ARID1A Mutations in Cancer: Another Epigenetic Tumor Suppressor?

Total Page:16

File Type:pdf, Size:1020Kb

ARID1A Mutations in Cancer: Another Epigenetic Tumor Suppressor? Published OnlineFirst December 3, 2012; DOI: 10.1158/2159-8290.CD-12-0361 MINI REVIEW ARID1A Mutations in Cancer: Another Epigenetic Tumor Suppressor? Jennifer N. Wu and Charles W.M. Roberts ABSTRACT Although disordered chromatin organization has long been recognized as a fea- ture of cancer, the molecular underpinnings of chromatin structure, epigenetic regulation, and their relationships to transcription are only beginning to be understood. Cancer genome sequencing studies have revealed a novel theme: frequent mutation of epigenetic regulators. Among these, the ARID1A/BAF250A subunit of the SWI/SNF (BRG1-associated factors) chromatin remod- eling complex has emerged as recurrently mutated in a broad array of tumor types. We review the genomic and functional data supporting classifi cation of ARID1A as a tumor suppressor. Signifi cance: Mutations in chromatin remodeling complex genes are increasingly recognized in many cancer types. However, the mechanisms by which chromatin remodeling complexes contribute to gene expression and the cancer phenotype are poorly understood. Understanding how mutation of chroma- tin remodelers facilitates transformation may offer the potential for development and implementation of novel therapies for cancer. Cancer Discov; 3(1); 35–43. ©2012 AACR. INTRODUCTION risk of developing malignant rhabdoid tumors at an especially young age. Epigenetic regulators impose upon the genetic code a Subsequent to these discoveries, implementation of next- chromatin structure characterized by chromatin accessibil- generation sequencing technologies have revealed frequent ity, nucleosome position, and histone modifi cations. These and recurrent mutations in a wide variety of epigenetic features of chromatin structure modulate gene expres- modulators, including mediators of DNA methylation (e.g., sion, thereby affecting both the identity and function of DNMT3a) and covalent modifi ers of histones (e.g., MLL, MLL3, cells. Sequencing of cancer genomes has revealed frequent KDM5A, KDM5C, KDM6A). Furthermore, genes encoding mutations in epigenetic regulators, particularly chromatin subunits of ATP-dependent chromatin remodelers, especially remodelers and histone modifi ers, and disordered chromatin subunits of the SWI/SNF complex, are frequently mutated in regulation has emerged as a distinct mechanism contributing a broad array of cancer types ( 3 ). to tumor development. Recently, recurrent inactivating mutations in ARID1A have The canonical example of the links between chromatin been identifi ed in a wide variety of cancers, suggesting that remodeling and cancer may well be SMARCB1/SNF5/INI1/ it too functions as a tumor suppressor in many different cell BAF47, a core component of the SWI/SNF chromatin remod- types. Here, we review the spectrum of ARID1A mutations eling complexes, of which ARID1A is also a member. In the late in cancer and what is known about ARID1A structure and 1990s, specifi c biallelic inactivating mutations of SMARCB1 function, as well as discuss potential mechanisms of tumor were identifi ed in the vast majority of rhabdoid tumors, highly suppression and clinical implications. aggressive cancers arising in kidney, brain, and soft tissues in young children ( 1, 2 ). Analogous to retinoblastoma and the Rb gene product, children having germline heterozygous inac- ARID1A MUTATIONS IN CANCER tivation of SMARCB1 are predisposed to cancer, having a high In late 2010, next-generation