Photometric Stellar Variation Due to Extra-Solar Comets

Total Page:16

File Type:pdf, Size:1020Kb

Photometric Stellar Variation Due to Extra-Solar Comets A&A manuscript no. ASTRONOMY (will be inserted by hand later) AND Your thesaurus codes are: 07(03.13.4; 05.15.1; 07.03.1; 08.16.2) ASTROPHYSICS Photometric stellar variation due to extra-solar comets. A. Lecavelier des Etangs1, A. Vidal-Madjar1, and R. Ferlet1 Institut d’Astrophysique de Paris, CNRS, 98bis Boulevard Arago, F-75014 Paris, France Received / Accepted Abstract. We performed numerical simulations of stel- produce the dust continuously. Second, because the cloud lar occultations by extra-solar cometary tails. We find shape is constrained by the observed light curve; the cloud that extra-solar comets can be detected by the appar- cannot be spherical, it should have a sharp edge in the part ent photometric variations of the central stars. In most pointing toward the star and a huge cloud of dust in the cases, the light curve shows a very peculiar “rounded tri- opposite direction: exactly like a cometary tail (Lecavelier angular” shape. However, in some other cases, the curve des Etangs, 1996). can mimic a planetary occultation. Photometric variations In the case of the solar system, the observations of stel- due to comet occultations are mainly achromatic. Never- lar occultation by comets have been discussed by Combes theless, if comets with small periastrons have smaller par- et al. (1983). Observations of extinction and polarization ticles, these occultations could be chromatic with a larger of star light by dust of cometary tails in the solar system extinction in the blue by few percents. have been published (Dossin 1962, Ninkov 1994, Rosen- We also estimate the number of detections expected in bush et al. 1994). a large photometric survey at high accuracy. By the ob- But the solar system is only one particular planetary servation of several tens of thousand of stars, it should be system at a given age. It is known that cometary activity possible to detect several hundreds of occultation per year. was formerly much more important, and the well-known We thus conclude that a spatial photometric survey would case of β Pictoris shows that during the first 108 years, a detect a large number of extra-solar comets. This would planetary system is expected to show large cometary ac- allow to explore the time evolution of cometary activity, tivity (Ferlet & Vidal-Madjar 1995, Vidal-Madjar et al. and consequently would probe structure and evolution of 1998). Moreover, presence of comets around stars can be extra-solar planetary systems. considered as an indirect signature for the presence of gravitational perturbations, and possibly caused by plan- Key words: Occultations – Comets – Planetary systems ets. arXiv:astro-ph/9812381v1 21 Dec 1998 In this paper, we deal with the important possibility of detecting cometary activity from a photometric sur- vey. We take the COROT space mission as an example 1. Introduction of what will be achievable in the very near future (Baglin et al. 1997). COROT, which primary aim is stellar seis- The search for extra-solar planets through photometric mology, will be launched in early 2002. It will allow a variation is a well-known problem analyzed in many as- survey of about 30 000 stars with a photometric accuracy pects for several years (Schneider et al. 1990; Schnei- of few 10−4 during several months. Here, we predict the der 1996). However, planets are not the only objects probabilities of detecting comets using such a photometric detectable by their effect on stars’ brightness, comets survey. can also induce photometric variations. In our study of In Sect 2, we describe the model of the cometary occul- β Pictoris photometric variations (Lecavelier des Etangs tation, and then give the expected light curve in Sect 3. et al. 1995), we concluded that the variations observed on Estimates of the number of comets which could be de- November 1981 could be due to the passage in front of tected are given in Sect 4. The conclusion is in Sect 5. the star of either a planet or a dusty cloud (Lecavelier des Etangs et al. 1997, Lamers et al. 1997). If the latter is the correct explanation, this cloud of dust must be a cometary 2. A model of cometary occultation tail for two reasons. First, because the lifetime of the dust in such a system is very short and one must find a way to As pointed out by Lamers et al.