Wild Edible Flowering Plants of the Illam Hills (Eastern Nepal) and Their Mode of Use by the Local Community

Total Page:16

File Type:pdf, Size:1020Kb

Wild Edible Flowering Plants of the Illam Hills (Eastern Nepal) and Their Mode of Use by the Local Community Korean J. Pl. Taxon. (2010) Vol. 40 No. 1, pp. 74-77 Wild edible flowering plants of the Illam Hills (Eastern Nepal) and their mode of use by the local community. Amal Kumar Ghimeray1,2, Pankaja Sharma2, Bimal Ghimire2, Kabir Lamsal4, Balkrishna Ghimire4 and Dong Ha Cho2,3* 1Mt. Everest college, Bhaktapur, Kathmandu, Nepal. 2School of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701, South Korea. 3Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Korea. 4Trivuwan University, Botany Department, Kathmandu, Nepal. (Received 2 July 2009 : Accepted 2 March 2010) ABSTRACT: The Illam district, situated in the extreme North Eastern part (Latitude 26.58N and 87.58E Lon- gitude) of Nepal, is a hot spot for floral diversity. The study of wild edible plants of this region was an attempt to highlight the types of wild flowering plants found there and mode of use by the people of the Illam hills. In this respect, a survey of natural resources of some of the representative regions of the district was undertaken and more than 74 major varieties of plant species were found to be used frequently by the people of the hills. The rich diversity occurring in Dioscoriaceae, Moraceae, Rosaceae, Myrtaceae, Poaceae, Urticaceae and Arecaceae pro- vided the wild angiospermic species commonly used by the people of the hills. Keywords: Natural resources, wild edible, flowering plants, Illam hills Nepal is endowed with a wide range of agro-ecological zones, summer between the months of May and September. Due to large variations in climatic and physiographic conditions, which this wide array of climatic zones, the district is a hot spot for have resulted in a rich flora (Olsen, 1998). Forest is the most diversified vegetation. important asset that provides the basic necessities and the second This district is equipped with a wide range of agro-ecological major source of Nepal’s income after agriculture. The country is zones and conditions, and most of the people of Illam inhabit considered rich in genetic resources of plant species. Recently, in rural areas and are farmers. Moreover, these rural people of Bhuju et al. (2007) have reported about 6,666 species of flowering Illam hills are blessed with a deep knowledge concerning the plants in Nepal. According to Chaudhary (1998), Nepal shares use of wild plants which are consumed at times of drought and more than 2% of world’s flowering plants, while its land area other hardship. Elders and other knowledgeable community comprises no more than 0.1%. In case of fruit crops, 45 species members are the key sources of plant lore. As such, wild-food belonging to 37 genera are reported as wild edible fruits by consumption is very common in rural areas of the hill. Wild Kaini (1994). edible plant products consists of a variety of plants of which Illam district is situated on the extreme North Eastern part leafy and tender parts of stalks, fruits, berries, seeds, roots, tubers (Latitude 26.58N and 87.58E Longitude) of Nepal. It is and corns are mainly used for consumption. These plant products surrounded by Sikkim boarder (India) on the North, West Bengal have been used since pre-historic times by the aboriginal people, boarder (India) on the East and on the West and South there are as a food, as well as traditional medicines (Singh, 1968). Panchther and Jhapa districts of Nepal respectively. The district Therefore, forest resources play an important role in the life has a total area of about 1703 sq. km. The climate of Illam of the rural people for their food, medicine, fodder, fuel, etc. generally is of moderate type but during winter it is quite cold The reason to initiate a study on wild-edible plants was to in the Northern side. The maximum summer temperature ranges document indigenous knowledge on wild-foods to identify and between 22−25oC and winter temperature falls below 10oC and understand better the importance of wild-food plants in the some times even drop down to 0oC. Rainfall occurs mostly in livelihood of the rural people of the district. This paper supple- ments the minor details of some of those economically important *Author for correspondence: [email protected] wild edible angiospermic plants of the Illam hills of Nepal. 