A Review on Toxic and Harmful Algae in Greek Coastal Waters (E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae -
Development of a Quantitative PCR Assay for the Detection And
bioRxiv preprint doi: https://doi.org/10.1101/544247; this version posted February 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Development of a quantitative PCR assay for the detection and enumeration of a potentially ciguatoxin-producing dinoflagellate, Gambierdiscus lapillus (Gonyaulacales, Dinophyceae). Key words:Ciguatera fish poisoning, Gambierdiscus lapillus, Quantitative PCR assay, Great Barrier Reef Kretzschmar, A.L.1,2, Verma, A.1, Kohli, G.S.1,3, Murray, S.A.1 1Climate Change Cluster (C3), University of Technology Sydney, Ultimo, 2007 NSW, Australia 2ithree institute (i3), University of Technology Sydney, Ultimo, 2007 NSW, Australia, [email protected] 3Alfred Wegener-Institut Helmholtz-Zentrum fr Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany Abstract Ciguatera fish poisoning is an illness contracted through the ingestion of seafood containing ciguatoxins. It is prevalent in tropical regions worldwide, including in Australia. Ciguatoxins are produced by some species of Gambierdiscus. Therefore, screening of Gambierdiscus species identification through quantitative PCR (qPCR), along with the determination of species toxicity, can be useful in monitoring potential ciguatera risk in these regions. In Australia, the identity, distribution and abundance of ciguatoxin producing Gambierdiscus spp. is largely unknown. In this study we developed a rapid qPCR assay to quantify the presence and abundance of Gambierdiscus lapillus, a likely ciguatoxic species. We assessed the specificity and efficiency of the qPCR assay. The assay was tested on 25 environmental samples from the Heron Island reef in the southern Great Barrier Reef, a ciguatera endemic region, in triplicate to determine the presence and patchiness of these species across samples from Chnoospora sp., Padina sp. -
Metagenomic Characterization of Unicellular Eukaryotes in the Urban Thessaloniki Bay
Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay George Tsipas SCHOOL OF ECONOMICS, BUSINESS ADMINISTRATION & LEGAL STUDIES A thesis submitted for the degree of Master of Science (MSc) in Bioeconomy Law, Regulation and Management May, 2019 Thessaloniki – Greece George Tsipas ’’Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay’’ Student Name: George Tsipas SID: 268186037282 Supervisor: Prof. Dr. Savvas Genitsaris I hereby declare that the work submitted is mine and that where I have made use of another’s work, I have attributed the source(s) according to the Regulations set in the Student’s Handbook. May, 2019 Thessaloniki - Greece Page 2 of 63 George Tsipas ’’Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay’’ 1. Abstract The present research investigates through metagenomics sequencing the unicellular protistan communities in Thermaikos Gulf. This research analyzes the diversity, composition and abundance in this marine environment. Water samples were collected monthly from April 2017 to February 2018 in the port of Thessaloniki (Harbor site, 40o 37’ 55 N, 22o 56’ 09 E). The extraction of DNA was completed as well as the sequencing was performed, before the downstream read processing and the taxonomic classification that was assigned using PR2 database. A total of 1248 Operational Taxonomic Units (OTUs) were detected but only 700 unicellular eukaryotes were analyzed, excluding unclassified OTUs, Metazoa and Streptophyta. In this research-based study the most abundant and diverse taxonomic groups were Dinoflagellata and Protalveolata. Specifically, the most abundant groups of all samples are Dinoflagellata with 190 OTUs (27.70%), Protalveolata with 139 OTUs (20.26%) Ochrophyta with 73 OTUs (10.64%), Cercozoa with 67 OTUs (9.77%) and Ciliophora with 64 OTUs (9.33%). -
Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea
Baltic Sea Environment Proceedings No.106 Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea Helsinki Commission Baltic Marine Environment Protection Commission Baltic Sea Environment Proceedings No. 106 Biovolumes and size-classes of phytoplankton in the Baltic Sea Helsinki Commission Baltic Marine Environment Protection Commission Authors: Irina Olenina, Centre of Marine Research, Taikos str 26, LT-91149, Klaipeda, Lithuania Susanna Hajdu, Dept. of Systems Ecology, Stockholm University, SE-106 91 Stockholm, Sweden Lars Edler, SMHI, Ocean. Services, Nya Varvet 31, SE-426 71 V. Frölunda, Sweden Agneta Andersson, Dept of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden, Umeå Marine Sciences Centre, Umeå University, SE-910 20 Hörnefors, Sweden Norbert Wasmund, Baltic Sea Research Institute, Seestr. 