Cryptanalysis of Block Ciphers

Total Page:16

File Type:pdf, Size:1020Kb

Cryptanalysis of Block Ciphers Cryptanalysis of Block Ciphers Jiqiang Lu Technical Report RHUL–MA–2008–19 30 July 2008 Royal Holloway University of London Department of Mathematics Royal Holloway, University of London Egham, Surrey TW20 0EX, England http://www.rhul.ac.uk/mathematics/techreports CRYPTANALYSIS OF BLOCK CIPHERS JIQIANG LU Thesis submitted to the University of London for the degree of Doctor of Philosophy Information Security Group Department of Mathematics Royal Holloway, University of London 2008 Declaration These doctoral studies were conducted under the supervision of Prof. Chris Mitchell. The work presented in this thesis is the result of original research carried out by myself, in collaboration with others, whilst enrolled in the Information Security Group of Royal Holloway, University of London as a candidate for the degree of Doctor of Philosophy. This work has not been submitted for any other degree or award in any other university or educational establishment. Jiqiang Lu July 2008 2 Acknowledgements First of all, I thank my supervisor Prof. Chris Mitchell for suggesting block cipher cryptanalysis as my research topic when I began my Ph.D. studies in September 2005. I had never done research in this challenging ¯eld before, but I soon found it to be really interesting. Every time I ¯nished a manuscript, Chris would give me detailed comments on it, both editorial and technical, which not only bene¯tted my research, but also improved my written English. Chris' comments are fantastic, and it is straightforward to follow them to make revisions. I thank my advisor Dr. Alex Dent for his constructive suggestions, although we work in very di®erent ¯elds. I thank Prof. Kenny Paterson, who is neither my supervisor nor my advisor, but who gave me many helpful suggestions, and shared useful information with me, including job opportunities. I thank Prof. Keith Martin for giving me some suggestions on writing a thesis, and Prof. Peter Wild for providing me some funding information. I thank my co-authors Orr Dunkelman, Nathan Keller, Jongsung Kim, and Changho- on Lee for many fruitful discussions, and my colleagues and friends for the happy time spent together and the help provided. I thank my PhD examiners Prof. Simon Blackburn and Prof. Lars R. Knudsen for their comments on the thesis. I thank my master's supervisor Prof. Xinmei Wang, Prof. Yumin Wang and Prof. Guozhen Xiao at Xidian University for initiating me into the ¯eld of cryptography during my master studies. Many thanks go to the administrative and technical sta® at the department and the university for their support. I am highly impressed by their understanding and high-quality services. Special thanks go to my wife Xiaoyan Yan for her support, who had to get accus- tomed to a rather di®erent culture, has experienced and is still to experience every moment of my happiness and sadness. Lastly, I am grateful for the British Chevening / Royal Holloway Scholarship awarded 3 to me before I started study, which removed all my concerns about living, and enabled me to concentrate solely on my research; more interestingly, it entitled me to a 30-day interrail pass around Europe. Without its generous sponsorship, I guess that my PhD study would have been unlikely. I also thank both the department and the ECRYPT (European Network of Excellence for Cryptology) project of the European Commission for supporting my travel around the world to attend a number of academic events, including conferences, workshops and summer schools. 