74 Wild edible flowering plants of Illam Hills (Eastern Nepal) 75 Method with the help of the references of Bajracharya (1980), Hooker (1878), Hara (1966), Kitumura (1955), Kaini (1999), Mall et al. Regular field trips in different areas of Illam hills during the (1982), Manandhar (2002), Shrestha (1984), and Singh (1968). year 2002−2003 were conducted to investigate the wild edible plants used by the rural people. The people of different age Results and Discussion groups were interviewed and investigated. The identification, vernacular names and information regarding their mode of use The study in the district revealed that about 74 varieties of was recorded with the help of village elders. Likewise, local plant species of which leafy and tender parts of stalks, pseudo- market survey also helped to draw data uses, food values, stems, fruits, berries, seeds, roots and tubers are mainly used for demands and preferences. The investigated plants were identified consumption. Table 1 shows the detail of commonly available wild Table 1. List of wild edible flowering plants found in the Illam Hills of Nepal and mode of use. No. Taxon Family Nepali name and habit Edible parts and mode of use 1 Aconogonum molle Polygonaceae Thotney (Tree) Young shoots used for curry and pickle 2 Anthocephalus cadamba Rubiaceae Kadam (Tree) Seed are roasted and the oil is consumed 3 Antidesma acidum Euphorbiaceae Archal (Tree) Ripen fruits are consumed 4 Arisaema erubescens Araceae Gurbe (Herb) Shoots used as curry after pilling and Corn is eaten after repeated boiling 5 Arundinaria maling Poaceae Malingo (Herb) Young shoots used as curry and pickle 6 Atrocarpus lakoocha Moraceae Barar (Tree) Used as a fruit and vegetable (raw fruits) 7 Bassia butyracea Sapotaceae Chiwree (Tree) Fruits pulp is used as juice and seed is used as culinary purpose 8 Bauhinia vahlii Fabaceae Bhorla (Herb) Seeds are roasted and consumed 9 Bauhinia purpurea Caesalpiniaceae Tanki (Tree) Only shoots are used as vegetable curry 10 Begnonia inflata Bignoiaceae Magarkachey (Herb) Shoot and leaves are used to make pickle and jam 11 Betula cylindrostachys Betulaceae Saur (Tree) Bark is chewed as a substitute of betel nut 12 Castanopsis hystrix Fagaceae Katoos (Tree) Fruits (nut) are roasted and consumed 13 Castanopsis indica Fagaceae Dhalnae Katoos (Tree) Fruits (nut) are roasted and consumed 14 Caryota urens Arecaceae Rangbhang (Tree) Inner core pith and terminal bud cooked as vegetable 15 Chenopodium album Chenopodiaceae Bethusaag (Herb) Young twigs are used as vegetable 16 Choerospondias axillaris Anacardiaceae Lapsee (Tree) Semi-ripen fruits are used for pickle and jam 17 Cinnamomum tamala Lauraceae Tejpat (Tree) Leaves are used as condiment 18 Cinnamomum obtusifolium Lauraceae Sinkauli (Tree) Whole plant use as condiments 20 Citrus decumina Rutaceae Sankatra (Shurb) Fruits are used to make jam and pickles 21 Dendrocalamus hamiltonii Poaceae Tama (Herb) Young shoot used as curry and pickle called “Meso” 22 Dioscorea oppostitifolia Dioscoriaceae Gidha (Herb) Tuber is boiled, pilled and consumed 22 Dioscorea hamiltoni Dioscoriaceae Bantarul (Herb) Tuber and root is boiled and eaten after peeling 23 Docynia indica Rosaceae Mail (Tree) Fruits are consumed, made jam and pickle 24 Elaeocarpus sikkimensis Eleocarpaceae Bhadrasey (Tree) Fruits pulp and seeds are eaten 25 Emblica officinalis Euphorbiaceae Amala (Tree) Fruits are used as pickles and also use as a medicine 26 Eugenia kurzii Myrtaceae Ambakay (Tree) Fruits pulps are consumed 27 Ficus semicordata Moraceae Khanyu (Tree) Underground fruits are eaten 28 Ficus hookeriana Moraceae Nebharo (Tree) Fruits thalamus, receptacles are commonly consumed 29 Ficus benghalensis Moraceae Bar (Tree) Young shoots and ripen fruits are eaten 30 Ficus lacor Moraceae Kabra (Tree) Fresh unopened leaf buds are boiled in water and used as pickle 31 Fragaria nubicola Rosaceae Bhui aiselu (Shurb) Fruits (berry) are consumed after ripening 32 Myrica esculenta Myricaceae Kafal (Tree) Ripen fruits are consumed Inflorescence and young leaves are used as vegetable, soup and 33 Girardinia diversifolia Urticaceae Bhangray Sisnu (Herb) medicine in high blood pressure 34 Gynocordia odorata Flacourtiaceae Gante (Tree) Ripen seeds are roasted and oil is extracted for consumption Inflorescence used as pickle and seeds are used as medicine during 35 Heracleum