An Experimental Ethics Approach to Robot Ethics Education

Total Page:16

File Type:pdf, Size:1020Kb

An Experimental Ethics Approach to Robot Ethics Education The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-20) An Experimental Ethics Approach to Robot Ethics Education Tom Williams Qin Zhu Daniel Grollman Colorado School of Mines Colorado School of Mines Plus One Robotics Golden, CO 80402 Golden, CO 80402 Boulder, CO 80301 Abstract those concepts to analyze applications of AI and Robotics. But moreover, such courses may also cover computational We propose an experimental ethics-based curricular module approaches to moral decision making; psychological theo- for an undergraduate course on Robot Ethics. The proposed module aims to teach students how human subjects research ries of moral decision making and blame; and methods for methods can be used to investigate potential ethical concerns experimentally investigating ethical issues. This requires in- arising in human-robot interaction, by engaging those stu- structors with broad interdisciplinary backgrounds, and ped- dents in real experimental ethics research. In this paper we agogical methods that draw on these disparate disciplines. describe the proposed curricular module, describe our imple- In this work, we explore pedagogical techniques aimed at mentation of that module within a Robot Ethics course of- improving students achievement of learning objectives that fered at a medium-sized engineering university, and statis- sit at this confluence of disciplines. Specifically, we present tically evaluate the effectiveness of the proposed curricular and analyze the efficacy of a Robot Ethics course module in module in achieving desired learning objectives. While our results do not provide clear evidence of a quantifiable ben- which students participate as experimenters in experimen- efit to undergraduate achievement of the described learning tal robot ethics research, which requires them to simultane- objectives, we note that the module did provide additional ously learn methodological approaches to the study of exper- learning opportunities for graduate students in the course, as imental robot ethics, and then use those methods to engage they helped to supervise, analyze, and write up the results of with key theoretical concepts from robot ethics (in our case, this undergraduate-performed research experiment. robots’ normative influence). Moreover, in this work we not only analyze the efficacy of this module, but additionally interrogate how this efficacy depends on the role that each Introduction student played in the research process. Computer Science educators are increasingly acknowledg- This educational research effort thus involves two nested ing that it is insufficient for the Computer Science curricu- levels of experimentation: a randomized controlled experi- lum to entirely focus on technical issues relating to comput- ment in which the research participants were undergraduate ing and programming. Rather, for Computer Science stu- students enrolled in a Robot Ethics class and the researchers dents to be effective practitioners after graduation, their ed- were the course staff, and a second randomized controlled ucation must include key concepts from the arts, social sci- experiment in which the research participants were under- ences, and humanities, so that students not only have the graduate students sampled from across the university, and technical knowledge necessary to implement and analyze the researchers were both the Robot Ethics students and computational systems, but also have the knowledge from their instructors. In this paper, we will focus on the first of those other fields necessary to decide, on ethical grounds, these experiments (the AI Education research effort), leav- whether they should implement those systems, and if so, ing many of the details of the second experiment (the ex- how they should go about designing and evaluating the ef- perimental Robot Ethics research effort) to publication else- fectiveness of those systems. This is especially true in the where. fields of Artificial Intelligence and Human-Robot Interac- As described in this paper, our analysis yielded mixed re- tion, in which myriad ethical concerns have captured the sults with respect to the efficacy of this experimental course public’s attention, and in which human interactivity necessi- module. While we did not find any evidence that participat- tates design and evaluation techniques not otherwise taught ing in experimental ethics research was any more effective in the Computer Science curriculum. than merely listening to a traditional lecture about the re- Appropriate teaching of these skills is made especially search effort and its goals in general, we did find that for par- challenging due to the interdisciplinary nature of the sub- ticipants that participated in the research effort, the role they ject matter. AI Ethics education must clearly cover key con- played in the research effort may indeed have affected their cepts from ethics and moral philosophy as well as the use of learning of the concepts explored in that research. More- Copyright c 2020, Association for the Advancement of Artificial over, as we will describe, the module provided additional Intelligence (www.aaai.org). All rights reserved. learning opportunities to the small number of graduate stu- 13485 dents in the course, who supervised undergraduate students, The same argument can be made for other similar media- and directly contributed to the data analysis and writing of based pedagogies such as using movies to teach AI and robot the scientific paper submission resulting from the proposed ethics. However, from the perspective of moral psychology, curricular module. there