4 Abstract The block cipher is one of the most important primitives in modern cryptogra- phy, information and network security; one of the primary purposes of such ciphers is to provide con¯dentiality for data transmitted in insecure communication en- vironments. To ensure that con¯dentiality is robustly provided, it is essential to investigate the security of a block cipher against a variety of cryptanalytic attacks. In this thesis, we propose a new extension of di®erential cryptanalysis, which we call the impossible boomerang attack. We describe the early abort technique for (related-key) impossible di®erential cryptanalysis and rectangle attacks. Finally, we analyse the security of a number of block ciphers that are currently being widely used or have recently been proposed for use in emerging cryptographic applications; our main cryptanalytic results are as follows. ² An impossible di®erential attack on 7-round AES when used with 128 or 192 key bits, and an impossible di®erential attack on 8-round AES when used with 256 key bits. An impossible boomerang attack on 6-round AES when used with 128 key bits, and an impossible boomerang attack on 7-round AES when used with 192 or 256 key bits. A related-key impossible boomerang attack on 8-round AES when used with 192 key bits, and a related-key impossible boomerang attack on 9-round AES when used with 256 key bits, both using two keys. ² An impossible di®erential attack on 11-round reduced Camellia when used with 128 key bits, an impossible di®erential attack on 12-round reduced Camellia when used with 192 key bits, and an impossible di®erential attack on 13-round reduced Camellia when used with 256 key bits. ² A related-key rectangle attack on the full Cobra-F64a, and a related-key dif- ferential attack on the full Cobra-F64b. ² A related-key rectangle attack on 44-round SHACAL-2. ² A related-key rectangle attack on 36-round XTEA. ² An impossible di®erential attack on 25-round reduced HIGHT, a related-key rectangle attack on 26-round reduced HIGHT, and a related-key impossible di®erential attack on 28-round reduced HIGHT. 5 In terms of either the attack complexity or the numbers of attacked rounds, the attacks presented in the thesis are better than any previously published cryptanalytic results for the block ciphers concerned, except in the case of AES; for AES, the presented impossible di®erential attacks on 7-round AES used with 128 key bits and 8-round AES used with 256 key bits are the best currently published results on AES in a single key attack scenario, and the presented related-key impossible boomerang attacks on 8-round AES used with 192 key bits and 9-round AES used with 256 key bits are the best currently published results on AES in a related-key attack scenario involving two keys. 6 Contents 1 Introduction 15 1.1 Motivation . 15 1.2 Contributions . 16 1.3 Organisation of Thesis . 17 1.4 Notation . 18 2 Block Cipher Cryptanalysis 20 2.1 Introduction . 20 2.2 Cryptanalytic Methods . 22 2.2.1 Cryptanalysis Scenarios . 23 2.2.2 Elementary Techniques . 24 2.2.3 Mathematical Background . 25 2.2.4 Di®erential Cryptanalysis . 28 2.2.5 Linear Cryptanalysis . 30 2.2.6 Di®erential-Linear Cryptanalysis . 31 2.2.7 Impossible Di®erential Cryptanalysis . 32 2.2.8 Boomerang and Rectangle Attacks . 33 2.2.9 Related-Key Cryptanalysis . 36 2.3 Summary . 40 3 The Impossible Boomerang Attack 42 3.1 Introduction . 42 3.2 The Impossible Boomerang Attack . 43 3.2.1 The Basic Impossible Boomerang Attack . 44 3.2.2 The Impossible Boomerang Attack Using More Tuples . 47 3.3 The Related-Key Impossible Boomerang Attack . 47 3.4 A Comparison . 48 3.5 Summary . 49 4 The Early Abort Technique 50 4.1 Introduction . 50 4.2 Early Abort for (Related-Key) Impossible Di®erential Cryptanalysis 51 4.3 Early Abort for the Rectangle Attack . 54 4.4 Early Abort for the Related-Key Rectangle Attack . 56 4.5 Summary . 58 5 Cryptanalysis of Reduced-Round AES 59 5.1 Introduction . 60 7 CONTENTS 5.2 The AES Block Cipher . 62 5.2.1 Notation . 62 5.2.2 Operations . 62 5.2.3 Generation of Subkeys . 63 5.2.4 Encryption Procedure . 64 5.3 Previous Cryptanalytic Results . 65 5.4 Impossible Di®erential Cryptanalysis of Reduced-Round AES . 66 5.4.1 General Observations . 67 5.4.2 Attacking 7-Round AES-128 . 72 5.4.3 Attacking 7-Round AES-192 . 77 5.4.4 Attacking 8-Round AES-256 . 83 5.5 Impossible Boomerang Attack on Reduced-Round AES . 91 5.5.1 4-Round Impossible Boomerang Distinguishers . 91 5.5.2 Attacking 6-Round AES-128 . 94 5.5.3 Attacking 7-Round AES-192 and 7-Round AES-256 . 96 5.6 Related-Key Impossible Boomerang Attack on Reduced-Round AES 99 5.6.1 Attacking 8-Round AES-192 Using Two Related Keys . 