wallichii Umbelliferae Chimphing (Herb) influenza 36 Horsefieldia kingii Myrsticaceae Ramgua (Tree) Fruit are used to make jam and pickle 37 Ilex hookeri Liliaceae Lise (Tree) Ripe fruits are consumed 38 Juglans regia Juglandaceae Okhar (Tree) Fruits (kernel) are consumed 39 Magnifera sylvatica Anacardiaceae Chuchche Aanp (Tree) Ripe fruits are used for sour pickle 40 Mechilus edulis Lauraceae Lapchephal (Tree) Fruits are eaten raw Korean J. Pl. Taxon, Vol. 40, No. 1 76 Amal Kumar Ghimeray, Pankaja Sharma, Bimal Ghimire, Kabir Lamsal, Balkrishna Ghimire and Dong Ha Cho Table 1. Continued. No. Taxon Family Nepali name and habit Edible parts and mode of use 41 Moringa oleifera Moringaceae Sajana (Tree) Flowers and fruits are used to make curry 42 Morus indica Moraceae Kimbu (Tree) Berries are used to make jam, jellies and drinks 43 Musa bulbisiana Musaceae Bankera (Herb) Green fruits used as vegetable
Recommended publications
  • Analysis of Flavonoids in Rubus Erythrocladus and Morus Nigra Leaves Extracts by Liquid Chromatography and Capillary Electrophor
    Revista Brasileira de Farmacognosia 25 (2015) 219–227 www.sbfgnosia.org.br/revista Original Article Analysis of flavonoids in Rubus erythrocladus and Morus nigra leaves extracts by liquid chromatography and capillary electrophoresis a a b c Luciana R. Tallini , Graziele P.R. Pedrazza , Sérgio A. de L. Bordignon , Ana C.O. Costa , d e a,∗ Martin Steppe , Alexandre Fuentefria , José A.S. Zuanazzi a Departamento de Produc¸ ão de Matéria Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil b Centro Universitário La Salle, Canoas, RS, Brazil c Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil d Departamento de Produc¸ ão e Controle de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil e Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil a a b s t r a c t r t i c l e i n f o Article history: This study uses high performance liquid chromatography and capillary electrophoresis as analytical tools Received 15 January 2015 to evaluate flavonoids in hydrolyzed leaves extracts of Rubus erythrocladus Mart., Rosaceae, and Morus Accepted 30 April 2015 nigra L., Moraceae. For phytochemical analysis, the extracts were prepared by acid hydrolysis and ultra- Available online 17 June 2015 sonic bath and analyzed by high performance liquid chromatography using an ultraviolet detector and by capillary electrophoresis equipped with a diode-array detector. Quercetin and kaempferol were iden- Keywords: tified in these extracts. The analytical methods developed were validated and applied.
    [Show full text]
  • Vegetation, Floristic Composition and Species Diversity in a Tropical Mountain Nature Reserve in Southern Yunnan, SW China, with Implications for Conservation
    Mongabay.com Open Access Journal - Tropical Conservation Science Vol.8 (2): 528-546, 2015 Research Article Vegetation, floristic composition and species diversity in a tropical mountain nature reserve in southern Yunnan, SW China, with implications for conservation Hua Zhu*, Chai Yong, Shisun Zhou, Hong Wang and Lichun Yan Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xue-Fu Road 88, Kunming, Yunnan 650223, P. R. China Tel.: 0086-871-65171169; Fax: 0086-871-65160916 *Corresponding author: H. Zhu, e-mail [email protected]; Fax no.: 86-871-5160916 Abstract Complete floristic and vegetation surveys were done in a newly established nature reserve on a tropical mountain in southern Yunnan. Three vegetation types in three altitudinal zones were recognized: a tropical seasonal rain forest below 1,100 m; a lower montane evergreen broad- leaved forest at 1,100-1,600 m; and a montane rain forest above 1,600 m. A total of 1,657 species of seed plants in 758 genera and 146 families were recorded from the nature reserve. Tropical families (61%) and genera (81%) comprise the majority of the flora, and tropical Asian genera make up the highest percentage, showing the close affinity of the flora with the tropical Asian (Indo-Malaysia) flora, despite the high latitude (22N). Floristic changes with altitude are conspicuous. The transition from lowland tropical seasonal rain forest dominated by mixed tropical families to lower montane forest dominated by Fagaceae and Lauraceae occurs at 1,100-1,150 m. Although the middle montane forests above 1,600 m have ‘oak-laurel’ assemblage characteristics, the temperate families Magnoliaceae and Cornaceae become dominant.