is a gap between ethical reasoning (e.g., knowing what is good vs. bad and why) and ethical action (e.g., some- Background one is committed to do good) (Rest et al. 1999). Effective professional ethics education requires future professionals to AI Ethics Education relate their moral learning experience to their own everyday Explicit discussions of AI or “expert systems” in computer personal and professional experience (or how they actually ethics education literature and textbooks can be traced back do things) (Martin 2000). For computer science students, it to the 1990s, although most of these discussions are often is crucial to reflect on how their moral learning experience speculative reflections about broader “macro” and social im- is relevant to their everyday, practical experience, empathiz- pacts of AI on humans, cultures, and societies. For instance, ing with potential users and their needs, and reflecting on Forester and Morrison (1994) hold a humanistic and specu- the (powerful) role of their expertise in shaping the soci- lative view toward the employment of AI in the society and ety. As such, it is critical to consider how real-world exam- their major concerns include: (1) whether AI is a proper goal ples and hands-on experiences with realistic AI and robotics as most AI projects are funded by the military; (2) it is a technologies may help to fill this gap. technocratic idea to employ AI in public administration, le- Carnegie Mellon’s “Artificial Intelligence Methods for gal practice, and social governance; (3) introducing AI to Social Good” course, for example, goes beyond the tradi- developing countries is another techno-fix that attempts to tional instructional approach that teaches theories of AI and remedy the symptoms without addressing the causes; and robot ethics through classroom lectures alone. Students in (4) AI degrades the human condition. the course instead acquire practical experience through re- Two curriculum design approaches have been developed search projects that employ AI methods to address press- to teach ethics in AI and robotics: (1) standalone courses ing social issues in fields such as healthcare, social welfare, (these courses can be offered in either computer science security and privacy, and environmental sustainability (Hsu or philosophy); and (2) ethics modules in AI and robotics 2018). Such hands-on experience may help students develop courses (Burton et al. 2017). Many of these curriculum de- sensitivity to the normative influence of technology on hu- velopment approaches are not so much different from tradi- mans and the society. Arguably, this model of teaching com- tional “applied ethics” approaches to teaching ethics of tech- puter science students to perform or experimentally inves- nology and engineering. For instance, in order to understand tigate ethics in a technical class has some advantages. To and discuss AI ethics issues, Burton et al. (2017) suggest that some extent, it helps make visible the values that are em- it is necessary for students to be familiar with three major bedded in the design of AI and robotic technologies. Fur- ethical theories (deontology, consequentialism or utilitarian- thermore, it creates a mindset among students that techno- ism, and virtue ethics) as tools for ethical decision-making. logical development involves value choices. Students are then invited to practice on how to use the three As science and engineering education curricula are al- ethical theories to analyze specific AI ethical situations and ready packed, integrating ethics modules into technical formulate possible courses of actions. Burton et al. (2017) courses is often more realistic for faculty. Furey and Mar- point out that teaching students the three ethical theories and tin (2018) have shared their experience with integrating a their applications in specific cases studies can be achieved in module about the ethics of algorithm development
Recommended publications
  • Artificial Intelligence and the Ethics of Self-Learning Robots Shannon Vallor Santa Clara University, [email protected]
    Santa Clara University Scholar Commons Philosophy College of Arts & Sciences 10-3-2017 Artificial Intelligence and the Ethics of Self-learning Robots Shannon Vallor Santa Clara University, [email protected] George A. Bekey Follow this and additional works at: http://scholarcommons.scu.edu/phi Part of the Philosophy Commons Recommended Citation Vallor, S., & Bekey, G. A. (2017). Artificial Intelligence and the Ethics of Self-learning Robots. In P. Lin, K. Abney, & R. Jenkins (Eds.), Robot Ethics 2.0 (pp. 338–353). Oxford University Press. This material was originally published in Robot Ethics 2.0 edited by Patrick Lin, Keith Abney, and Ryan Jenkins, and has been reproduced by permission of Oxford University Press. For permission to reuse this material, please visit http://www.oup.co.uk/academic/rights/permissions. This Book Chapter is brought to you for free and open access by the College of Arts & Sciences at Scholar Commons. It has been accepted for inclusion in Philosophy by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. ARTIFICIAL INTELLIGENCE AND 22 THE ETHICS OF SELF - LEARNING ROBOTS Shannon Va ll or and George A. Bekey The convergence of robotics technology with the science of artificial intelligence (or AI) is rapidly enabling the development of robots that emulate a wide range of intelligent human behaviors.1 Recent advances in machine learning techniques have produced significant gains in the ability of artificial agents to perform or even excel in activities for­ merly thought to be the exclusive province of human intelligence, including abstract problem-solving, perceptual recognition, social interaction, and natural language use.