100 5.6.2 Attacking 9-Round AES-256 Using Two Related Keys . 101 5.7 Summary . 103 6 Impossible Di®erential Cryptanalysis of Reduced Camellia 105 6.1 Introduction . 106 6.2 The Camellia Block Cipher . 107 6.2.1 Notation . 107 6.2.2 Functions . 107 6.2.3 Generation of Subkeys . 108 6.2.4 Encryption Procedure . 108 6.3 Previous Cryptanalytic Results . 109 6.4 8-Round Impossible Di®erentials of Camellia . 110 6.5 Attacking 13-Round Camellia-256 without the FL Functions . 110 6.5.1 Preliminary Results . 111 6.5.2 Attack Description . 112 6.5.3 Complexity Analysis . 115 6.6 Attacking 12-Round Camellia-192 without the FL Functions . 116 6.7 Attacking 11-Round Camellia-128 without the FL Functions . 117 6.7.1 Attack Description . 117 6.7.2 Complexity Analysis . 118 6.8 Summary . 118 7 Related-Key Cryptanalysis of the Full Cobra-F64a and Cobra-F64b120 7.1 Introduction . 121 7.2 Cobra-F64a and Cobra-F64b . 122 7.2.1 Notation . 122 7.2.2 Functions and DDP-Boxes . 122 7.2.3 Generation of Subkeys .
Recommended publications
  • Cryptanalysis of Feistel Networks with Secret Round Functions Alex Biryukov, Gaëtan Leurent, Léo Perrin
    Cryptanalysis of Feistel Networks with Secret Round Functions Alex Biryukov, Gaëtan Leurent, Léo Perrin To cite this version: Alex Biryukov, Gaëtan Leurent, Léo Perrin. Cryptanalysis of Feistel Networks with Secret Round Functions. Selected Areas in Cryptography - SAC 2015, Aug 2015, Sackville, Canada. hal-01243130 HAL Id: hal-01243130 https://hal.inria.fr/hal-01243130 Submitted on 14 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Cryptanalysis of Feistel Networks with Secret Round Functions ? Alex Biryukov1, Gaëtan Leurent2, and Léo Perrin3 1 [email protected], University of Luxembourg 2 [email protected], Inria, France 3 [email protected], SnT,University of Luxembourg Abstract. Generic distinguishers against Feistel Network with up to 5 rounds exist in the regular setting and up to 6 rounds in a multi-key setting. We present new cryptanalyses against Feistel Networks with 5, 6 and 7 rounds which are not simply distinguishers but actually recover completely the unknown Feistel functions. When an exclusive-or is used to combine the output of the round function with the other branch, we use the so-called yoyo game which we improved using a heuristic based on particular cycle structures.
    [Show full text]
  • Improved Rectangle Attacks on SKINNY and CRAFT
    Improved Rectangle Attacks on SKINNY and CRAFT Hosein Hadipour1, Nasour Bagheri2 and Ling Song3( ) 1 Department of Mathematics and Computer Science, University of Tehran, Tehran, Iran, [email protected] 2 Electrical Engineering Department, Shahid Rajaee Teacher Training University, Tehran, Iran, [email protected] 3 Jinan University, Guangzhou, China [email protected] Abstract. The boomerang and rectangle attacks are adaptions of differential crypt- analysis that regard the target cipher E as a composition of two sub-ciphers, i.e., 2 2 E = E1 ◦ E0, to construct a distinguisher for E with probability p q by concatenat- ing two short differential trails for E0 and E1 with probability p and q respectively. According to the previous research, the dependency between these two differential characteristics has a great impact on the probability of boomerang and rectangle distinguishers. Dunkelman et al. proposed the sandwich attack to formalise such dependency that regards E as three parts, i.e., E = E1 ◦ Em ◦ E0, where Em contains the dependency between two differential trails, satisfying some differential propagation with probability r. Accordingly, the entire probability is p2q2r. Recently, Song et al. have proposed a general framework to identify the actual boundaries of Em and systematically evaluate the probability of Em with any number of rounds, and applied their method to accurately evaluate the probabilities of the best SKINNY’s boomerang distinguishers. In this paper, using a more advanced method to search for boomerang distinguishers, we show that the best previous boomerang distinguishers for SKINNY can be significantly improved in terms of probability and number of rounds.