(1997), a geometric dis- tribution of the dust must be assumed in order to eval- Send offprint requests to: A. Lecavelier des Etangs uate the photometric stellar variation due to extra-solar 2 A. Lecavelier des Etangs et al.: Photometric stellar variation due to extra-solar comets. comets. Then, by taking into account the optical proper- for s = 0.1µm. The ejection velocity is smaller for larger ties of the cometary grains, the photometric variation can grains which have smaller cross section area to mass ratio −1 be estimated. (veject(10µm) 124km s ). We checked that any other realistic values≈ for A and B give similar light curves within 2.1. Distribution of dust in a cometary tail few percents. The evaluation of the distribution of the dust in a 2.2. Stellar parameter cometary tail can be made through particle simulation. The input parameters are the comet orbit, the dust pro- The simulations have been performed with the mass, lu- duction rate, the ejection velocity and the size distribu- minosity and radius of the central star set to solar values tion. We assume a size distribution dn(s) of the form (M∗, L∗ and R∗). Simulation with other parameters could be possible. A larger mass for the central star would induce (1 s /s)m 0 a shorter time scale; a larger luminosity would increase the dn(s)= − n (1) s effect of the radiation pressure on grains; a larger radius as observed in the solar system, where s is the dust size. would decrease the relative extinction (Eq. 6). However, We take s = 0.1µm, n = 4.2, m = n(s s )/s , and the conclusions do not strongly depend on these stellar 0 p − 0 0 sp = 0.5µm (Hanner 1983, Newburn & Spinrad 1985). properties. For instance, adopting the properties of an This distribution starts at s0 = 0.1µm with dn(s0) = 0, A5V star does not change the shape of the light curves. −n peaks at sp = 0.5µm, and has a tail similar to a s By scaling the production rate to the star luminosity, we distribution for large sizes. found a quantitative change by less than a factor of two. Dust sensitivity to radiation pressure is given by the β ratio of the radiation force to the gravitational force. We 2.3. Grain properties take −1 2.3.1. Extinction L∗/M∗ s β =0.2 (2) L /M 1µm The extinction cross-section of a dust grain is 2 ⊙ ⊙ Qext(s, λ)πs , where the extinction efficiency, Qext is where L∗/M∗ is the luminosity-mass ratio of the star. So slightly dependent on the particle size (s) and radiation the orbits of the small grains are more affected by radi- wavelength (λ). If Qsca is the scattering efficiency (see ation pressure than those of large grains. This is a very Sect. 2.3.2) and Qabs is absorption efficiency, Qext(s, λ)= good approximation for particles larger than 0.1µm of any Qsca + Qabs. We take Qabs = 1 if s λ, and Qabs = s/λ realistic composition and for the solar spectrum (Burns et if s < λ, which is a good approximation≥ for optical wave- al. 1979). lengths and grains larger than 0.1µm (Draine & Lee 1984). The dust production rate P is assumed to vary with The total extinction is hence calculated by adding the r, the distance to the star, and is taken to be extinction due to all particles in the line of sight to the − star. The optical depth τ due to the dust is r 2 P = P0 (3) 2 r0 Ngrain/part.Qext(s, λ)πs τ = part. (4) P (see, for example, A’Hearn et al., 1995; Weaver et al., 1997, S Schleicher 1998). The dust production is taken to be zero where S is the projected area of the line of sight. In the beyond 3 AU for a solar luminosity. simulation, one particle represents an optically thin cloud As soon as a grain is produced from a comet nucleus, of several dust grains. The number of physical grains per we assume that it is ejected from the parent body with particle in the simulation, Ngrain/part., is a velocity veject in an arbitrary direction. The grain then follows a trajectory defined by gravitation and radiation 3Mdust dn(s) Ngrain/part. = 3 (5) forces. The ejection velocity depends upon the particle 4πρNpart. Rs dn(s) size. We take veject = √β/(A + B√β) (Sekanina & Lar- R son 1984), which approximates the results of Probstein’s where Mdust is the total dust mass, ρ is the dust density, (1969) two-phase dusty-gas dynamics for the acceleration and Npart. is the number of particles in the simulation. 4 by the expanding gas within tens of kilometers from the Npart. is set to a few 10 in order to keep reasonable com- nucleus. The coefficient A and B depend upon many pa- puting time. rameters such as the thermal velocity of the expanding Because the cometary cloud is optically thick but its gas. We used A = B = 1 s km−1 which is a good ap- size is smaller than the size of the star, we mapped the proximation of different values measured for the comets stellar surface through a set of cells in polar coordinates.