sequencing revealed that ARID1A mutations are present at high frequency in sub- types of ovarian ( 4, 5 ), endometrial ( 6 ), and uterine cancers Authors’ Affi liation: Department of Pediatric Oncology, Dana-Farber ( 7 ). Ovarian clear-cell carcinomas (OCC) are an uncom- Cancer Institute, Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, mon but aggressive type of ovarian cancer. More than Massachusetts 50% of OCCs carry ARID1A mutations, as do 30% of ovar- Corresponding Author: Charles W.M. Roberts, 450 Brookline Avenue, ian endometrioid carcinomas (refs. 4, 5 ; Table 1 ). These Mayer 657, Boston, MA 02215. Phone: 617-632-2072; Fax: 617-582- mutations are specific to this ovarian cancer subtype, as 8096; E-mail: [email protected] no serous ovarian carcinomas contained ARID1A muta- doi: 10.1158/2159-8290.CD-12-0361 tions. A substantial proportion of uterine endometrioid © 2012 American Association for Cancer Research. carcinomas (29%), uterine clear-cell carcinomas (26%), JANUARY 2013CANCER DISCOVERY | 35 Downloaded from cancerdiscovery.aacrjournals.org on September 30, 2021. © 2013 American Association for Cancer Research. Published OnlineFirst December 3, 2012; DOI: 10.1158/2159-8290.CD-12-0361 MINI REVIEW Wu and Roberts Table 1. Recurrent loss or mutation of ARID1A in primary human cancers ARID1A Decreased Decreased/absent Primary cancers mutation (%) Homozygous (%) transcript (%) protein (%) Reference Ovarian clear-cell 55/119 (46%) 12/55 (22%) N/A 27/37 (73%) 5 carcinoma 24/42 (57%) 11/24 (46%) N/A N/A 4 Gastric cancer 32/109 (29%) 14/32 (44%) N/A 24/32 (75%) 8 9/110 (8%) 2/9 (22%) N/A 6/8 (75%) 9 10/100 (10%) N/A N/A N/A 15 N/A N/A N/A 26/180 (14%) 6 N/A N/A N/A 5/45 (11%) 7 N/A N/A N/A 95/657 (14%) 10 Hepatocellular carcinoma 21/125 (17%) 1/21 (5%) N/A N/A 11 14/110 (13%) N/A N/A N/A 13 12/120 (10%) N/A N/A N/A 12 N/A N/A N/A 0/41 (0%) 4 Breast cancer 90/256 (35%)a 5/90 (6%) Deletions associated with N/A 59 decreased expression 4/114 (4%) N/A N/A N/A 15 11/82 (13%)a 0/11 (0%) N/A 240/376 (64%) 14 N/A N/A 22/40 (55%) 63/112 (56%) 24 N/A N/A N/A 11/315 (3%) 6 N/A N/A N/A 1/91 (1%) 7 N/A N/A 5/50 (10%) N/A 20 Uterine endometrioid N/A N/A N/A 90/309 (29%) 6 carcinoma N/A N/A N/A 15/58 (26%) 7 Uterine clear-cell carcinoma N/A N/A N/A 6/23 (26%) 6 Pancreatic cancer 33/70 (47%)a, 2/24 (8%) N/A N/A 16 tumor + cell lines 10/119 (8%) N/A N/A N/A 15 14/39 (36%) 1/14 (7%) N/A N/A 17 N/A N/A N/A 5/85 (6%) 6 N/A N/A N/A 4/48 (8%) 7 Transitional-cell carcinoma 13/97 (13%) N/A N/A N/A 18 of bladder Waldenström 5/30 (17%) N/A N/A N/A 19 macroglobulinemia Anaplastic thyroid cancer N/A N/A N/A 5/35 (14%) 6 Renal cancer N/A N/A 6/20 (30%) N/A 20 N/A N/A N/A 1/58 (2%) 6 N/A N/A N/A 0/73 (0%) 7 Colon cancer 12/119 (10%) N/A N/A N/A 15 N/A N/A 2/30 (7%) N/A 20 N/A N/A N/A 2/49 (4%) 7 N/A N/A N/A 1/130 (0.8%) 6 Lung cancer 2/36 (6%) N/A N/A N/A 15 N/A N/A 1/21 (5%) N/A 20 N/A N/A N/A 2/52 (4%) 7 N/A N/A N/A 12/523 (2%) 6 Cervical adenocarcinoma N/A N/A N/A 1/11 (9%) 7 Bile duct cancer N/A N/A N/A 2/27 (7%) 7 Prostate cancer 2/23 (8%) N/A N/A N/A 15 Medulloblastoma 3/125 (2%) N/A N/A N/A 15 Abbreviation: N/A, not applicable. aARID1A loss via chromosomal deletion. 