15, D-18119 Warnemünde, Germany Susanne Busch, Baltic Sea Research Institute, Seestr. 15, D-18119 Warnemünde, Germany Jeanette Göbel, Environmental Protection Agency (LANU), Hamburger Chaussee 25, D-24220 Flintbek, Germany Slawomira Gromisz, Sea Fisheries Institute, Kollataja 1, 81-332, Gdynia, Poland Siv Huseby, Umeå Marine Sciences Centre, Umeå University, SE-910 20 Hörnefors, Sweden Maija Huttunen, Finnish Institute of Marine Research, Lyypekinkuja 3A, P.O. Box 33, FIN-00931 Helsinki, Finland Andres Jaanus, Estonian Marine Institute, Mäealuse 10 a, 12618 Tallinn, Estonia Pirkko Kokkonen, Finnish Environment Institute, P.O. Box 140, FIN-00251 Helsinki, Finland Iveta Ledaine, Inst. of Aquatic Ecology, Marine Monitoring Center, University of Latvia, Daugavgrivas str. 8, Latvia Elzbieta Niemkiewicz, Maritime Institute in Gdansk, Laboratory of Ecology, Dlugi Targ 41/42, 80-830, Gdansk, Poland All photographs by Finnish Institute of Marine Research (FIMR) Cover photo: Aphanizomenon flos-aquae For bibliographic purposes this document should be cited to as: Olenina, I., Hajdu, S., Edler, L., Andersson, A., Wasmund, N., Busch, S., Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen, P., Ledaine, I. -
Waterborne Pathogens in Agricultural Watersheds
United States Department of Waterborne Pathogens in Agriculture Natural Resources Agricultural Watersheds Conservation Service Watershed Science by Barry H. Rosen Institute NRCS, Watershed Science Institute School of Natural Resources University of Vermont, Burlington Contents Introduction ..................................................... 1 Pathogens of concern ..................................... 3 Pathogens in the environment .....................22 Control methods............................................ 33 Monitoring and evaluation ........................... 43 Anticipated developments ........................... 47 Summary ........................................................ 48 Glossary .......................................................... 49 References...................................................... 52 With contributions by Richard Croft, Natural Resources Conservation Service (retired) Edward R. Atwill, D.V.M., Ph.D., School of Veterinary Medicine, University of California-Davis, 18830 Road 112, Tulare, California Susan Stehman, V.M.D., Senior Extension Veterinarian, New York State Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, New York Susan Wade, Ph.D., Director Parasitology Laboratory, New York State Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, New York Issued June 2000 The United States Department of Agriculture (USDA) prohibits discrimi- nation in all its programs and activities on the basis of race, color, na- tional origin, gender, -
Symbiodinium Genomes Reveal Adaptive Evolution of Functions Related to Coral-Dinoflagellate Symbiosis
Corrected: Publisher correction ARTICLE DOI: 10.1038/s42003-018-0098-3 OPEN Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis Huanle Liu1, Timothy G. Stephens1, Raúl A. González-Pech1, Victor H. Beltran2, Bruno Lapeyre3,4,12, Pim Bongaerts5,6, Ira Cooke4, Manuel Aranda7, David G. Bourne2,8, Sylvain Forêt3,9, David J. Miller3,4, Madeleine J.H. van Oppen2,10, Christian R. Voolstra7, Mark A. Ragan1 & Cheong Xin Chan1,11 1234567890():,; Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world’s coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp) to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families (containing 5% of Symbiodinium genes) that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identify extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding of Symbiodinium biology and the coral-algal symbiosis. 1 Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia. 2 Australian Institute of Marine Science, Townsville, QLD 4810, Australia. 3 ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia. -
Chapter 6.2-Assessment of Harmful Algae Bloom