    [Show full text]
  • F a C T S H E E T Blackberries
    JEFFERSON COUNTY NOXIOUS WEED CONTROL BOARD F A C T S H E E T BLACKBERRIES Himalayan blackberry (Rubus armeniacus) and evergreen blackberry (Rubus laciniatus) Himalayan blackberry stems (canes) can grow to 9 feet in height but often trail along the ground, growing 20-40 feet long. Thorns grow along the stems as well as on the leaves and leaf stalks. Himalayan blackberries have five distinct leaflets; each leaflet has a toothed margin and is generally oval in shape. Canes start producing berries in their second year. Himalayan blackberry can be evergreen, depending on the site. Rose family. Himalayan blackberry Himalayan blackberry Evergreen blackberry The leaflets of evergreen blackberry are deeply lobed, making it easy to distinguish from WHY BE CONCERNED? Himalayan blackberry. Both Himalayan and evergreen DISTRIBUTION: blackberries form impenetrable Himalayan blackberry is extremely visible in thickets, consisting of both dead and most of Jefferson County, growing along live canes. These thickets out-compete roadsides, over fences and other vegetation, and native vegetation and are a good invading many open areas. Evergreen source of food and shelter for rats. blackberry is more common in the West end of the county, where it has been seen to invade Both Himalayan and evergreen riparian areas. blackberries are Class C Weeds 380 Jefferson Street, Port Townsend WA 98368 (360) 379-5610 Ext. 205 [email protected] http://www.co.jefferson.wa.us/WeedBoard ECOLOGY: . Seeds can be spread by birds, humans and other mammals. The canes often cascade outwards, forming mounds, and can root at the tip when they hit the ground, expanding the infestation .
    [Show full text]
  • Tropical Plant-Animal Interactions: Linking Defaunation with Seed Predation, and Resource- Dependent Co-Occurrence
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2021 TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE- DEPENDENT CO-OCCURRENCE Peter Jeffrey Williams Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Williams, Peter Jeffrey, "TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE" (2021). Graduate Student Theses, Dissertations, & Professional Papers. 11777. https://scholarworks.umt.edu/etd/11777 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE By PETER JEFFREY WILLIAMS B.S., University of Minnesota, Minneapolis, MN, 2014 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology – Ecology and Evolution The University of Montana Missoula, MT May 2021 Approved by: Scott Whittenburg, Graduate School Dean Jedediah F. Brodie, Chair Division of Biological Sciences Wildlife Biology Program John L. Maron Division of Biological Sciences Joshua J. Millspaugh Wildlife Biology Program Kim R. McConkey School of Environmental and Geographical Sciences University of Nottingham Malaysia Williams, Peter, Ph.D., Spring 2021 Biology Tropical plant-animal interactions: linking defaunation with seed predation, and resource- dependent co-occurrence Chairperson: Jedediah F.