36 | CANCER DISCOVERYJANUARY 2013 www.aacrjournals.org Downloaded from cancerdiscovery.aacrjournals.org on September 30, 2021. © 2013 American Association for Cancer Research. Published OnlineFirst December 3, 2012; DOI: 10.1158/2159-8290.CD-12-0361 ARID1A Mutations in Cancer MINI REVIEW Nature of the Somatic Mutations— KEY CONCEPTS A Haploinsuffi cient Effect? The vast majority of cancer-associated mutations in ARID1A • Epigenetic dysregulation is a common characteristic (>97%) were inactivating, with nonsense or frameshift (rather of cancer. than silent or missense) mutations detected throughout the • Inactivating mutations of ARID1A, a member of the gene. However, in only 30% of the OCCs with ARID1A muta- SWI/SNF chromatin-remodeling complex, have been tions were both alleles affected ( 4, 5 ). By IHC, 73% of the identifi ed in a variety of cancers. ARID1A-heterozygous tumors lacked protein expression, as • Mutational and functional data suggest ARID1A is a did 5% of tumors not found to have coding mutations ( 5 ). Sev- bona fi de tumor suppressor. eral mechanisms may be postulated to explain this interesting • ARID1A may contribute to tumor suppression via fi nding—loss of ARID1A protein expression in the setting of effects on the SWI/SNF complex, control of cell pro- heterozygous mutation without loss of heterozygosity. Muta- liferation and differentiation, and/or effects on his- tions affecting ARID1A expression may occur in noncoding tone ubiquitylation. regions of the genome not assayed by exome sequencing tech- niques. Alternatively, epigenetic silencing might contribute. One group has postulated that posttranscriptional and/or posttranslational mechanisms account for loss of ARID1A uterine serous carcinomas (18%), and uterine carcinosarco- protein in OCCs harboring heterozygous mutations, based on mas (14%) also have loss of ARID1A protein (also known as the fi nding that RNA sequencing detects both wild-type and BAF250A) by immunohistochemistry (IHC; ref. 6 ). In addi- mutant alleles in a small number of cases ( 5 ). tion, loss of ARID1A has been shown in patient samples Conversely, 27% of the ARID1A-heterozygous OCCs retain having atypical endometriotic lesions (thought to be pre- detectable protein expression. A similar situation occurs in cursors to OCC development) contiguous to OCC, raising gastric cancer, in which ARID1A mutations were biallelic in the possibility that ARID1A loss may be an early cancer- only 44% of ARID1A-mutant samples.
Recommended publications
  • A Genetic Screening Identifies a Component of the SWI/SNF Complex, Arid1b As a Senescence Regulator
    A genetic screening identifies a component of the SWI/SNF complex, Arid1b as a senescence regulator Sadaf Khan A thesis submitted to Imperial College London for the degree of Doctor in Philosophy MRC Clinical Sciences Centre Imperial College London, School of Medicine July 2013 Statement of originality All experiments included in this thesis were performed by myself unless otherwise stated. Copyright Declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives license. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the license terms of this work. 2 Abstract Senescence is an important tumour suppressor mechanism, which prevents the proliferation of stressed or damaged cells. The use of RNA interference to identify genes with a role in senescence is an important tool in the discovery of novel cancer genes. In this work, a protocol was established for conducting bypass of senescence screenings, using shRNA libraries together with next-generation sequencing. Using this approach, the SWI/SNF subunit Arid1b was identified as a regulator of cellular lifespan in MEFs. SWI/SNF is a large multi-subunit complex that remodels chromatin. Mutations in SWI/SNF proteins are frequently associated with cancer, suggesting that SWI/SNF components are tumour suppressors. Here the role of ARID1B during senescence was investigated. Depletion of ARID1B extends the proliferative capacity of primary mouse and human fibroblasts.