Recommended publications
  • Surface Characteristics of Transneptunian Objects and Centaurs from Photometry and Spectroscopy
    Barucci et al.: Surface Characteristics of TNOs and Centaurs 647 Surface Characteristics of Transneptunian Objects and Centaurs from Photometry and Spectroscopy M. A. Barucci and A. Doressoundiram Observatoire de Paris D. P. Cruikshank NASA Ames Research Center The external region of the solar system contains a vast population of small icy bodies, be- lieved to be remnants from the accretion of the planets. The transneptunian objects (TNOs) and Centaurs (located between Jupiter and Neptune) are probably made of the most primitive and thermally unprocessed materials of the known solar system. Although the study of these objects has rapidly evolved in the past few years, especially from dynamical and theoretical points of view, studies of the physical and chemical properties of the TNO population are still limited by the faintness of these objects. The basic properties of these objects, including infor- mation on their dimensions and rotation periods, are presented, with emphasis on their diver- sity and the possible characteristics of their surfaces. 1. INTRODUCTION cally with even the largest telescopes. The physical char- acteristics of Centaurs and TNOs are still in a rather early Transneptunian objects (TNOs), also known as Kuiper stage of investigation. Advances in instrumentation on tele- belt objects (KBOs) and Edgeworth-Kuiper belt objects scopes of 6- to 10-m aperture have enabled spectroscopic (EKBOs), are presumed to be remnants of the solar nebula studies of an increasing number of these objects, and signifi- that have survived over the age of the solar system. The cant progress is slowly being made. connection of the short-period comets (P < 200 yr) of low We describe here photometric and spectroscopic studies orbital inclination and the transneptunian population of pri- of TNOs and the emerging results.
    [Show full text]
  • Exploration of the Kuiper Belt by High-Precision Photometric Stellar Occultations: First Results F
    Exploration of the Kuiper Belt by High-Precision Photometric Stellar Occultations: First Results F. Roques, A. Doressoundiram, V. Dhillon, T. Marsh, S. Bickerton, J. J. Kavelaars, M. Moncuquet, M. Auvergne, I. Belskaya, M. Chevreton, et al. To cite this version: F. Roques, A. Doressoundiram, V. Dhillon, T. Marsh, S. Bickerton, et al.. Exploration of the Kuiper Belt by High-Precision Photometric Stellar Occultations: First Results. Astronomical Journal, Amer- ican Astronomical Society, 2006, 132, pp.819-822. 10.1086/505623. hal-00640050 HAL Id: hal-00640050 https://hal.archives-ouvertes.fr/hal-00640050 Submitted on 10 Nov 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Astronomical Journal, 132:819Y822, 2006 August # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. EXPLORATION OF THE KUIPER BELT BY HIGH-PRECISION PHOTOMETRIC STELLAR OCCULTATIONS: FIRST RESULTS F. Roques,1,2 A. Doressoundiram,1 V. Dhillon,3 T. Marsh,4 S. Bickerton,5,6 J. J. Kavelaars,5 M. Moncuquet,1 M. Auvergne,1 I. Belskaya,7 M. Chevreton,1 F. Colas,1 A. Fernandez,1 A. Fitzsimmons,8 J. Lecacheux,1 O. Mousis,9 S.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Abstracts of the 50Th DDA Meeting (Boulder, CO)
