Spondylocostal Dysplasia and Neural Tube Defects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Split Notochord Syndrome
0021-7557/04/80-01/77 Jornal de Pediatria Copyright © 2004 by Sociedade Brasileira de Pediatria RELATO DE CASO Síndrome do notocórdio fendido, variante rara do cisto neuroentérico A rare variant of neuroenteric cyst: split notochord syndrome Lisieux E. Jesus1, Cristiano G. França2 Resumo Abstract Objetivo: Estudo de um caso de síndrome do notocórdio fendido, Objective: We present a case of split notochord syndrome, an forma extremamente rara de disrafismo medular. A literatura pertinen- extremely rare form of spinal dysraphism. te, pesquisada através das bases de dados MEDLINE e LILACS, é Description: We treated a 2 month-old boy presenting with an analisada e sumarizada. extensive lumbosacral deformity, hydrocephalus and apparent enteric Descrição: Foi atendido lactente masculino de 2 meses de idade segments in the dorsal midline, accompanied by an enteric fistula apresentando extensa deformidade de coluna lombo-sacra, hidrocefa- and imperforated anus. The malformation was diagnosed as split lia e exteriorização de alças intestinais pela linha média dorsal, notochord syndrome. The baby died as a result of sepsis before acompanhada de fístula entérica e imperfuração anal. A malformação surgical treatment could be attempted. foi diagnosticada como síndrome do notocórdio fendido. A criança Comments: Split notochord syndrome is the rarest form of evoluiu para óbito secundário a sepse antes de ser feito qualquer neuroenteric cyst described until this moment (<25 cases in the tratamento cirúrgico. literature). It is frequently associated with anorectal malformation, Comentários: A síndrome do notocórdio fendido é a forma mais intestinal fistulae and hydrocephalus. Prognosis is not necessarily rara de cisto neuroentérico já descrita (<25 casos descritos em poor and survival is possible if digestive malformations, hydrocephalus literatura) e está associada freqüentemente a fístulas digestivas, and the dysraphism itself are treated simultaneously. -
Pfeiffer Syndrome Type II Discovered Perinatally
Diagnostic and Interventional Imaging (2012) 93, 785—789 CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector LETTER / Musculoskeletal imaging Pfeiffer syndrome type II discovered perinatally: Report of an observation and review of the literature a,∗ a a a H. Ben Hamouda , Y. Tlili , S. Ghanmi , H. Soua , b c b a S. Jerbi , M.M. Souissi , H. Hamza , M.T. Sfar a Unité de néonatologie, service de pédiatrie, CHU Tahar Sfar, 5111 Mahdia, Tunisia b Service de radiologie, CHU Tahar Sfar, 5111 Mahdia, Tunisia c Service de gynéco-obstétrique, CHU Tahar Sfar, 5111 Mahdia, Tunisia Pfeiffer syndrome, described for the first time by Pfeiffer in 1964, is a rare hereditary KEYWORDS condition combining osteochondrodysplasia with craniosynostosis [1]. This syndrome is Pfeiffer syndrome; also called acrocephalosyndactyly type 5, which is divided into three sub-types. Type I Cloverleaf skull; is the classic Pfeiffer syndrome, with autosomal dominant transmission, often associated Craniosynostosis; with normal intelligence. Types II and III occur as sporadic cases in individuals who have Syndactyly; craniosynostosis with broad thumbs, broad big toes, ankylosis of the elbows and visceral Prenatal diagnosis abnormalities [2]. We report a case of Pfeiffer syndrome type II, discovered perinatally, which is distinguished from type III by the skull appearing like a cloverleaf, and we shall discuss the clinical, radiological and evolutive features and the advantage of prenatal diagnosis of this syndrome with a review of the literature. Observation The case involved a male premature baby born at 36 weeks of amenorrhoea with multiple deformities at birth. The parents were not blood-related and in good health who had two other boys and a girl with normal morphology. -
Split Spinal Cord Malformations in Children