    [Show full text]
  • SMARCB1/INI1 Genetic Inactivation Is Responsible for Tumorigenic Properties of Epithelioid Sarcoma Cell Line VAESBJ
    Published OnlineFirst April 10, 2013; DOI: 10.1158/1535-7163.MCT-13-0005 Molecular Cancer Cancer Therapeutics Insights Therapeutics SMARCB1/INI1 Genetic Inactivation Is Responsible for Tumorigenic Properties of Epithelioid Sarcoma Cell Line VAESBJ Monica Brenca1, Sabrina Rossi3, Erica Lorenzetto1, Elena Piccinin1, Sara Piccinin1, Francesca Maria Rossi2, Alberto Giuliano1, Angelo Paolo Dei Tos3, Roberta Maestro1, and Piergiorgio Modena1 Abstract Epithelioid sarcoma is a rare soft tissue neoplasm that usually arises in the distal extremities of young adults. Epithelioid sarcoma presents a high rate of recurrences and metastases and frequently poses diagnostic dilemmas. We previously reported loss of tumor suppressor SMARCB1 protein expression and SMARCB1 gene deletion in the majority of epithelioid sarcoma cases. Unfortunately, no appropriate preclinical models of such genetic alteration in epithelioid sarcoma are available. In the present report, we identified lack of SMARCB1 protein due to a homozygous deletion of exon 1 and upstream regulatory region in epithelioid sarcoma cell line VAESBJ. Restoration of SMARCB1 expression significantly affected VAESBJ cell proliferation, anchorage-independent growth, and cell migration properties, thus supporting the causative role of SMARCB1 loss in epithelioid sarcoma pathogenesis. We investigated the translational relevance of this genetic back- ground in epithelioid sarcoma and showed that SMARCB1 ectopic expression significantly augmented VAESBJ sensitivity to gamma irradiation and acted synergistically with flavopiridol treatment. In VAESBJ, both activated ERBB1/EGFR and HGFR/MET impinged on AKT and ERK phosphorylation. We showed a synergistic effect of combined inhibition of these 2 receptor tyrosine kinases using selective small-molecule inhibitors on cell proliferation. These observations provide definitive support to the role of SMARCB1 inactivation in the pathogenesis of epithelioid sarcoma and disclose novel clues to therapeutic approaches tailored to SMARCB1-negative epithelioid sarcoma.
    [Show full text]
  • Integrase Interactor 1 (INI-1) Deficient Renal Cell Carcinoma
    Open Access Case Report DOI: 10.7759/cureus.13082 Integrase Interactor 1 (INI-1) Deficient Renal Cell Carcinoma Manpreet Singh 1 , Harkirat Singh 1 , Benjamin Hambro 1 , Jasleen Kaur 1 , Ravi Rao 2 1. Internal Medicine, St Agnes Medical Center, Fresno, USA 2. Hematology and Oncology, St Agnes Medical Center, Fresno, USA Corresponding author: Manpreet Singh, [email protected] Abstract Members of the SWItch/sucrose nonfermentable (SWI-SNF) family, including SWI/SNF related, matrix- associated, actin-dependent regulator of chromatin, subfamily A, member 4 (SMARCA4), SWI/SNF related, matrix‐associated, actin‐dependent regulator of chromatin, subfamily B member 1 (SMARCB1)/integrase interactor 1 (INI-1) are known tumor suppressor genes. Interactions between SMARCB1/INI-1 and key protein components in various cellular pathways are related to tumor progression and proliferation. SMARCB1/INI-1 protein was undetectable in rhabdoid tumor cells, whereas non-tumorous cells express the SMARCB1/INI-1 genes. Germline and sporadic mutations of several genes encoding for proteins in this complex are known to cause a spectrum of cancers, usually with sarcomatoid features which include a very aggressive renal medullary carcinoma. We report a case of a 29-year-old male who presented with SMARCA4 deficient renal tumor with a very aggressive clinical behavior which ultimately led to his death. Categories: Nephrology, Oncology Keywords: renal medullary carcinoma, ini-1, renal cell carcinoma, swi/snf, smarcb1, integrase interactor 1 Introduction Renal medullary carcinoma is a rare and very aggressive malignancy affecting young adults with rare cases in patients with sickle cell disease or trait [1]. The tumor arises predominantly in the renal medulla and exhibits a variety of growth patterns including reticular, solid, tubular, trabecular, cribriform, sarcomatoid, and micropapillary [1].