    [Show full text]
  • An Ethical Framework for Smart Robots Mika Westerlund
    An Ethical Framework for Smart Robots Mika Westerlund Never underestimate a droid. Leia Organa Star Wars: The Rise of Skywalker This article focuses on “roboethics” in the age of growing adoption of smart robots, which can now be seen as a new robotic “species”. As autonomous AI systems, they can collaborate with humans and are capable of learning from their operating environment, experiences, and human behaviour feedback in human-machine interaction. This enables smart robots to improve their performance and capabilities. This conceptual article reviews key perspectives to roboethics, as well as establishes a framework to illustrate its main ideas and features. Building on previous literature, roboethics has four major types of implications for smart robots: 1) smart robots as amoral and passive tools, 2) smart robots as recipients of ethical behaviour in society, 3) smart robots as moral and active agents, and 4) smart robots as ethical impact-makers in society. The study contributes to current literature by suggesting that there are two underlying ethical and moral dimensions behind these perspectives, namely the “ethical agency of smart robots” and “object of moral judgment”, as well as what this could look like as smart robots become more widespread in society. The article concludes by suggesting how scientists and smart robot designers can benefit from a framework, discussing the limitations of the present study, and proposing avenues for future research. Introduction capabilities (Lichocki et al., 2011; Petersen, 2007). Hence, Lin et al. (2011) define a “robot” as an Robots are becoming increasingly prevalent in our engineered machine that senses, thinks, and acts, thus daily, social, and professional lives, performing various being able to process information from sensors and work and household tasks, as well as operating other sources, such as an internal set of rules, either driverless vehicles and public transportation systems programmed or learned, that enables the machine to (Leenes et al., 2017).
    [Show full text]
  • Nudging for Good: Robots and the Ethical Appropriateness of Nurturing Empathy and Charitable Behavior
    Nudging for Good: Robots and the Ethical Appropriateness of Nurturing Empathy and Charitable Behavior Jason Borenstein* and Ron Arkin** Predictions are being commonly voiced about how robots are going to become an increasingly prominent feature of our day-to-day lives. Beyond the military and industrial sectors, they are in the process of being created to function as butlers, nannies, housekeepers, and even as companions (Wallach and Allen 2009). The design of these robotic technologies and their use in these roles raises numerous ethical issues. Indeed, entire conferences and books are now devoted to the subject (Lin et al. 2014).1 One particular under-examined aspect of human-robot interaction that requires systematic analysis is whether to allow robots to influence a user’s behavior for that person’s own good. However, an even more controversial practice is on the horizon and warrants attention, which is the ethical acceptability of allowing a robot to “nudge” a user’s behavior for the good of society. For the purposes of this paper, we will examine the feasibility of creating robots that would seek to nurture a user’s empathy towards other human beings. We specifically draw attention to whether it would be ethically appropriate for roboticists to pursue this type of design pathway. In our prior work, we examined the ethical aspects of encoding Rawls’ Theory of Social Justice into robots in order to encourage users to act more socially just towards other humans (Borenstein and Arkin 2016). Here, we primarily limit the focus to the performance of charitable acts, which could shed light on a range of socially just actions that a robot could potentially elicit from a user and what the associated ethical concerns may be.