    [Show full text]
  • Improved Related-Key Attacks on DESX and DESX+
    Improved Related-key Attacks on DESX and DESX+ Raphael C.-W. Phan1 and Adi Shamir3 1 Laboratoire de s´ecurit´eet de cryptographie (LASEC), Ecole Polytechnique F´ed´erale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland [email protected] 2 Faculty of Mathematics & Computer Science, The Weizmann Institute of Science, Rehovot 76100, Israel [email protected] Abstract. In this paper, we present improved related-key attacks on the original DESX, and DESX+, a variant of the DESX with its pre- and post-whitening XOR operations replaced with addition modulo 264. Compared to previous results, our attack on DESX has reduced text complexity, while our best attack on DESX+ eliminates the memory requirements at the same processing complexity. Keywords: DESX, DESX+, related-key attack, fault attack. 1 Introduction Due to the DES’ small key length of 56 bits, variants of the DES under multiple encryption have been considered, including double-DES under one or two 56-bit key(s), and triple-DES under two or three 56-bit keys. Another popular variant based on the DES is the DESX [15], where the basic keylength of single DES is extended to 120 bits by wrapping this DES with two outer pre- and post-whitening keys of 64 bits each. Also, the endorsement of single DES had been officially withdrawn by NIST in the summer of 2004 [19], due to its insecurity against exhaustive search. Future use of single DES is recommended only as a component of the triple-DES. This makes it more important to study the security of variants of single DES which increase the key length to avoid this attack.
    [Show full text]
  • Integral Cryptanalysis on Full MISTY1⋆
    Integral Cryptanalysis on Full MISTY1? Yosuke Todo NTT Secure Platform Laboratories, Tokyo, Japan [email protected] Abstract. MISTY1 is a block cipher designed by Matsui in 1997. It was well evaluated and standardized by projects, such as CRYPTREC, ISO/IEC, and NESSIE. In this paper, we propose a key recovery attack on the full MISTY1, i.e., we show that 8-round MISTY1 with 5 FL layers does not have 128-bit security. Many attacks against MISTY1 have been proposed, but there is no attack against the full MISTY1. Therefore, our attack is the first cryptanalysis against the full MISTY1. We construct a new integral characteristic by using the propagation characteristic of the division property, which was proposed in 2015. We first improve the division property by optimizing a public S-box and then construct a 6-round integral characteristic on MISTY1. Finally, we recover the secret key of the full MISTY1 with 263:58 chosen plaintexts and 2121 time complexity. Moreover, if we can use 263:994 chosen plaintexts, the time complexity for our attack is reduced to 2107:9. Note that our cryptanalysis is a theoretical attack. Therefore, the practical use of MISTY1 will not be affected by our attack. Keywords: MISTY1, Integral attack, Division property 1 Introduction MISTY [Mat97] is a block cipher designed by Matsui in 1997 and is based on the theory of provable security [Nyb94,NK95] against differential attack [BS90] and linear attack [Mat93]. MISTY has a recursive structure, and the component function has a unique structure, the so-called MISTY structure [Mat96].