    [Show full text]
  • Rubus Idaeus (Raspberry ) Size/Shape
    Rubus idaeus (raspberry ) Raspberry is an upright deciduous shrub.The shrub has thorns be careful. It ha pinatelly compound leaves with a toothed edge. The plant has two different types of shoots ( canes) One which produces fruits in the given year and one which grows leaves only but will be the next year productive shoot. The fruits are small but very juicy. It grows best in full fun and moderately fertile soil. The best to grow raspberry in a raised bed or in area where any frame or trellis can be put around the plants , otherwise it will fall on the ground. Landscape Information French Name: Framboisier, ﻋﻠﻴﻖ ﺃﺣﻤﺮ :Arabic Name Plant Type: Shrub Origin: North America, Europe, Asia Heat Zones: 4, 5, 6, 7, 8 Hardiness Zones: 4, 5, 6, 7, 8 Uses: Screen, Border Plant, Mass Planting, Edible, Wildlife Size/Shape Growth Rate: Fast Tree Shape: Upright Canopy Symmetry: Symmetrical Plant Image Canopy Density: Medium Canopy Texture: Medium Height at Maturity: 1 to 1.5 m Spread at Maturity: 1 to 1.5 meters Time to Ultimate Height: 2 to 5 Years Rubus idaeus (raspberry ) Botanical Description Foliage Leaf Arrangement: Alternate Leaf Venation: Pinnate Leaf Persistance: Deciduous Leaf Type: Odd Pinnately compund Leaf Blade: 5 - 10 cm Leaf Shape: Ovate Leaf Margins: Double Serrate Leaf Textures: Rough Leaf Scent: No Fragance Color(growing season): Green Flower Image Color(changing season): Brown Flower Flower Showiness: True Flower Size Range: 1.5 - 3 Flower Type: Raceme Flower Sexuality: Monoecious (Bisexual) Flower Scent: No Fragance Flower Color:
    [Show full text]
  • Field Report on the Preliminary Feasibility Study
    Field report on the Preliminary Feasibility Study On Walking Trees along Lifezone Ecotones in Barun Valley, Nepal (A pilot project to develop key indicators for monitoring Biomeridians - Climate Response through Information & Local Engagement) Report Prepared By: The East Foundation (TEF), Sankhuwasabha, Nepal and Future Generations University, Franklin, WV, USA Submitted to Department of National Parks and Wildlife Conservation Babar Mahal, Kathmandu June 2018 1 Table of Contents Contents Page No. 1. Background ........................................................................................................................................... 4 2. Rationale ............................................................................................................................................... 5 3. Study Methodology ............................................................................................................................... 6 3.1 Contextual Framework ...................................................................................................................... 7 3.2 Study Area Description ..................................................................................................................... 9 3.3 Experimental Design and Data Collection Methodology ............................................................... 12 4. Study Findings .................................................................................................................................... 13 4.1 Geographic Summary
    [Show full text]
  • Oroxylum Indicum
    Sowjanya K et al /J. Pharm. Sci. & Res. Vol. 11(8), 2019, 2905-2909 Review on Oroxylum Indicum Sowjanya K1, S.swati2, M.manasa3, S. Srilakshmi3, K.mahima3 1 Associate Professor, Department of Pharmaceutical Chemistry, 2 Assistant Professor, Department of Pharmaceutics, 3 Bachelor of Pharmacy, Nirmala College of Pharmacy, Guntur, Andhra Pradesh, India. Abstract: Oroxylum indicum which is also known as midnight horror, “Indian calosanthes” belongs to family bignoneaceae found in Indian subcontinent.Scientific explorations of traditional belief of medicinal properties of Oroxylum indicum have got momentum mostly after the middle 20th century. In the present review, efforts have been made to sum up different aspects of scientific studies on this medicinal plant. It was found that it has great importance in medicinal aspects i.e., possess antimicrobial, antidiabetic, hepato-protective, anti-inflammatory, anti-carcinogenic, immunomodulatory, nephroprotective, anticancer and antimutagenic properties. Keywords: Oroxylum indicum, bignoneaceae, Indian calosanthes. INTRODUCTION: DISTRIBUTION During the past decade, the traditional systems have Oroxylum indicum is native to the Indian subcontinent,in gained importance in the field of medicine. In many the Himalayan foothills with a part extended to Bhutan developing countries, a large proportion of the population and southern China, in Indo-China and the Malaysia relies heavily on traditional practitioners, who are ecozone.It is visible in the forest biome of Manasa dependent on medicinal plants
    [Show full text]