    [Show full text]
  • An Architecture for Ethical Robots
    1 An architecture for ethical robots Dieter Vanderelst & Alan Winfield Bristol Robotics Laboratory, University of the West of England T Block, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom Abstract—Robots are becoming ever more autonomous. This Anderson [2] and our previous work [27] are the only instances expanding ability to take unsupervised decisions renders it im- of robots having been equipped with a set of moral principles. perative that mechanisms are in place to guarantee the safety of So far, most work has been either theoretical [e.g., 25] or behaviours executed by the robot. Moreover, smart autonomous robots should be more than safe; they should also be explicitly simulation based [e.g., 3]. ethical – able to both choose and justify actions that prevent The approach taken by Anderson and Anderson [1, 2] and harm. Indeed, as the cognitive, perceptual and motor capabilities others [25, 3] is complementary with our research goals. These of robots expand, they will be expected to have an improved authors focus on developing methods to extract ethical rules capacity for making moral judgements. We present a control for robots. Conversely, our work concerns the development architecture that supplements existing robot controllers. This so-called Ethical Layer ensures robots behave according to a of a control architecture that supplements the existing robot predetermined set of ethical rules by predicting the outcomes of controller, ensuring robots behave according to a predeter- possible actions and evaluating the predicted outcomes against mined set of ethical rules [27, 26]. In other words, we are those rules. To validate the proposed architecture, we implement concerned with methods to enforce the rules once these have it on a humanoid robot so that it behaves according to Asimov’s been established [10].
    [Show full text]
  • Acknowledgements Acknowl
    2161 Acknowledgements Acknowl. B.21 Actuators for Soft Robotics F.58 Robotics in Hazardous Applications by Alin Albu-Schäffer, Antonio Bicchi by James Trevelyan, William Hamel, The authors of this chapter have used liberally of Sung-Chul Kang work done by a group of collaborators involved James Trevelyan acknowledges Surya Singh for de- in the EU projects PHRIENDS, VIACTORS, and tailed suggestions on the original draft, and would also SAPHARI. We want to particularly thank Etienne Bur- like to thank the many unnamed mine clearance experts det, Federico Carpi, Manuel Catalano, Manolo Gara- who have provided guidance and comments over many bini, Giorgio Grioli, Sami Haddadin, Dominic Lacatos, years, as well as Prof. S. Hirose, Scanjack, Way In- Can zparpucu, Florian Petit, Joshua Schultz, Nikos dustry, Japan Atomic Energy Agency, and Total Marine Tsagarakis, Bram Vanderborght, and Sebastian Wolf for Systems for providing photographs. their substantial contributions to this chapter and the William R. Hamel would like to acknowledge work behind it. the US Department of Energy’s Robotics Crosscut- ting Program and all of his colleagues at the na- C.29 Inertial Sensing, GPS and Odometry tional laboratories and universities for many years by Gregory Dudek, Michael Jenkin of dealing with remote hazardous operations, and all We would like to thank Sarah Jenkin for her help with of his collaborators at the Field Robotics Center at the figures. Carnegie Mellon University, particularly James Os- born, who were pivotal in developing ideas for future D.36 Motion for Manipulation Tasks telerobots. by James Kuffner, Jing Xiao Sungchul Kang acknowledges Changhyun Cho, We acknowledge the contribution that the authors of the Woosub Lee, Dongsuk Ryu at KIST (Korean Institute first edition made to this chapter revision, particularly for Science and Technology), Korea for their provid- Sect.