    [Show full text]
  • Lecture Note 8 ATTACKS on CRYPTOSYSTEMS I Sourav Mukhopadhyay
    Lecture Note 8 ATTACKS ON CRYPTOSYSTEMS I Sourav Mukhopadhyay Cryptography and Network Security - MA61027 Attacks on Cryptosystems • Up to this point, we have mainly seen how ciphers are implemented. • We have seen how symmetric ciphers such as DES and AES use the idea of substitution and permutation to provide security and also how asymmetric systems such as RSA and Diffie Hellman use other methods. • What we haven’t really looked at are attacks on cryptographic systems. Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 1 • An understanding of certain attacks will help you to understand the reasons behind the structure of certain algorithms (such as Rijndael) as they are designed to thwart known attacks. • Although we are not going to exhaust all possible avenues of attack, we will get an idea of how cryptanalysts go about attacking ciphers. Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 2 • This section is really split up into two classes of attack: Cryptanalytic attacks and Implementation attacks. • The former tries to attack mathematical weaknesses in the algorithms whereas the latter tries to attack the specific implementation of the cipher (such as a smartcard system). • The following attacks can refer to either of the two classes (all forms of attack assume the attacker knows the encryption algorithm): Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 3 – Ciphertext-only attack: In this attack the attacker knows only the ciphertext to be decoded. The attacker will try to find the key or decrypt one or more pieces of ciphertext (only relatively weak algorithms fail to withstand a ciphertext-only attack).
    [Show full text]
  • Hash Functions and the (Amplified) Boomerang Attack
    Hash Functions and the (Amplified) Boomerang Attack Antoine Joux1,3 and Thomas Peyrin2,3 1 DGA 2 France T´el´ecomR&D [email protected] 3 Universit´ede Versailles Saint-Quentin-en-Yvelines [email protected] Abstract. Since Crypto 2004, hash functions have been the target of many at- tacks which showed that several well-known functions such as SHA-0 or MD5 can no longer be considered secure collision free hash functions. These attacks use classical cryptographic techniques from block cipher analysis such as differential cryptanal- ysis together with some specific methods. Among those, we can cite the neutral bits of Biham and Chen or the message modification techniques of Wang et al. In this paper, we show that another tool of block cipher analysis, the boomerang attack, can also be used in this context. In particular, we show that using this boomerang attack as a neutral bits tool, it becomes possible to lower the complexity of the attacks on SHA-1. Key words: hash functions, boomerang attack, SHA-1. 1 Introduction The most famous design principle for dedicated hash functions is indisputably the MD-SHA family, firstly introduced by R. Rivest with MD4 [16] in 1990 and its improved version MD5 [15] in 1991. Two years after, the NIST publishes [12] a very similar hash function, SHA-0, that will be patched [13] in 1995 to give birth to SHA-1. This family is still very active, as NIST recently proposed [14] a 256-bit new version SHA-256 in order to anticipate the potential cryptanalysis results and also to increase its security with regard to the fast growth of the computation power.
    [Show full text]
  • Related-Key Statistical Cryptanalysis
    Related-Key Statistical Cryptanalysis Darakhshan J. Mir∗ Poorvi L. Vora Department of Computer Science, Department of Computer Science, Rutgers, The State University of New Jersey George Washington University July 6, 2007 Abstract This paper presents the Cryptanalytic Channel Model (CCM). The model treats statistical key recovery as communication over a low capacity channel, where the channel and the encoding are determined by the cipher and the specific attack. A new attack, related-key recovery – the use of n related keys generated from k independent ones – is defined for all ciphers vulnera- ble to single-key recovery. Unlike classical related-key attacks such as differential related-key cryptanalysis, this attack does not exploit a special structural weakness in the cipher or key schedule, but amplifies the weakness exploited in the basic single key recovery. The related- key-recovery attack is shown to correspond to the use of a concatenated code over the channel, where the relationship among the keys determines the outer code, and the cipher and the attack the inner code. It is shown that there exists a relationship among keys for which the communi- cation complexity per bit of independent key is finite, for any probability of key recovery error. This may be compared to the unbounded communication complexity per bit of the single-key- recovery attack. The practical implications of this result are demonstrated through experiments on reduced-round DES. Keywords: related keys, concatenated codes, communication channel, statistical cryptanalysis, linear cryptanalysis, DES Communicating Author: Poorvi L. Vora, [email protected] ∗This work was done while the author was in the M.S.
