (PRGs) 5 1.5. Attacks on Stream Ciphers and OTP 6 1.6. Stream Ciphers in Practice 6 2. 1/18: PRGs and Semantic Security 7 2.1. Secure PRGs 7 2.2. Semantic Security 8 2.3. Generating Random Bits in Practice 9 2.4. Block Ciphers 9 3. 1/23: Block Ciphers 9 3.1. Pseudorandom Functions (PRF) 9 3.2. Data Encryption Standard (DES) 10 3.3. Advanced Encryption Standard (AES) 12 3.4. Exhaustive Search Attacks 12 3.5. More Attacks on Block Ciphers 13 3.6. Block Cipher Modes of Operation 13 4. 1/25: Message Integrity 15 4.1. Message Integrity 15 5. 1/27: Proofs in Cryptography 17 5.1. Time/Space Tradeoff 17 5.2. Proofs in Cryptography 17 6. 1/30: MAC Functions 18 6.1. Message Integrity 18 6.2. MAC Padding 18 6.3. Parallel MAC (PMAC) 19 6.4. One-time MAC 20 6.5. Collision Resistance 21 7. 2/1: Collision Resistance 21 7.1. Collision Resistant Hash Functions 21 7.2. Construction of Collision Resistant Hash Functions 22 7.3. Provably Secure Compression Functions 23 8. 2/6: HMAC And Timing Attacks 23 8.1. HMAC 23 8.2. -
Data Encryption Standard
Data Encryption Standard The Data Encryption Standard (DES /ˌdiːˌiːˈɛs, dɛz/) is a Data Encryption Standard symmetric-key algorithm for the encryption of electronic data. Although insecure, it was highly influential in the advancement of modern cryptography. Developed in the early 1970s atIBM and based on an earlier design by Horst Feistel, the algorithm was submitted to the National Bureau of Standards (NBS) following the agency's invitation to propose a candidate for the protection of sensitive, unclassified electronic government data. In 1976, after consultation with theNational Security Agency (NSA), the NBS eventually selected a slightly modified version (strengthened against differential cryptanalysis, but weakened against brute-force attacks), which was published as an official Federal Information Processing Standard (FIPS) for the United States in 1977. The publication of an NSA-approved encryption standard simultaneously resulted in its quick international adoption and widespread academic scrutiny. Controversies arose out of classified The Feistel function (F function) of DES design elements, a relatively short key length of the symmetric-key General block cipher design, and the involvement of the NSA, nourishing Designers IBM suspicions about a backdoor. Today it is known that the S-boxes that had raised those suspicions were in fact designed by the NSA to First 1975 (Federal Register) actually remove a backdoor they secretly knew (differential published (standardized in January 1977) cryptanalysis). However, the NSA also ensured that the key size was Derived Lucifer drastically reduced such that they could break it by brute force from [2] attack. The intense academic scrutiny the algorithm received over Successors Triple DES, G-DES, DES-X, time led to the modern understanding of block ciphers and their LOKI89, ICE cryptanalysis. -
Miss in the Middle Attacks on IDEA and Khufu
Miss in the Middle Attacks on IDEA and Khufu Eli Biham? Alex Biryukov?? Adi Shamir??? Abstract. In a recent paper we developed a new cryptanalytic techni- que based on impossible differentials, and used it to attack the Skipjack encryption algorithm reduced from 32 to 31 rounds. In this paper we describe the application of this technique to the block ciphers IDEA and Khufu. In both cases the new attacks cover more rounds than the best currently known attacks. This demonstrates the power of the new cryptanalytic technique, shows that it is applicable to a larger class of cryptosystems, and develops new technical tools for applying it in new situations. 1 Introduction In [5,17] a new cryptanalytic technique based on impossible differentials was proposed, and its application to Skipjack [28] and DEAL [17] was described. In this paper we apply this technique to the IDEA and Khufu cryptosystems. Our new attacks are much more efficient and cover more rounds than the best previously known attacks on these ciphers. The main idea behind these new attacks is a bit counter-intuitive. Unlike tra- ditional differential and linear cryptanalysis which predict and detect statistical events of highest possible probability, our new approach is to search for events that never happen. Such impossible events are then used to distinguish the ci- pher from a random permutation, or to perform key elimination (a candidate key is obviously wrong if it leads to an impossible event). The fact that impossible events can be useful in cryptanalysis is an old idea (for example, some of the attacks on Enigma were based on the observation that letters can not be encrypted to themselves). -