Split spinal cord malformations in children Yusuf Ersahin, M.D., Saffet Mutluer, M.D., Sevgül Kocaman, R.N., and Eren Demirtas, M.D. Division of Pediatric Neurosurgery, Department of Neurosurgery, and Department of Pathology, Ege University Faculty of Medicine, Izmir, Turkey The authors reviewed and analyzed information on 74 patients with split spinal cord malformations (SSCMs) treated between January 1, 1980 and December 31, 1996 at their institution with the aim of defining and classifying the malformations according to the method of Pang, et al. Computerized tomography myelography was superior to other radiological tools in defining the type of SSCM. There were 46 girls (62%) and 28 boys (38%) ranging in age from less than 1 day to 12 years (mean 33.08 months). The mean age (43.2 months) of the patients who exhibited neurological deficits and orthopedic deformities was significantly older than those (8.2 months) without deficits (p = 0.003). Fifty-two patients had a single Type I and 18 patients a single Type II SSCM; four patients had composite SSCMs. Sixty-two patients had at least one associated spinal lesion that could lead to spinal cord tethering. After surgery, the majority of the patients remained stable and clinical improvement was observed in 18 patients. The classification of SSCMs proposed by Pang, et al., will eliminate the current chaos in terminology. In all SSCMs, either a rigid or a fibrous septum was found to transfix the spinal cord. There was at least one unrelated lesion that caused tethering of the spinal cord in 85% of the patients. -
M ONITOR a Semi-Annual Data and Research Update Texas Department of Health, Bureau of Epidemiology
Texas Birth Defects M ONITOR A Semi-Annual Data and Research Update Texas Department of Health, Bureau of Epidemiology VOLUME 10, NUMBER 1, June 2004 FROM THE DIRECTOR The web site also has a useful glossary linked to risk factor summaries for a number of birth defects. INTERACTIVE WEB PAGE ALLOWS EASY RESEARCH SYMPOSIUM ACCESS TO TEXAS BIRTH DEFECTS DATA Birth defects data were recently highlighted at the Texas In partnership with Texas Department of Health's Center for Birth Defects Research Symposium on April 9 in San Anto- Health Statistics, birth defects data are now available on the nio. The following speakers provided insight into the causes Texas Health Data web site. Visitors to the site (http://soup- of birth defects: fin.tdh.state.tx.us/) will be able to query data from the Texas Birth Defects Registry. Linking Birth Defects and the Environment, with Prelimi- nary Findings from an Air Pollution Study in Texas (Peter The Registry uses active surveillance to collect information Langlois, Ph.D., TBDMD and Suzanne Gilboa, M.H.S., U.S. about infants and fetuses with birth defects, born to women Environmental Protection Agency) residing in Texas. Data are presented for 49 defect catego- ries, plus a category for “infants and fetuses with any moni- Neural Tube Defects: Multiple Risk Factors Among the tored birth defect” beginning with deliveries in 1999, when Texas-Mexico Border Population (Lucina Suarez, Ph.D., the Texas Birth Defects Registry became statewide. Texas Department of Health) The Embryonic Consequences of Abnormal -
Megalencephaly and Macrocephaly
277 Megalencephaly and Macrocephaly KellenD.Winden,MD,PhD1 Christopher J. Yuskaitis, MD, PhD1 Annapurna Poduri, MD, MPH2 1 Department of Neurology, Boston Children’s Hospital, Boston, Address for correspondence Annapurna Poduri, Epilepsy Genetics Massachusetts Program, Division of Epilepsy and Clinical Electrophysiology, 2 Epilepsy Genetics Program, Division of Epilepsy and Clinical Department of Neurology, Fegan 9, Boston Children’s Hospital, 300 Electrophysiology, Department of Neurology, Boston Children’s Longwood Avenue, Boston, MA 02115 Hospital, Boston, Massachusetts (e-mail: [email protected]). Semin Neurol 2015;35:277–287. Abstract Megalencephaly is a developmental disorder characterized by brain overgrowth secondary to increased size and/or numbers of neurons and glia. These disorders can be divided into metabolic and developmental categories based on their molecular etiologies. Metabolic megalencephalies are mostly caused by genetic defects in cellular metabolism, whereas developmental megalencephalies have recently been shown to be caused by alterations in signaling pathways that regulate neuronal replication, growth, and migration. These disorders often lead to epilepsy, developmental disabilities, and Keywords behavioral problems; specific disorders have associations with overgrowth or abnor- ► megalencephaly malities in other tissues. The molecular underpinnings of many of these disorders are ► hemimegalencephaly now understood, providing insight into how dysregulation of critical pathways leads to ► -
Genetics of Congenital Hand Anomalies