    [Show full text]
  • ARID1B Is a Specific Vulnerability in ARID1A-Mutant Cancers The
    ARID1B is a specific vulnerability in ARID1A-mutant cancers The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Helming, K. C., X. Wang, B. G. Wilson, F. Vazquez, J. R. Haswell, H. E. Manchester, Y. Kim, et al. 2014. “ARID1B is a specific vulnerability in ARID1A-mutant cancers.” Nature medicine 20 (3): 251-254. doi:10.1038/nm.3480. http://dx.doi.org/10.1038/nm.3480. Published Version doi:10.1038/nm.3480 Accessed February 16, 2015 10:04:32 PM EST Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12987227 Terms of Use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA (Article begins on next page) NIH Public Access Author Manuscript Nat Med. Author manuscript; available in PMC 2014 September 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Nat Med. 2014 March ; 20(3): 251–254. doi:10.1038/nm.3480. ARID1B is a specific vulnerability in ARID1A-mutant cancers Katherine C. Helming1,2,3,4,*, Xiaofeng Wang1,2,3,*, Boris G. Wilson1,2,3, Francisca Vazquez5, Jeffrey R. Haswell1,2,3, Haley E. Manchester1,2,3, Youngha Kim1,2,3, Gregory V. Kryukov5, Mahmoud Ghandi5, Andrew J. Aguirre5,6,7, Zainab Jagani8, Zhong Wang9, Levi A. Garraway6, William C. Hahn6,7, and Charles W.
    [Show full text]
  • Loss of Integrase Interactor 1 (INI1) Expression in a Subset of Differentiated Thyroid Cancer
    diagnostics Article Loss of Integrase Interactor 1 (INI1) Expression in a Subset of Differentiated Thyroid Cancer Kung-Chen Ho 1, Jie-Jen Lee 1, Chi-Hsin Lin 2,3, Ching-Hsiang Leung 4 and Shih-Ping Cheng 1,5,* 1 Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 104215, Taiwan; [email protected] (K.-C.H.); [email protected] (J.-J.L.) 2 Department of Medical Research, MacKay Memorial Hospital, Taipei 104215, Taiwan; [email protected] 3 Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 320314, Taiwan 4 Division of Endocrinology and Metabolism, Department of Internal Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei 104215, Taiwan; [email protected] 5 Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan * Correspondence: [email protected]; Tel.: +886-2-2543-3535 Received: 19 April 2020; Accepted: 2 May 2020; Published: 5 May 2020 Abstract: Alterations in the switching defective/sucrose non-fermenting (SWI/SNF) chromatin-remodeling complex are enriched in advanced thyroid cancer. Integrase interactor 1 (INI1), encoded by the SMARCB1 gene on the long arm of chromosome 22, is one of the core subunits of the SWI/SNF complex. INI1 immunohistochemistry is frequently used for the diagnosis of malignant rhabdoid neoplasms. In the present study, we found normal and benign thyroid tissues generally had diffusely intense nuclear immunostaining. Loss of INI1 immunohistochemical expression was observed in 8% of papillary thyroid cancer and 30% of follicular thyroid cancer. Furthermore, loss of INI1 expression was associated with extrathyroidal extension (p < 0.001) and lymph node metastasis (p = 0.038).