Identifying Open Research Problems in Cryptography by Surveying Cryptographic Functions and Operations 1
International Journal of Grid and Distributed Computing Vol. 10, No. 11 (2017), pp.79-98 http://dx.doi.org/10.14257/ijgdc.2017.10.11.08 Identifying Open Research Problems in Cryptography by Surveying Cryptographic Functions and Operations 1 Rahul Saha1, G. Geetha2, Gulshan Kumar3 and Hye-Jim Kim4 1,3School of Computer Science and Engineering, Lovely Professional University, Punjab, India 2Division of Research and Development, Lovely Professional University, Punjab, India 4Business Administration Research Institute, Sungshin W. University, 2 Bomun-ro 34da gil, Seongbuk-gu, Seoul, Republic of Korea Abstract Cryptography has always been a core component of security domain. Different security services such as confidentiality, integrity, availability, authentication, non-repudiation and access control, are provided by a number of cryptographic algorithms including block ciphers, stream ciphers and hash functions. Though the algorithms are public and cryptographic strength depends on the usage of the keys, the ciphertext analysis using different functions and operations used in the algorithms can lead to the path of revealing a key completely or partially. It is hard to find any survey till date which identifies different operations and functions used in cryptography. In this paper, we have categorized our survey of cryptographic functions and operations in the algorithms in three categories: block ciphers, stream ciphers and cryptanalysis attacks which are executable in different parts of the algorithms. This survey will help the budding researchers in the society of crypto for identifying different operations and functions in cryptographic algorithms. Keywords: cryptography; block; stream; cipher; plaintext; ciphertext; functions; research problems 1. Introduction Cryptography [1] in the previous time was analogous to encryption where the main task was to convert the readable message to an unreadable format. -
Applications of Search Techniques to Cryptanalysis and the Construction of Cipher Components. James David Mclaughlin Submitted F
Applications of search techniques to cryptanalysis and the construction of cipher components. James David McLaughlin Submitted for the degree of Doctor of Philosophy (PhD) University of York Department of Computer Science September 2012 2 Abstract In this dissertation, we investigate the ways in which search techniques, and in particular metaheuristic search techniques, can be used in cryptology. We address the design of simple cryptographic components (Boolean functions), before moving on to more complex entities (S-boxes). The emphasis then shifts from the construction of cryptographic arte- facts to the related area of cryptanalysis, in which we first derive non-linear approximations to S-boxes more powerful than the existing linear approximations, and then exploit these in cryptanalytic attacks against the ciphers DES and Serpent. Contents 1 Introduction. 11 1.1 The Structure of this Thesis . 12 2 A brief history of cryptography and cryptanalysis. 14 3 Literature review 20 3.1 Information on various types of block cipher, and a brief description of the Data Encryption Standard. 20 3.1.1 Feistel ciphers . 21 3.1.2 Other types of block cipher . 23 3.1.3 Confusion and diffusion . 24 3.2 Linear cryptanalysis. 26 3.2.1 The attack. 27 3.3 Differential cryptanalysis. 35 3.3.1 The attack. 39 3.3.2 Variants of the differential cryptanalytic attack . 44 3.4 Stream ciphers based on linear feedback shift registers . 48 3.5 A brief introduction to metaheuristics . 52 3.5.1 Hill-climbing . 55 3.5.2 Simulated annealing . 57 3.5.3 Memetic algorithms . 58 3.5.4 Ant algorithms .