    Abstracts of the 50th DDA Meeting (Boulder, CO) American Astronomical Society June, 2019 100 — Dynamics on Asteroids break-up event around a Lagrange point. 100.01 — Simulations of a Synthetic Eurybates 100.02 — High-Fidelity Testing of Binary Asteroid Collisional Family Formation with Applications to 1999 KW4 Timothy Holt1; David Nesvorny2; Jonathan Horner1; Alex B. Davis1; Daniel Scheeres1 Rachel King1; Brad Carter1; Leigh Brookshaw1 1 Aerospace Engineering Sciences, University of Colorado Boulder 1 Centre for Astrophysics, University of Southern Queensland (Boulder, Colorado, United States) (Longmont, Colorado, United States) 2 Southwest Research Institute (Boulder, Connecticut, United The commonly accepted formation process for asym- States) metric binary asteroids is the spin up and eventual fission of rubble pile asteroids as proposed by Walsh, Of the six recognized collisional families in the Jo- Richardson and Michel (Walsh et al., Nature 2008) vian Trojan swarms, the Eurybates family is the and Scheeres (Scheeres, Icarus 2007). In this theory largest, with over 200 recognized members. Located a rubble pile asteroid is spun up by YORP until it around the Jovian L4 Lagrange point, librations of reaches a critical spin rate and experiences a mass the members make this family an interesting study shedding event forming a close, low-eccentricity in orbital dynamics. The Jovian Trojans are thought satellite. Further work by Jacobson and Scheeres to have been captured during an early period of in- used a planar, two-ellipsoid model to analyze the stability in the Solar system. The parent body of the evolutionary pathways of such a formation event family, 3548 Eurybates is one of the targets for the from the moment the bodies initially fission (Jacob- LUCY spacecraft, and our work will provide a dy- son and Scheeres, Icarus 2011).
    [Show full text]
  • Appulses of Jupiter and Saturn
    IN ORIGINAL FORM PUBLISHED IN: arXiv:(side label) [physics.pop-ph] Sternzeit 46, No. 1+2 / 2021 (ISSN: 0721-8168) Date: 6th May 2021 Appulses of Jupiter and Saturn Joachim Gripp, Emil Khalisi Sternzeit e.V., Kiel and Heidelberg, Germany e-mail: gripp or khalisi ...[at]sternzeit-online[dot]de Abstract. The latest conjunction of Jupiter and Saturn occurred at an optical distance of 6 arc minutes on 21 December 2020. We re-analysed all encounters of these two planets between -1000 and +3000 CE, as the extraordinary ones (< 10′) take place near the line of nodes every 400 years. An occultation of their discs did not and will not happen within the historical time span of ±5,000 years around now. When viewed from Neptune though, there will be an occultation in 2046. Keywords: Jupiter-Saturn conjunction, Appulse, Trigon, Occultation. Introduction reason is due to Earth’s orbit: while Jupiter and Saturn are locked in a 5:2-mean motion resonance, the Earth does not The slowest naked-eye planets Jupiter and Saturn made an join in. For very long periods there could be some period- impressive encounter in December 2020. Their approaches icity, however, secular effects destroy a cycle, e.g. rotation have been termed “Great Conjunctions” in former times of the apsides and changes in eccentricity such that we are and they happen regularly every ≈20 years. Before the left with some kind of “semi-periodicity”. discovery of the outer ice giants these classical planets rendered the longest known cycle. The separation at the instant of conjunction varies up to 1 degree of arc, but the Close Encounters latest meeting was particularly tight since the planets stood Most pass-bys of Jupiter and Saturn are not very spectac- closer than at any other occasion for as long as 400 years.