  • Freschet Et Al., 2018), Sometimes Across Different Belowground Entities (Freschet & Roumet, 2017)
    A starting guide to root ecology: strengthening ecological concepts and standardizing root classification, sampling, processing and trait measurements Gregoire Freschet, Loic Pagès, Colleen Iversen, Louise Comas, Boris Rewald, Catherine Roumet, Jitka Klimešová, Marcin Zadworny, Hendrik Poorter, Johannes Postma, et al. To cite this version: Gregoire Freschet, Loic Pagès, Colleen Iversen, Louise Comas, Boris Rewald, et al.. A starting guide to root ecology: strengthening ecological concepts and standardizing root classification, sampling, processing and trait measurements. 2020. hal-02918834 HAL Id: hal-02918834 https://hal.archives-ouvertes.fr/hal-02918834 Preprint submitted on 21 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A starting guide to root ecology: strengthening ecological concepts and standardizing root classification, sampling, processing and trait measurements Grégoire T. Freschet1,2, Loïc Pagès3, Colleen M. Iversen4, Louise H. Comas5, Boris Rewald6, Catherine Roumet1, Jitka Klimešová7, Marcin Zadworny8, Hendrik Poorter9,10, Johannes A. Postma9, Thomas S. Adams11, Agnieszka Bagniewska-Zadworna12, A. Glyn Bengough13,14, Elison B. Blancaflor15, Ivano Brunner16, Johannes H.C. Cornelissen17, Eric Garnier1, Arthur Gessler18,19, Sarah E. Hobbie20, Ina C. Meier21, Liesje Mommer22, Catherine Picon-Cochard23, Laura Rose24, Peter Ryser25, Michael Scherer- Lorenzen26, Nadejda A.
    [Show full text]
  • Vegetation Analysis of Oak Forests of Fambong Lho Wildlife Sanctuary in Sikkim Himalayas
    International Journal of Basic and Applied Biology p-ISSN: 2394-5820, e-ISSN: 2349-5839, Volume 6, Issue 3; July-September, 2019, pp. 192-197 © Krishi Sanskriti Publications http://www.krishisanskriti.org/Publication.html Vegetation analysis of Oak Forests of Fambong lho Wildlife Sanctuary in Sikkim Himalayas Subhankar Gurung1 and Arun Chettri2 1Research Scholar, Department of Botany, Sikkim University 2Assistant Professor, Department of Botany, Sikkim University E-mail: [email protected], [email protected] Abstract—A total of 4683 plants belonging to 62 families, 92 genera were enumerated from the study site. The topmost canopy was formed by Quercus lineata, Lithocarpus pachyphyllus, Quercus lamellosa, Castanopsis tribuloides while the second layer was formed by Symplocos lucida, Caruga pinnata. The highest adult tree species were recorded of Elaeocarpus sikkimensis (119 ind/ha) followed by Daphne sp. (56 ind/ha) and Eurya acuminata (46 ind/ha). The IVI for adult tree were highest of Elaeocarpus sikkimensis (19.4) followed by Eurya acuminata was highest for herbs (1.66), trees (1.54) and shrubs (1.19). Raunkiaer’s life (׳and Castanopsis hystrix (13.1). The species diversity (H (17.1) form assessment showed phanerophytes as the largest life forms (44.85%) followed by Chamaephytes (32.35%) and Geophytes (14.70%) indicating the prevalence of a phanerophytic phytoclimate in Fambong lho wildlife sanctuary (WS). The poor regeneration of oak as compared to Eurya acuminata (50.9 ind/ha), Symplocos lucida (30.9 ind/ha) indicates a high chances of change in species compositon and vegetation structure in the future. 1. Introduction Sikkim is a small state in the north-eastern part of India which is a repository of rich floral and faunal diversity [16].
    [Show full text]
  • Medicinal Plant Research
    Journal of Medicinal Plant Research Volume 8 Number 2, 10 January, 2014 ISSN 2009-9723 ABOUT JMPR The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals. The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytomedicine etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peerreviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font). Submission of Manuscript Submit manuscripts as e-mail attachment to the Editorial Office at: [email protected]. A manuscript number will be mailed to the corresponding author shortly after submission. The Journal of Medicinal Plant Research will only accept manuscripts submitted as e-mail attachments. Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author. Editors Prof. Akah Peter Achunike Prof. Parveen Bansal Editor-in-chief Department of Biochemistry Department of Pharmacology & Toxicology Postgraduate Institute of Medical Education and University of Nigeria, Nsukka Research Nigeria Chandigarh India. Associate Editors Dr. Ravichandran Veerasamy AIMST University Dr. Ugur Cakilcioglu Faculty of Pharmacy, AIMST University, Semeling - Elazıg Directorate of National Education 08100, Turkey. Kedah, Malaysia. Dr. Jianxin Chen Dr. Sayeed Ahmad Information Center, Herbal Medicine Laboratory, Department of Beijing University of Chinese Medicine, Pharmacognosy and Phytochemistry, Beijing, China Faculty of Pharmacy, Jamia Hamdard (Hamdard 100029, University), Hamdard Nagar, New Delhi, 110062, China.