Maryland’s Coastal Bays: Ecosystem Health Assessment Chapter 6.2 Chapter 6.2 Assessment of harmful algae bloom species in the Maryland Coastal Bays Catherine Wazniak Maryland Department of Natural Resources, Tidewater Ecosystem Assessment, Annapolis, MD 21401 Abstract Thirteen potentially harmful algae taxa have been identified in the Maryland Coastal Bays: Aureococcus anophagefferens (brown tide), Pfiesteria piscicida and P. shumwayae, Chloromorum/ Chattonella spp., Heterosigma akashiwo, Fibrocapsa japonica, Prorocentrum minimum, Dinophysis spp., Amphidinium spp., Pseudo-nitzchia spp., Karlodinium micrum and two macroalgae genera (Gracilaria, Chaetomorpha). Presence of potentially toxic species is richest in the polluted tributaries of St. Martin River and Newport Bay. Approximately 5% of the phytoplankton species identified for Maryland’s Coastal Bays represent potentially harmful algal bloom (HAB) species. The HABs are recognized for their potentially toxic properties and, in some cases, their ability to produce large blooms negatively affecting light and dissolved oxygen resources. Brown tide (Aureococcus anophagefferens) has been the most widespread and prolific HAB species in the area in recent years, producing growth impacts to juvenile clams in test studies and potential impacts to sea grass distribution and growth (see Chapter 7.1). Macroalgal fluctuations may be evidence of a system balancing on the edge of a eutrophic (nutrient- enriched) state (see chapter 4). No evidence of toxic activity has been detected among the Coastal Bays phytoplankton. However, species such as Pseudo-nitzschia seriata, Prorocentrum minimum, Pfiesteria piscicida, Dinophysis acuminata and Karlodinium micrum have produced positive toxic bioassays or generated detectable toxins in Chesapeake Bay. Pfiesteria piscicida was retrospectively considered as the likely causative organism in a large historical fish kill on the Indian River, Delaware. -
Further Advance of Gambierdiscus Species in the Canary Islands, with the First Report of Gambierdiscus Belizeanus
toxins Article Further Advance of Gambierdiscus Species in the Canary Islands, with the First Report of Gambierdiscus belizeanus Àngels Tudó 1, Greta Gaiani 1, Maria Rey Varela 1 , Takeshi Tsumuraya 2 , Karl B. Andree 1, Margarita Fernández-Tejedor 1 ,Mònica Campàs 1 and Jorge Diogène 1,* 1 Institut de Recerca i Tecnologies Agroalimentàries (IRTA), Ctra. Poble Nou Km 5.5, Sant Carles de la Ràpita, 43540 Tarragona, Spain; [email protected] (À.T.); [email protected] (G.G.); [email protected] (M.R.V.); [email protected] (K.B.A.); [email protected] (M.F.-T.); [email protected] (M.C.) 2 Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan; [email protected] * Correspondence: [email protected] Received: 22 September 2020; Accepted: 27 October 2020; Published: 31 October 2020 Abstract: Ciguatera Poisoning (CP) is a human food-borne poisoning that has been known since ancient times to be found mainly in tropical and subtropical areas, which occurs when fish or very rarely invertebrates contaminated with ciguatoxins (CTXs) are consumed. The genus of marine benthic dinoflagellates Gambierdiscus produces CTX precursors. The presence of Gambierdiscus species in a region is one indicator of CP risk. The Canary Islands (North Eastern Atlantic Ocean) is an area where CP cases have been reported since 2004. In the present study, samplings for Gambierdiscus cells were conducted in this area during 2016 and 2017. Gambierdiscus cells were isolated and identified as G. australes, G. excentricus, G. caribaeus, and G. -
Biosketch CV.Umces
BIOGRAPHICAL SKETCH - DIANE K. STOECKER University of Maryland Center for Environmental Science, Horn Point Laboratory P.O. Box 775 Cambridge, MD 21613-0775 Tel: 410 221-8407 [email protected] Professional Preparation: University of New Hampshire, Botany, BS l969 University of Hawaii, Microbiology, MS l970 State University of New York at Stony Brook, Ecology & Evolution, Ph.D. 1979 Woods Hole Oceanographic Institution, Biological Oceanography, Postdoctoral Scholar l979-l980 Appointments: Professor, University of Maryland Center for Environmental Science 1995-present Associate Professor, Center for Environmental & Estuarine Science, Univ. of Maryland System, 1991-1995 Associate Scientist, Woods Hole Oceanographic Institution, 1984-1991 Assistant Scientist, Woods Hole Oceanographic Institution, l980-1984 Publications –Last three years: Stoecker DK, Long A, Suttles SE, Sanford LP. 2006. Effect of small-scale shear on grazing and growth of the dinoflagellate Pfiesteria piscicida. Harmful Algae 5: 407-418 Stoecker DK, Tillman U, Granéli E. 2006. Chaper 18. Phagotrophic Harmful Algae. Pp. 177-187 in Granéli E and Turner J (eds) Ecology of Harmful Algae, Springer-Verlag, Berlin. Adolf JE, Stoecker DK, Harding LW. 2006. The balance of autotrophy and heterotrophy during mixotrophic growth of Karlodinium micrum (Dinophyceae). J Plankton Res 28: 737-751 Hood, RR, Zhang X, Glibert PM, Roman MR, Stoecker, DK. 2006. Modeling the influence of nutrients, turbulence and grazing on Pfiesteria population dynamics. Harmful Algae 5: 459-479 Johnson MD, Tengs T, Oldach D, Stoecker DK. 2006. Sequestration, performance and functional control of cryptophyte plastids in the ciliate Myrionecta rubra (Ciliophora). J Phycol 42: 1235-1246 Johnson MD, Oldach D, Delwiche CF, Stoecker DK. -