    [Show full text]
  • ASTEROID OCCULTATIONOCCULTATION OBSERVINGOBSERVING (And Recording) ~ a Basic Introduction ~
    ASTEROIDASTEROID OCCULTATIONOCCULTATION OBSERVINGOBSERVING (and recording) ~ A basic introduction ~ Most amateur astronomers look forward to observing eclipses – a nice lunar eclipse, and the all-too- rare solar variety. Some travel for hundreds of miles to “catch the shadow”. ...But did you know there are potential eclipses to observe nearly every clear night? There are ---- Asteroid Occultations. What's an asteroid occultation? Assuming you know what an asteroid is.... There are now just over 1 MILLION asteroids that have published orbits. Over 500,000 of them have orbits that are established well enough that they have been “numbered” (in general, the lower the number, the more refined the orbit). There are also billions of stars visible thru a telescope in the night sky. It's only inevitable that at times the alignment will be just right for these chunks of rock in space to pass in front of the absolute pinpoint light from stars. If you are in just the right place on Earth, the asteroid will “eclipse” the star, blocking out its light for anywhere from a fraction of a second, to up to 10's of seconds. As the star is essentially infinitely far away – as compared to the distance to the asteroid – the “shadow” the asteroid casts on Earth is basically the size of the asteroid. This shadow moves across the surface of the Earth in a narrow band (the width of which is the diameter of the asteroid), often crossing thousands of miles of the Earth's surface. If you are located somewhere in this narrow band, and it's clear out, you can see the star “blink out”, and then back - an asteroid occultation.
    [Show full text]
  • Near-Infrared Mapping and Physical Properties of the Dwarf-Planet Ceres
    A&A 478, 235–244 (2008) Astronomy DOI: 10.1051/0004-6361:20078166 & c ESO 2008 Astrophysics Near-infrared mapping and physical properties of the dwarf-planet Ceres B. Carry1,2,C.Dumas1,3,, M. Fulchignoni2, W. J. Merline4, J. Berthier5, D. Hestroffer5,T.Fusco6,andP.Tamblyn4 1 ESO, Alonso de Córdova 3107, Vitacura, Santiago de Chile, Chile e-mail: [email protected] 2 LESIA, Observatoire de Paris-Meudon, 5 place Jules Janssen, 92190 Meudon Cedex, France 3 NASA/JPL, MS 183-501, 4800 Oak Grove Drive, Pasadena, CA 91109-8099, USA 4 SwRI, 1050 Walnut St. # 300, Boulder, CO 80302, USA 5 IMCCE, Observatoire de Paris, CNRS, 77 Av. Denfert Rochereau, 75014 Paris, France 6 ONERA, BP 72, 923222 Châtillon Cedex, France Received 26 June 2007 / Accepted 6 November 2007 ABSTRACT Aims. We study the physical characteristics (shape, dimensions, spin axis direction, albedo maps, mineralogy) of the dwarf-planet Ceres based on high angular-resolution near-infrared observations. Methods. We analyze adaptive optics J/H/K imaging observations of Ceres performed at Keck II Observatory in September 2002 with an equivalent spatial resolution of ∼50 km. The spectral behavior of the main geological features present on Ceres is compared with laboratory samples. Results. Ceres’ shape can be described by an oblate spheroid (a = b = 479.7 ± 2.3km,c = 444.4 ± 2.1 km) with EQJ2000.0 spin α = ◦ ± ◦ δ =+ ◦ ± ◦ . +0.000 10 vector coordinates 0 288 5 and 0 66 5 . Ceres sidereal period is measured to be 9 074 10−0.000 14 h. We image surface features with diameters in the 50–180 km range and an albedo contrast of ∼6% with respect to the average Ceres albedo.