    [Show full text]
  • Agrosilvopastoral Systems in Northern Thailand and Northern Laos: Minority Peoples’ Knowledge Versus Government Policy
    Land 2014, 3, 414-436; doi:10.3390/land3020414 OPEN ACCESS land ISSN 2073-445X www.mdpi.com/journal/land/ Article Agrosilvopastoral Systems in Northern Thailand and Northern Laos: Minority Peoples’ Knowledge versus Government Policy Chalathon Choocharoen 1, Andreas Neef 2,*, Pornchai Preechapanya 3 and Volker Hoffmann 1 1 Institute for Social Sciences of the Agricultural Sector, Rural Communication and Extension (430a), University of Hohenheim, 70593 Stuttgart, Germany; E-Mails: [email protected] (C.C.); [email protected] (V.H.) 2 Center for Development Studies, School of Social Sciences, Faculty of Arts, University of Auckland, Auckland 1142, New Zealand 3 Queen Sirikit Botanic Garden, Mae Rim, Chiang Mai 50180, Thailand; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +64-9-9233486; Fax: +64-9-3737439. Received: 28 January 2014; in revised form: 2 May 2014 / Accepted: 13 May 2014 / Published: 20 May 2014 Abstract: Traditional agrosilvopastoral systems have been an important component of the farming systems and livelihoods of thousands of ethnic minority people in the uplands of Mainland Southeast Asia. Drawing on a combination of qualitative and participatory inquiries in nine ethnic minority communities, this study emphasizes the complex articulation of local farmers’ knowledge which has been so far excluded from governmental development and conservation policies in the northern uplands of Thailand and Laos. Qualitative analysis of local knowledge systems is performed using the Agroecological Knowledge Toolkit (AKT5) software. Results show that ethnic minorities in the two countries perceive large ruminants to be a highly positive component of local forest agro-ecosystems due to their contribution to nutrient cycling, forest fire control, water retention, and leaf-litter dispersal.
    [Show full text]
  • Inner Page Final 2071.12.14.Indd
    J. Nat. Hist. Mus. Vol. 28, 2014, 127-136 WILD EDIBLE FRUITS OF PALPA DISTRICT, WEST NEPAL RAS BIHARI MAHATO Department of Botany, R. R. Multiple campus Janakpur, Nepal [email protected] ABSTRACT This paper documents the wild edible fruits of tropical and subtropical forest of Palpa District, West Nepal. Thirty-seven plant species under 17 families and 27 genera were identifi ed as wild edible fruit. Over 86% percent of them were trees and shrubs (32 species), 11% herbs (4 species) and the remaining 3% (1 species) woody climbers. Moraceae (9 species), Rosaceae (7 species), Anacardiaceae, Berberidaceae, Combretaceae, Fabaceae, Solanaceae and Rutaceae (2 species each) were the most common families constituting about 75.7% of edible plants. The remaining 24.3% (9 species) of edible plants were distributed among 9 families and 9 genera. A considerable number of wild fruits are sold in market. These are Aegle marmelos, Artocarpus integra, Artocarpus lakoocha, Choerospondias axillaris, Myrica esculenta, Phoenix humilis, Phyllanthus emblica, Prunus persica, Pyracantha crenulata,Tamarindus indica, Terminalia bellirica, Terminalia chebula, Zanthoxylum armatum and Zizyphus mauritiana. Medicinal uses of some major economically important fruits are also documented. Keywords: tropical, subtropical forest, medicinal uses, wild fruits, sweet nuggets INTRODUCTION Wild edible fruits play an important role in the economy of rural people especially living in the hilly region by providing them food and also in generating side income. They collect the wild edible fruits from forest and sold in market regularly. The rural people have better knowledge of wild edible fruits as they visit the forest regularly and have constant association and dependence on these forests and its products for their livelihood.
    [Show full text]