    [Show full text]
  • Renal Medullary Carcinomas Depend Upon SMARCB1 Loss And
    RESEARCH ARTICLE Renal medullary carcinomas depend upon SMARCB1 loss and are sensitive to proteasome inhibition Andrew L Hong1,2,3, Yuen-Yi Tseng3, Jeremiah A Wala3, Won-Jun Kim2, Bryan D Kynnap2, Mihir B Doshi3, Guillaume Kugener3, Gabriel J Sandoval2,3, Thomas P Howard2, Ji Li2, Xiaoping Yang3, Michelle Tillgren2, Mahmhoud Ghandi3, Abeer Sayeed3, Rebecca Deasy3, Abigail Ward1,2, Brian McSteen4, Katherine M Labella2, Paula Keskula3, Adam Tracy3, Cora Connor5, Catherine M Clinton1,2, Alanna J Church1, Brian D Crompton1,2,3, Katherine A Janeway1,2, Barbara Van Hare4, David Sandak4, Ole Gjoerup2, Pratiti Bandopadhayay1,2,3, Paul A Clemons3, Stuart L Schreiber3, David E Root3, Prafulla C Gokhale2, Susan N Chi1,2, Elizabeth A Mullen1,2, Charles WM Roberts6, Cigall Kadoch2,3, Rameen Beroukhim2,3,7, Keith L Ligon2,3,7, Jesse S Boehm3, William C Hahn2,3,7* 1Boston Children’s Hospital, Boston, United States; 2Dana-Farber Cancer Institute, Boston, United States; 3Broad Institute of Harvard and MIT, Cambridge, United States; 4Rare Cancer Research Foundation, Durham, United States; 5RMC Support, North Charleston, United States; 6St. Jude Children’s Research Hospital, Memphis, United States; 7Brigham and Women’s Hospital, Boston, United States Abstract Renal medullary carcinoma (RMC) is a rare and deadly kidney cancer in patients of African descent with sickle cell trait. We have developed faithful patient-derived RMC models and using whole-genome sequencing, we identified loss-of-function intronic fusion events in one SMARCB1 allele with concurrent loss of the other allele. Biochemical and functional characterization of these models revealed that RMC requires the loss of SMARCB1 for survival.
    [Show full text]
  • The Genetic Basis of Hepatosplenic T-Cell Lymphoma
    Published OnlineFirst January 25, 2017; DOI: 10.1158/2159-8290.CD-16-0330 RESEARCH BRIEF The Genetic Basis of Hepatosplenic T-cell Lymphoma Matthew McKinney 1 , Andrea B. Moffi tt 2 , Philippe Gaulard 3 , Marion Travert 3 , Laurence De Leval4 , Alina Nicolae 5 , Mark Raffeld 5 , Elaine S. Jaffe 5 , Stefania Pittaluga 5 , Liqiang Xi 5 , Tayla Heavican 6 , Javeed Iqbal 6 , Karim Belhadj 3 , Marie Helene Delfau-Larue 3 , Virginie Fataccioli 3 , Magdalena B. Czader7 , Izidore S. Lossos 8 , Jennifer R. Chapman-Fredricks 8 , Kristy L. Richards 9 , Yuri Fedoriw 9 , Sarah L. Ondrejka10 , Eric D. Hsi 10 , Lawrence Low 11 , Dennis Weisenburger 11 , Wing C. Chan 11 , Neha Mehta-Shah12 , Steven Horwitz 12 , Leon Bernal-Mizrachi 13 , Christopher R. Flowers 13 , Anne W. Beaven 1 , Mayur Parihar 14 , Lucile Baseggio 15 , Marie Parrens 16 , Anne Moreau 17 , Pierre Sujobert 18 , Monika Pilichowska 19 , Andrew M. Evens 19 , Amy Chadburn 20 , Rex K.H. Au-Yeung 21 , Gopesh Srivastava 21 , William W. L. Choi 21 , John R. Goodlad 22 , Igor Aurer 23 , Sandra Basic-Kinda 23 , Randy D. Gascoyne 24 , Nicholas S. Davis 1 , Guojie Li 1 , Jenny Zhang 1 , Deepthi Rajagopalan 1 , Anupama Reddy 1 , Cassandra Love 1 , Shawn Levy 25 , Yuan Zhuang 1 , Jyotishka Datta 26 , David B. Dunson 26 , and Sandeep S. Davé 1 , 2 ABSTRACT Hepatosplenic T-cell lymphoma (HSTL) is a rare and lethal lymphoma; the genetic drivers of this disease are unknown. Through whole-exome sequencing of 68 HSTLs, we defi ne recurrently mutated driver genes and copy-number alterations in the disease.