    [Show full text]
  • Precise Astrometry and Diameters of Asteroids from Occultations – a Data-Set of Observations and Their Interpretation
    MNRAS 000,1–22 (2020) Preprint 14 October 2020 Compiled using MNRAS LATEX style file v3.0 Precise astrometry and diameters of asteroids from occultations – a data-set of observations and their interpretation David Herald 1¢, David Gault2, Robert Anderson3, David Dunham4, Eric Frappa5, Tsutomu Hayamizu6, Steve Kerr7, Kazuhisa Miyashita8, John Moore9, Hristo Pavlov10, Steve Preston11, John Talbot12, Brad Timerson (deceased)13 1Trans Tasman Occultation Alliance, [email protected] 2Trans Tasman Occultation Alliance, [email protected] 3International Occultation Timing Association, [email protected] 4International Occultation Timing Association, [email protected] 5Euraster, [email protected] 6Japanese Occultation Information Network, [email protected] 7Trans Tasman Occultation Alliance, [email protected] 8Japanese Occultation Information Network, [email protected] 9International Occultation Timing Association, [email protected] 10International Occultation Timing Association – European Section, [email protected] 11International Occultation Timing Association, [email protected] 12Trans Tasman Occultation Alliance, [email protected] 13International Occultation Timing Association, deceased Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Occultations of stars by asteroids have been observed since 1961, increasing from a very small number to now over 500 annually. We have created and regularly maintain a growing data-set of more than 5,000 observed asteroidal occultations. The data-set includes: the raw observations; astrometry at the 1 mas level based on centre of mass or figure (not illumination); where possible the asteroid’s diameter to 5 km or better, and fits to shape models; the separation and diameters of asteroidal satellites; and double star discoveries with typical separations being in the tens of mas or less.
    [Show full text]
  • Dwarf Planet Ceres: Ellipsoid Dimensions and Rotational Pole from Keck and VLT Adaptive Optics Images Q ⇑ J.D
    Icarus 236 (2014) 28–37 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Dwarf planet Ceres: Ellipsoid dimensions and rotational pole from Keck and VLT adaptive optics images q ⇑ J.D. Drummond a, , B. Carry b, W.J. Merline c, C. Dumas d, H. Hammel e, S. Erard f, A. Conrad g, P. Tamblyn c, C.R. Chapman c a Starfire Optical Range, Directed Energy Directorate, Air Force Research Laboratory, Kirtland AFB, NM 87117-577, USA b IMCCE, Observatoire de Paris, CNRS, 77 av. Denfert Rochereau, 75014 Paris, France c Southwest Research Institute, 1050 Walnut St. # 300, Boulder, CO 80302, USA d ESO, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago de Chile, Chile e AURA, 1200 New York Ave. NW, Suite 350, Washington, DC 20005, USA f LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot, 5 place Jules Janssen, 92195 Meudon, France g Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg, Germany article info abstract Article history: The dwarf planet (1) Ceres, the largest object between Mars and Jupiter, is the target of the NASA Dawn Received 7 December 2013 mission, and we seek a comprehensive description of the spin-axis orientation and dimensions of Ceres in Revised 13 March 2014 order to support the early science operations at the rendezvous in 2015. We have obtained high-angular Accepted 14 March 2014 resolution images using adaptive optics cameras at the W.M. Keck Observatory and the ESO VLT over ten Available online 5 April 2014 dates between 2001 and 2010, confirming that the shape of Ceres is well described by an oblate spheroid.
    [Show full text]
  • The Taiwan-America Occultation Survey for Kuiper Belt Objects Sun
    Small-Telescope Astronomy on Global Scales ASP Conference Series, Vol. 246, 2001 W.P. Chen, C. Lemme, B. Paczyriski The Taiwan-America Occultation Survey for Kuiper Belt Objects Sun-Kun King1 Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 1-87, Nankang, Taipei, Taiwan 115, R.O.C. Abstract. The purpose of the TAOS project is to directly measure the number of Kuiper Belt Objects (KBOs) down to the typical size of come- tary nuclei (a few km). In contrast to the direct detection of reflected light from a KBO by a large telescope where its brightness falls off roughly as the fourth power of its distance to the sun, an occultation survey relies on the light from the background stars thus is much less sensitive to that distance. The probability of such occultation events is so low that we will need to conduct 100 billion measurements per year in order to detect the ten to four thousand occultation events expected. Three small (20 inch), fast (f/1.9), wide-field (3 square degrees) robotic telescopes, equipped with a 2,048 x 2,048 CCD camera, are being deployed in central Taiwan. They will automatically monitor 3,000 stars every clear night for several years and operate in a coincidence mode so that the sequence and timing of a possible occultation event can be distinguished from false alarms. More telescopes on a north-south baseline so as to measure the size of an occultating KBO may be later added into the telescope array. We also anticipate a lot of byproducts on stellar astronomy based on the large amount (10,000 giga-bytes/year) of photometry data to be generated by TAOS.