G. C. Schwabe1 S. Mundlos2 Genetics of Congenital Hand Anomalies Die Genetik angeborener Handfehlbildungen Original Article Abstract Zusammenfassung Congenital limb malformations exhibit a wide spectrum of phe- Angeborene Handfehlbildungen sind durch ein breites Spektrum notypic manifestations and may occur as an isolated malforma- an phänotypischen Manifestationen gekennzeichnet. Sie treten tion and as part of a syndrome. They are individually rare, but als isolierte Malformation oder als Teil verschiedener Syndrome due to their overall frequency and severity they are of clinical auf. Die einzelnen Formen kongenitaler Handfehlbildungen sind relevance. In recent years, increasing knowledge of the molecu- selten, besitzen aber aufgrund ihrer Häufigkeit insgesamt und lar basis of embryonic development has significantly enhanced der hohen Belastung für Betroffene erhebliche klinische Rele- our understanding of congenital limb malformations. In addi- vanz. Die fortschreitende Erkenntnis über die molekularen Me- tion, genetic studies have revealed the molecular basis of an in- chanismen der Embryonalentwicklung haben in den letzten Jah- creasing number of conditions with primary or secondary limb ren wesentlich dazu beigetragen, die genetischen Ursachen kon- involvement. The molecular findings have led to a regrouping of genitaler Malformationen besser zu verstehen. Der hohe Grad an malformations in genetic terms. However, the establishment of phänotypischer Variabilität kongenitaler Handfehlbildungen er- precise genotype-phenotype correlations for limb malforma- schwert jedoch eine Etablierung präziser Genotyp-Phänotyp- tions is difficult due to the high degree of phenotypic variability. Korrelationen. In diesem Übersichtsartikel präsentieren wir das We present an overview of congenital limb malformations based Spektrum kongenitaler Malformationen, basierend auf einer ent- 85 on an anatomic and genetic concept reflecting recent molecular wicklungsbiologischen, anatomischen und genetischen Klassifi- and developmental insights. -
Macrocephaly Information Sheet 6-13-19
Next Generation Sequencing Panel for Macrocephaly Clinical Features: Macrocephaly refers to an abnormally large head, OFC greater than 98th percentile, inclusive of the scalp, cranial bone and intracranial contents. Megalencephaly, brain weight/volume ratio greater than 98th percentile, results from true enlargement of the brain parenchyma [1]. Megalencephaly is typically accompanied by macrocephaly, however macrocephaly can occur in the absence of megalencephaly [2]. Both macrocephaly and megalencephaly can been seen as isolated clinical findings as well as clinical features of a mutli-systemic syndromic diagnosis. Our Macrocephaly Panel includes analysis of the 36 genes listed below. Macrocephaly Sequencing Panel ASXL2 GLI3 MTOR PPP2R5D TCF20 BRWD3 GPC3 NFIA PTEN TBC1D7 CHD4 HEPACAM NFIX RAB39B UPF3B CHD8 HERC1 NONO RIN2 ZBTB20 CUL4B KPTN NSD1 RNF125 DNMT3A MED12 OFD1 RNF135 EED MITF PIGA SEC23B EZH2 MLC1 PPP1CB SETD2 Gene Clinical Features Details ASXL2 Shashi-Pena Shashi et al. (2016) found that six patients with developmental delay, syndrome macrocephaly, and dysmorphic features were found to have de novo truncating variants in ASXL2 [3]. Distinguishing features were macrocephaly, absence of growth retardation, and variability in the degree of intellectual disabilities The phenotype also consisted of prominent eyes, arched eyebrows, hypertelorism, a glabellar nevus flammeus, neonatal feeding difficulties and hypotonia. BRWD3 X-linked intellectual Truncating mutations in the BRWD3 gene have been described in males with disability nonsyndromic intellectual disability and macrocephaly [4]. Other features include a prominent forehead and large cupped ears. CHD4 Sifrim-Hitz-Weiss Weiss et al., 2016, identified five individuals with de novo missense variants in the syndrome CHD4 gene with intellectual disabilities and distinctive facial dysmorphisms [5]. -
CASE REPORT Congenital Posterior Atlas Defect Associated with Anterior