    [Show full text]
  • MECHANISMS in ENDOCRINOLOGY: Novel Genetic Causes of Short Stature
    J M Wit and others Genetics of short stature 174:4 R145–R173 Review MECHANISMS IN ENDOCRINOLOGY Novel genetic causes of short stature 1 1 2 2 Jan M Wit , Wilma Oostdijk , Monique Losekoot , Hermine A van Duyvenvoorde , Correspondence Claudia A L Ruivenkamp2 and Sarina G Kant2 should be addressed to J M Wit Departments of 1Paediatrics and 2Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Email The Netherlands [email protected] Abstract The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFkB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature.
    [Show full text]
  • 1714 Gene Comprehensive Cancer Panel Enriched for Clinically Actionable Genes with Additional Biologically Relevant Genes 400-500X Average Coverage on Tumor
    xO GENE PANEL 1714 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes 400-500x average coverage on tumor Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11 IL6R KAT5 ACVR2A
    [Show full text]
  • ARID1A Protein Expression Is Retained in Ovarian Endometriosis
    www.nature.com/scientificreports OPEN ARID1A protein expression is retained in ovarian endometriosis with ARID1A loss‑of‑function mutations: implication for the two‑hit hypothesis Nozomi Yachida1, Kosuke Yoshihara1*, Kazuaki Suda1, Hirofumi Nakaoka2,3, Haruka Ueda1, Kentaro Sugino1, Manako Yamaguchi1, Yutaro Mori1, Kaoru Yamawaki1, Ryo Tamura1, Tatsuya Ishiguro1, Masanori Isobe1, Teiichi Motoyama4, Ituro Inoue2 & Takayuki Enomoto1 ARID1A loss‑of‑function mutation accompanied by a loss of ARID1A protein expression is considered one of the most important driver events in endometriosis‑associated ovarian cancer. Although our recent genomic study clarifed that ARID1A loss‑of‑function mutations were detected in 13% of ovarian endometriosis, an association between the ARID1A mutation status and ARID1A protein expression in ovarian endometriosis remains unclear. We performed immunohistochemical staining for ARID1A in 78 ovarian endometriosis samples and 99 clear cell carcinoma samples. We revealed that not only 70 endometriosis samples without ARID1A mutations but also eight endometriosis samples with ARID1A loss‑of‑function mutations retained ARID1A protein expression. On the other hand, most of clear cell carcinomas with ARID1A loss‑of‑function mutations showed a loss of ARID1A protein expression. In particular, clear cell carcinoma samples which harbor multiple ARID1A loss‑of‑ function mutations or both a single ARID1A loss‑of‑function mutation and ARID1A allelic imbalance lost ARID1A protein expression. However, ARID1A protein expression was retained in seven clear cell carcinomas with ARID1A loss‑of‑function mutations. These results suggest that a single ARID1A loss‑of‑function mutation is insufcient for ARID1A loss in ovarian endometriosis and some clear cell carcinoma. Further driver events may be needed for the malignant transformation of ovarian endometriosis with ARID1A loss‑of‑function mutations.