    [Show full text]
  • Shallow Ultraviolet Transits of WD 1145+017
    Shallow Ultraviolet Transits of WD 1145+017 Item Type Article Authors Xu, Siyi; Hallakoun, Na’ama; Gary, Bruce; Dalba, Paul A.; Debes, John; Dufour, Patrick; Fortin-Archambault, Maude; Fukui, Akihiko; Jura, Michael A.; Klein, Beth; Kusakabe, Nobuhiko; Muirhead, Philip S.; Narita, Norio; Steele, Amy; Su, Kate Y. L.; Vanderburg, Andrew; Watanabe, Noriharu; Zhan, Zhuchang; Zuckerman, Ben Citation Siyi Xu et al 2019 AJ 157 255 DOI 10.3847/1538-3881/ab1b36 Publisher IOP PUBLISHING LTD Journal ASTRONOMICAL JOURNAL Rights Copyright © 2019. The American Astronomical Society. All rights reserved. Download date 09/10/2021 04:17:12 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/634682 The Astronomical Journal, 157:255 (12pp), 2019 June https://doi.org/10.3847/1538-3881/ab1b36 © 2019. The American Astronomical Society. All rights reserved. Shallow Ultraviolet Transits of WD 1145+017 Siyi Xu (许偲艺)1 ,Na’ama Hallakoun2 , Bruce Gary3 , Paul A. Dalba4 , John Debes5 , Patrick Dufour6, Maude Fortin-Archambault6, Akihiko Fukui7,8 , Michael A. Jura9,21, Beth Klein9 , Nobuhiko Kusakabe10, Philip S. Muirhead11 , Norio Narita (成田憲保)8,10,12,13,14 , Amy Steele15, Kate Y. L. Su16 , Andrew Vanderburg17 , Noriharu Watanabe18,19, Zhuchang Zhan (詹筑畅)20 , and Ben Zuckerman9 1 Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720, USA; [email protected] 2 School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 6997801, Israel 3 Hereford Arizona Observatory, Hereford, AZ 85615, USA
    [Show full text]
  • STAR OCCULTATION MEASUREMENTS \, Lrd
    ') STAR OCCULTATION MEASUREMENTS \, Lrd. AS AN AID TO NAVIGATION IN ~ *·~J C IS-LUNAR SPACE by ROY VINCENT KEENAN S.B., University of Nebraska (1957) JOHN DONALD REGENHARDT S.B., United States Naval Academy (1957) SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June, 1962 Signature of Authors iptlrtment of eronautics and Astronautics, June 1961 Certified by_ Thesis Supei- e. Accepted by Chairman, Departmental Graduate Committee dTisd- f - a-proed , or iru- • c ... " '. .. : .. '' " S c ,.. ;i*f,· 7, r- " ' '" II G i ii STAR OCCULTATION MEASUREMENTS AS AN AID TO NAVIGATION IN CIS-LUNAR SPACE by Roy V. Keenan John D. Regenhardt Submitted to the Department of Aeronautics and Astronautics on May 19, 1962 in partial fulfillment of the requirements for the degree of Master of Science. ABSTRACT The time measurement of star occultations is one of several modes of obtaining navigation data in cis-lunar space. Using statistical methods of optimization of data, the feasibility of navigation using the measurement of star occultations as a method in itself and in combination with angle measure- ments is investigated using digital computation techniques. The real star field is approximated by a statistical star back- ground for the purpose of this study. An "average occultation frequency" is calculated based on a reference trajectory and the statistical star background. The occurrence or non- occurrence of occultations along the trajectory is determined by a random number operation which utilizes the "average occultation frequency". The measurements obtained are introduced into a navigation routine which simulates the circumlunar voyage.
    [Show full text]