Acta Orthop. Belg., 2007, 73, 282-285 CASE REPORT Congenital posterior atlas defect associated with anterior rachischisis and early cervical degenerative disc disease : A case study and review of the literature Dritan PASKU, Pavlos KATONIS, Apostolos KARANTANAS, Alexander HADJIPAVLOU From the University of Crete Heraklion, Greece A rare case of a wide congenital atlas defect is report- diagnosed posterior atlas defect coexisting with an ed. A 25 year-old woman was admitted after com- anterior rachischisis, presenting with radicular arm plaints of radicular pain in the right arm. pain resistant to conservative therapy. In addition, a Radiographs incidentally revealed aplasia of the pos- review of the literature is presented with emphasis terior arch of the atlas together with anterior rachis- on the possibility of the association between the chisis. A review of the literature is presented and a atlas defect and early disc degeneration. possible association with early disc degeneration is discussed. CASE REPORT Keywords : spine ; congenital disorders ; computed tomography ; MR imaging ; disc degeneration. A 25 year-old woman presented with neck pain radiating to the right arm over the last 5 days. She also reported intermittent neck and arm pain for the INTRODUCTION past 4 years. The patient had consulted in our hos- pital for an episode of cervical pain one year previ- Malformations of the atlas are relatively rare and ously without arm pain but was discharged from exhibit a wide range including aplasia, hypoplasia the emergency department without any radiological and various arch clefts (2, 15). The reported inci- examination. Her symptoms deteriorated with neck dence in a large study of 1,613 autopsies with flexion, with pain referred to the upper thoracic regard to presence of congenital aplasia is 4% for the posterior arch and 0.1% for the anterior arch (5- 8). -
CONGENITAL ABNORMALITIES of the CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles Ffrench-Constant *I3
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.suppl_1.i3 on 1 March 2003. Downloaded from CONGENITAL ABNORMALITIES OF THE CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles ffrench-Constant *i3 J Neurol Neurosurg Psychiatry 2003;74(Suppl I):i3–i8 dvances in genetics and molecular biology have led to a better understanding of the control of central nervous system (CNS) development. It is possible to classify CNS abnormalities Aaccording to the developmental stages at which they occur, as is shown below. The careful assessment of patients with these abnormalities is important in order to provide an accurate prog- nosis and genetic counselling. c NORMAL DEVELOPMENT OF THE CNS Before we review the various abnormalities that can affect the CNS, a brief overview of the normal development of the CNS is appropriate. c Induction—After development of the three cell layers of the early embryo (ectoderm, mesoderm, and endoderm), the underlying mesoderm (the “inducer”) sends signals to a region of the ecto- derm (the “induced tissue”), instructing it to develop into neural tissue. c Neural tube formation—The neural ectoderm folds to form a tube, which runs for most of the length of the embryo. c Regionalisation and specification—Specification of different regions and individual cells within the neural tube occurs in both the rostral/caudal and dorsal/ventral axis. The three basic regions of copyright. the CNS (forebrain, midbrain, and hindbrain) develop at the rostral end of the tube, with the spinal cord more caudally. Within the developing spinal cord specification of the different popu- lations of neural precursors (neural crest, sensory neurones, interneurones, glial cells, and motor neurones) is observed in progressively more ventral locations. -
Fetal MR How I Do It in Clinical Practice
Fetal MR How I do it in clinical practice M J Weston Leeds Why do it? • Add diagnostic certainty to US findings • Find additional anomalies • Research How is it done? • Trickier than you think. • Fast acquisition times • Signal to noise problems • Risk to fetus • T2 is mainstay • T1 useful for bowel and looking for fat or haemorrhage Cerebral MRI T2 weighted Other sequences T2 T1 DWI Change with time 24 weeks 36 weeks Spina bifida • MR is not a screening test • All cases detected by US • Confirmatory • Assignment of level • Visually very powerful for parents Spinal cord Conus Medullaris Spina bifida Head signs Spina bifida Sagittal US and MR are equally accurate at assigning level of lesion Aaronson OS et al. Radiology 2003; 227: 839‐843 Diastematomyelia Split cord Huge NTD on US Visual impact of MRI Caudal Regression Syndrome Caudal regression Head anomalies • Commonest indication – Apparently isolated ventriculomegaly • Establishing normal brain maturation • Problems with counselling… Unilateral hydrocephalus? • Near field reverberation Hydrocephalus Prognosis? Ventricular bleed Different sequences in bleed But, postnatally… Ultrasound Obstet Gynecol 2008; 32: 188 – 198 Good prognosis… Schizencephaly Artefact