    [Show full text]
  • Related-Key Cryptanalysis of 3-WAY, Biham-DES,CAST, DES-X, Newdes, RC2, and TEA
    Related-Key Cryptanalysis of 3-WAY, Biham-DES,CAST, DES-X, NewDES, RC2, and TEA John Kelsey Bruce Schneier David Wagner Counterpane Systems U.C. Berkeley kelsey,schneier @counterpane.com [email protected] f g Abstract. We present new related-key attacks on the block ciphers 3- WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. Differen- tial related-key attacks allow both keys and plaintexts to be chosen with specific differences [KSW96]. Our attacks build on the original work, showing how to adapt the general attack to deal with the difficulties of the individual algorithms. We also give specific design principles to protect against these attacks. 1 Introduction Related-key cryptanalysis assumes that the attacker learns the encryption of certain plaintexts not only under the original (unknown) key K, but also under some derived keys K0 = f(K). In a chosen-related-key attack, the attacker specifies how the key is to be changed; known-related-key attacks are those where the key difference is known, but cannot be chosen by the attacker. We emphasize that the attacker knows or chooses the relationship between keys, not the actual key values. These techniques have been developed in [Knu93b, Bih94, KSW96]. Related-key cryptanalysis is a practical attack on key-exchange protocols that do not guarantee key-integrity|an attacker may be able to flip bits in the key without knowing the key|and key-update protocols that update keys using a known function: e.g., K, K + 1, K + 2, etc. Related-key attacks were also used against rotor machines: operators sometimes set rotors incorrectly.
    [Show full text]
  • Miss in the Middle
    Miss in the middle By: Gal Leonard Keret Miss in the Middle Attacks on IDEA, Khufu and Khafre • Written by: – Prof. Eli Biham. – Prof. Alex Biryukov. – Prof. Adi Shamir. Introduction • So far we used traditional differential which predict and detect statistical events of highest possible probability. Introduction • A new approach is to search for events with probability one, whose condition cannot be met together (events that never happen). Impossible Differential • Random permutation: 휎 푀0 = 푎푛푦 퐶 표푓 푠푖푧푒 푀0. • Cipher (not perfect): 퐸 푀0 = 푠표푚푒 퐶 표푓 푠푖푧푒 푀0. • Events (푚 ↛ 푐) that never happen distinguish a cipher from a random permutation. Impossible Differential • Impossible events (푚 ↛ 푐) can help performing key elimination. • All the keys that lead to impossibility are obviously wrong. • This way we can filter wrong key guesses and leaving the correct key. Enigma – for example • Some of the attacks on Enigma were based on the observation that letters can not be encrypted to themselves. 퐸푛푖푔푚푎(푀0) ≠ 푀0 In General • (푀0, 퐶1) is a pair. If 푀0 푀0 → 퐶1. • 푀 ↛ 퐶 . 0 0 Some rounds For any key • ∀ 푘푒푦| 퐶1 → 퐶0 ↛ is an impossible key. Cannot lead to 퐶0. Some rounds Find each keys Decrypt 퐶1back to 퐶0. IDEA • International Data Encryption Algorithm. • First described in 1991. • Block cipher. • Symmetric. • Key sizes: 128 bits. • Block sizes: 64 bits. ⊕ - XOR. ⊞ - Addition modulo 216 ⊙ - Multiplication modulo 216+1 Encryption security • Combination of different mathematical groups. • Creation of "incompatibility“: ∗ • 푍216+1 → 푍216 ∗ • 푍216 → 푍216+1 ∗ ∗ Remark: 푍216+1 doesn’t contain 0 like 푍216 , so in 푍216+1 0 will be converted to 216 since 0 ≡ 216(푚표푑 216).