Mixotrophy Among Dinoflagellates1
J Eukaryn Microbiol.. 46(4). 1999 pp. 397-401 0 1999 by the Society of Protozoologists Mixotrophy among Dinoflagellates’ DIANE K. STOECKER University of Maryland Center for Environmentul Science, Horn Point Laboratory, P.O. Box 775, Cambridge, Marylund 21613, USA ABSTRACT. Mixotrophy, used herein for the combination of phototrophy and phagotrophy, is widespread among dinoflagellates. It occurs among most, perhaps all, of the extant orders, including the Prorocentrales, Dinophysiales, Gymnodiniales, Noctilucales, Gon- yaulacales, Peridiniales, Blastodiniales, Phytodiniales, and Dinamoebales. Many cases of mixotrophy among dinoflagellates are probably undocumented. Primarily photosynthetic dinoflagellates with their “own” plastids can often supplement their nutrition by preying on other cells. Some primarily phagotrophic species are photosynthetic due to the presence of kleptochloroplasts or algal endosymbionts. Some parasitic dinoflagellates have plastids and are probably mixotrophic. For most mixotrophic dinoflagellates, the relative importance of photosynthesis, uptake of dissolved inorganic nutrients, and feeding are unknown. However, it is apparent that mixotrophy has different functions in different physiological types of dinoflagellates. Data on the simultaneous regulation of photosynthesis, assimilation of dissolved inorganic and organic nutrients, and phagotophy by environmental parameters (irradiance, availablity of dissolved nutrients, availability of prey) and by life history events are needed in order to understand the diverse -
Morphological Studies of the Dinoflagellate Karenia Papilionacea in Culture
MORPHOLOGICAL STUDIES OF THE DINOFLAGELLATE KARENIA PAPILIONACEA IN CULTURE Michelle R. Stuart A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Biology and Marine Biology University of North Carolina Wilmington 2011 Approved by Advisory Committee Alison R. Taylor Richard M. Dillaman Carmelo R. Tomas Chair Accepted by __________________________ Dean, Graduate School This thesis has been prepared in the style and format consistent with the journal Journal of Phycology ii TABLE OF CONTENTS ABSTRACT ................................................................................................................................... iv ACKNOWLEDGMENTS .............................................................................................................. v DEDICATION ............................................................................................................................... vi LIST OF TABLES ........................................................................................................................ vii LIST OF FIGURES ..................................................................................................................... viii INTRODUCTION .......................................................................................................................... 1 MATERIALS AND METHODS .................................................................................................... 5 RESULTS -
Disease of Aquatic Organisms 80:241
DISEASES OF AQUATIC ORGANISMS Vol. 80: 241–258, 2008 Published August 7 Dis Aquat Org COMBINED AUTHOR AND TITLE INDEX (Volumes 71 to 80, 2006–2008) A (2006) Persistence of Piscirickettsia salmonis and detection of serum antibodies to the bacterium in white seabass Atrac- Aarflot L, see Olsen AB et al. (2006) 72:9–17 toscion nobilis following experimental exposure. 73:131–139 Abreu PC, see Eiras JC et al. (2007) 77:255–258 Arunrut N, see Kiatpathomchai W et al. (2007) 79:183–190 Acevedo C, see Silva-Rubio A et al. (2007) 79:27–35 Arzul I, see Carrasco N et al. (2007) 79:65–73 Adams A, see McGurk C et al. (2006) 73:159–169 Arzul I, see Corbeil S et al. (2006) 71:75–80 Adkison MA, see Arkush KD et al. (2006) 73:131–139 Arzul I, see Corbeil S et al. (2006) 71:81–85 Aeby GS, see Work TM et al. (2007) 78:255–264 Ashton KJ, see Kriger KM et al. (2006) 71:149–154 Aguirre WE, see Félix F et al. (2006) 75:259–264 Ashton KJ, see Kriger KM et al. (2006) 73:257–260 Aguirre-Macedo L, see Gullian-Klanian M et al. (2007) 79: Atkinson SD, see Bartholomew JL et al. (2007) 78:137–146 237–247 Aubard G, see Quillet E et al. (2007) 76:7–16 Aiken HM, see Hayward CJ et al. (2007) 79:57–63 Audemard C, Carnegie RB, Burreson EM (2008) Shellfish tis- Aishima N, see Maeno Y et al. (2006) 71:169–173 sues evaluated for Perkinsus spp.