or schizencephaly? Follow-up Deep asymmetrical calcarine sulcus Arachnoid cyst Taiwan J Obstet Gynecol 2007; 46: 187 Prepontine arachnoid cyst Death of co-twin Obstet Gynecol 2011; 118: 928 – 940 Monochorionic – neurodevelopmental delay 26% of survivors Dichorionic ‐ 2% 2 weeks later Microcephaly etc Face and holoprosencephaly Face and head Facial cleft and no eyes Normal Sent for head but… But also has small lungs Problem solving Fetal kidneys Inclusion cyst Cervical teratoma Neck lymphangioma Nasopharyngeal teratoma? Focal bulge What is this? Co‐existant Mole Retroplacental bleed Intrapartum scar rupture Conclusions • Complimentary to US • Added worth is less if expert US • Prognostic difficulties • Changing the role of the Radiologist. -
Anencephalic Fetus with Craniospinal Rachischisis – Case Report
Case Study International Journal of Research - GRANTHAALAYAH ISSN (Online): 2350-0530 May 2021 9(5), 24–29 ISSN (Print): 2394-3629 ANENCEPHALIC FETUS WITH CRANIOSPINAL RACHISCHISIS – CASE REPORT 1 Ayse KONAC 1Gelisim University Health Sciences, Istanbul, Turkey ABSTRACT Anencephaly, in which a substantial part of the brain, skull, or scalp is miss- ing, is a lethal neural tube defect (NTD) that occurs during the fourth week of pregnancy after failed cranial neuropore closure. One in every 1,000 births is anencephalic, and newborns with this NTD are not viable or treatable. Associ- ated with anencephaly is rachischisis, or severe incomplete neural tube closure and exposure of the spinal cord. Ultrasonography can quickly diagnose anen- cephaly. Like other NTDs, nutritional and environmental factors both play a role in the development of anencephaly. Here, we report and discuss an unusual case of a 12-week gestation anencephalic fetus with craniospinal rachischisis and its embryological roots. In our case, except from the low socio-economic life of the patient, the Received 18 April 2021 absence of a predisposing factor that could cause such an anomaly, the abor- Accepted 4 May 2021 tion being in the irst trimester and the occurrence in the irst pregnancy of the Published 31 May 2021 patient as a result of 5-year infertility made us think that pathology examination Corresponding Author of the abortus material is important in complet or incomplete abortions. Ayse KONAC, ayse.konac1@gmail. com DOI 10.29121/ Keywords: Anencephaly, Neural Tube Defect, Rachischisis, İncomplet Abortion, granthaalayah.v9.i5.2021.3899 First Trimester Funding: This research received no speciic grant from any funding agency in the public, commercial, or not-for-proit sectors. -
Classification of Congenital Abnormalities of the CNS
315 Classification of Congenital Abnormalities of the CNS M. S. van der Knaap1 A classification of congenital cerebral, cerebellar, and spinal malformations is pre J . Valk2 sented with a view to its practical application in neuroradiology. The classification is based on the MR appearance of the morphologic abnormalities, arranged according to the embryologic time the derangement occurred. The normal embryology of the brain is briefly reviewed, and comments are made to explain the classification. MR images illustrating each subset of abnormalities are presented. During the last few years, MR imaging has proved to be a diagnostic tool of major importance in children with congenital malformations of the eNS [1]. The excellent gray fwhite-matter differentiation and multi planar imaging capabilities of MR allow a systematic analysis of the condition of the brain in infants and children. This is of interest for estimating prognosis and for genetic counseling. A classification is needed to serve as a guide to the great diversity of morphologic abnormalities and to make the acquired data useful. Such a system facilitates encoding, storage, and computer processing of data. We present a practical classification of congenital cerebral , cerebellar, and spinal malformations. Our classification is based on the morphologic abnormalities shown by MR and on the time at which the derangement of neural development occurred. A classification based on etiology is not as valuable because the various presumed causes rarely lead to a specific pattern of malformations. The abnor malities reflect the time the noxious agent interfered with neural development, rather than the nature of the noxious agent. The vulnerability of the various structures to adverse agents is greatest during the period of most active growth and development.