    [Show full text]
  • Report on the AES Candidates
    Rep ort on the AES Candidates 1 2 1 3 Olivier Baudron , Henri Gilb ert , Louis Granb oulan , Helena Handschuh , 4 1 5 1 Antoine Joux , Phong Nguyen ,Fabrice Noilhan ,David Pointcheval , 1 1 1 1 Thomas Pornin , Guillaume Poupard , Jacques Stern , and Serge Vaudenay 1 Ecole Normale Sup erieure { CNRS 2 France Telecom 3 Gemplus { ENST 4 SCSSI 5 Universit e d'Orsay { LRI Contact e-mail: [email protected] Abstract This do cument rep orts the activities of the AES working group organized at the Ecole Normale Sup erieure. Several candidates are evaluated. In particular we outline some weaknesses in the designs of some candidates. We mainly discuss selection criteria b etween the can- didates, and make case-by-case comments. We nally recommend the selection of Mars, RC6, Serp ent, ... and DFC. As the rep ort is b eing nalized, we also added some new preliminary cryptanalysis on RC6 and Crypton in the App endix which are not considered in the main b o dy of the rep ort. Designing the encryption standard of the rst twentyyears of the twenty rst century is a challenging task: we need to predict p ossible future technologies, and wehavetotake unknown future attacks in account. Following the AES pro cess initiated by NIST, we organized an op en working group at the Ecole Normale Sup erieure. This group met two hours a week to review the AES candidates. The present do cument rep orts its results. Another task of this group was to up date the DFC candidate submitted by CNRS [16, 17] and to answer questions which had b een omitted in previous 1 rep orts on DFC.
    [Show full text]
  • State of the Art in Lightweight Symmetric Cryptography
    State of the Art in Lightweight Symmetric Cryptography Alex Biryukov1 and Léo Perrin2 1 SnT, CSC, University of Luxembourg, [email protected] 2 SnT, University of Luxembourg, [email protected] Abstract. Lightweight cryptography has been one of the “hot topics” in symmetric cryptography in the recent years. A huge number of lightweight algorithms have been published, standardized and/or used in commercial products. In this paper, we discuss the different implementation constraints that a “lightweight” algorithm is usually designed to satisfy. We also present an extensive survey of all lightweight symmetric primitives we are aware of. It covers designs from the academic community, from government agencies and proprietary algorithms which were reverse-engineered or leaked. Relevant national (nist...) and international (iso/iec...) standards are listed. We then discuss some trends we identified in the design of lightweight algorithms, namely the designers’ preference for arx-based and bitsliced-S-Box-based designs and simple key schedules. Finally, we argue that lightweight cryptography is too large a field and that it should be split into two related but distinct areas: ultra-lightweight and IoT cryptography. The former deals only with the smallest of devices for which a lower security level may be justified by the very harsh design constraints. The latter corresponds to low-power embedded processors for which the Aes and modern hash function are costly but which have to provide a high level security due to their greater connectivity. Keywords: Lightweight cryptography · Ultra-Lightweight · IoT · Internet of Things · SoK · Survey · Standards · Industry 1 Introduction The Internet of Things (IoT) is one of the foremost buzzwords in computer science and information technology at the time of writing.
    [Show full text]
  • Stage De Master 2R
    STAGE DE MASTER 2R SYSTEMES ELECTRONIQUES ET GENIE ELECTRIQUE PARCOURS SYSTEMES ELECTRONIQUES ANNEE UNIVERSITAIRE 2006/2007 CRYPTO-COMPRESSION BASED ON CHAOS OF STILL IMAGES FOR THE TRANSMISSION YIN XU École Polytechnique de l’Université de Nantes Laboratoire IREENA Encadrants du stage : Safwan EL ASSAD Vincent RICORDEL Stage effectué du (05/02/2007) au (09/07/2007) Acknowledgments I would like to express my gratitude to my supervisors Professor Safwan EL ASSAD and Professor Vincent RICORDEL, who have been giving me direction with great patience. As the tutor of the first part of my internship, Prof. RICORDEL coached me on the study of JPEG 2000 systems and I benefited a lot from his tutorials. His constructive suggestions on my research and careful correction of my submitted materials are deeply appreciated. And as the tutor of the second part of my internship, Prof. EL ASSAD pointed out a clear direction of the subject that I should follow, which spare me from the potential wasting of time. He was always encouraging me and thus providing me with more confidence to achieve the objects of the internship. Doctor. Abir AWAD helped me a lot on the program-performance comparisons of C++ and MATLAB and she also gave me many useful materials on my subject. I am really thankful. I would also give my thankfulness to Professor Joseph SAILLARD and Professor Patrick LE CALLET for attending my final defense as a member of the jury despite the busy occupation of their own work. Of course also send great thankfulness to my two supervisors Prof. EL ASSAD and Prof.
    [Show full text]