    [Show full text]
  • Chromatin Accessibility Underlies Synthetic Lethality of SWI/SNF
    RESEARCH ARTICLE Chromatin accessibility underlies synthetic lethality of SWI/SNF subunits in ARID1A-mutant cancers Timothy W R Kelso1, Devin K Porter1, Maria Luisa Amaral2, Maxim N Shokhirev2, Christopher Benner3, Diana C Hargreaves1* 1Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, California, United States; 2The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, Salk Institute for Biological Studies, California, United States; 3Department of Medicine, University of California San Diego, California, United States Abstract ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is frequently mutated in cancer. Deficiency in its homolog ARID1B is synthetically lethal with ARID1A mutation. However, the functional relationship between these homologs has not been explored. Here, we use ATAC-seq, genome-wide histone modification mapping, and expression analysis to examine colorectal cancer cells lacking one or both ARID proteins. We find that ARID1A has a dominant role in maintaining chromatin accessibility at enhancers, while the contribution of ARID1B is evident only in the context of ARID1A mutation. Changes in accessibility are predictive of changes in expression and correlate with loss of H3K4me and H3K27ac marks, nucleosome spacing, and transcription factor binding, particularly at growth pathway genes including MET. We find that ARID1B knockdown in ARID1A mutant ovarian cancer cells causes similar loss of enhancer architecture, suggesting that this is a conserved function underlying the synthetic lethality between ARID1A and ARID1B. DOI: https://doi.org/10.7554/eLife.30506.001 *For correspondence: [email protected] Competing interests: The Introduction authors declare that no Mutations in ARID1A have recently been identified in diverse cancer types, including ovarian, endo- competing interests exist.
    [Show full text]
  • Avian Binocularity and Adaptation to Nocturnal Environments: Genomic Insights Froma Highly Derived Visual Phenotype Rui Borges Universidade Do Porto - Portugal
    Nova Southeastern University NSUWorks Biology Faculty Articles Department of Biological Sciences 8-22-2019 Avian Binocularity and Adaptation to Nocturnal Environments: Genomic Insights froma Highly Derived Visual Phenotype Rui Borges Universidade do Porto - Portugal Joao Fonseca Universidade do Porto - Portugal Cidalia Gomes Universidade do Porto - Portugal Warren E. Johnson Smithsonian Institution Stephen James O'Brien St. Petersburg State University - Russia; Nova Southeastern University, [email protected] See next page for additional authors Follow this and additional works at: https://nsuworks.nova.edu/cnso_bio_facarticles Part of the Biology Commons NSUWorks Citation Borges, Rui; Joao Fonseca; Cidalia Gomes; Warren E. Johnson; Stephen James O'Brien; Guojie Zhang; M. Thomas P. Gilbert; Erich D. Jarvis; and Agostinho Antunes. 2019. "Avian Binocularity and Adaptation to Nocturnal Environments: Genomic Insights froma Highly Derived Visual Phenotype." Genome Biology and Evolution 11, (8): 2244-2255. doi:10.1093/gbe/evz111. This Article is brought to you for free and open access by the Department of Biological Sciences at NSUWorks. It has been accepted for inclusion in Biology Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Authors Rui Borges, Joao Fonseca, Cidalia Gomes, Warren E. Johnson, Stephen James O'Brien, Guojie Zhang, M. Thomas P. Gilbert, Erich D. Jarvis, and Agostinho Antunes This article is available at NSUWorks: https://nsuworks.nova.edu/cnso_bio_facarticles/982 GBE Avian Binocularity and Adaptation to Nocturnal Environments: Genomic Insights from a Highly Derived Visual Downloaded from https://academic.oup.com/gbe/article-abstract/11/8/2244/5544263 by Nova Southeastern University/HPD Library user on 16 September 2019 Phenotype Rui Borges1,2,Joao~ Fonseca1,Cidalia Gomes1, Warren E.
    [Show full text]