    [Show full text]
  • The Grand Challenges of Science Robotics Exclusive Licensee Guang-Zhong Yang,1* Jim Bellingham,2 Pierre E
    SCIENCE ROBOTICS | PERSPECTIVE ROBOTICS Copyright © 2018 The Authors, some rights reserved; The grand challenges of Science Robotics exclusive licensee Guang-Zhong Yang,1* Jim Bellingham,2 Pierre E. Dupont,3 Peer Fischer,4,5 Luciano Floridi,6,7,8,9,10 American Association 11 12,13 14 15 1 for the Advancement Robert Full, Neil Jacobstein, Vijay Kumar, Marcia McNutt, Robert Merrifield, of Science. No claim 16 17,18 7,8,9 19 Bradley J. Nelson, Brian Scassellati, Mariarosaria Taddeo, Russell Taylor, to original U.S. 20 21 22,23 Manuela Veloso, Zhong Lin Wang, Robert Wood Government Works One of the ambitions of Science Robotics is to deeply root robotics research in science while developing novel robotic platforms that will enable new scientific discoveries. Of our 10 grand challenges, the first 7 represent underpin- ning technologies that have a wider impact on all application areas of robotics. For the next two challenges, we have included social robotics and medical robotics as application-specific areas of development to highlight the substantial societal and health impacts that they will bring. Finally, the last challenge is related to responsible in- novation and how ethics and security should be carefully considered as we develop the technology further. Downloaded from INTRODUCTION great strides in realizing its mission of power- ing components into synthetic structures to Just over a year ago, we published the first issue ing the world’s robots, from space robot chal- create robots that perform like natural systems. of Science Robotics. Even within this relatively lenges to autonomous driving, industrial (iii) New power sources, battery technol- short period of time, remarkable progress has assembly, and surgery.
    [Show full text]
  • Report of Comest on Robotics Ethics
    SHS/YES/COMEST-10/17/2 REV. Paris, 14 September 2017 Original: English REPORT OF COMEST ON ROBOTICS ETHICS Within the framework of its work programme for 2016-2017, COMEST decided to address the topic of robotics ethics building on its previous reflection on ethical issues related to modern robotics, as well as the ethics of nanotechnologies and converging technologies. At the 9th (Ordinary) Session of COMEST in September 2015, the Commission established a Working Group to develop an initial reflection on this topic. The COMEST Working Group met in Paris in May 2016 to define the structure and content of a preliminary draft report, which was discussed during the 9th Extraordinary Session of COMEST in September 2016. At that session, the content of the preliminary draft report was further refined and expanded, and the Working Group continued its work through email exchanges. The COMEST Working Group then met in Quebec in March 2017 to further develop its text. A revised text in the form of a draft report was submitted to COMEST and the IBC in June 2017 for comments. The draft report was then revised based on the comments received. The final draft of the report was further discussed and revised during the 10th (Ordinary) Session of COMEST, and was adopted by the Commission on 14 September 2017. This document does not pretend to be exhaustive and does not necessarily represent the views of the Member States of UNESCO. – 2 – REPORT OF COMEST ON ROBOTICS ETHICS EXECUTIVE SUMMARY I. INTRODUCTION II. WHAT IS A ROBOT? II.1. The complexity of defining a robot II.2.
    [Show full text]
  • Ethics and Robotics. a First Approach1
    ETHICS AND ROBOTICS. A FIRST APPROACH1. RAFAEL DE ASÍS ROIG2 Abstract: Clearly, technical and scientific progress and moral progress do not necessarily go hand in hand. Therefore, this article encourages reflection on the new ethical challenges posed by such developments and, in particular, by robotics, a field that has developed greatly in recent decades and that has led to possibilities unimaginable until recently. Thus, the author examines here the so-called roboethics, its content, the specific fields it addresses –such as social relations and moral agency of robots–, as well as the different approaches and views on these issues. Keywords: Ethics, robotics, moral agent, human rights Contents: I. INTRODUCTION; II. ROBOTICS; III. ROBOETHICS. I. INTRODUCTION In the 20th and 21st centuries there have been major advances in both the scientific and technical field. The first one has been named the science century. In this regard, it has been claimed that the first half of the 20th century focused on Physics whilst the second half on Biology, Genetics and Computer Science (Rifkin 1998: p. 20). As for the 21st century until now is characterised by the rise of Neuroscience and Nanotechnology as well as by advances in the field of Robotics (in connection with the other areas but especially to I.T). However, despite all these advances, poverty, hunger and dissatisfaction regarding rights still persist. It is not surprising that Th. Pogge commences his book World Poverty and Human Rights examining how it is possible that extreme poverty affects half of humanity despite the enormous economic and technological progress, and how it is possible that the distribution of scientific and technological benefits is so uneven (Pogge 2002).
    [Show full text]
  • KANYOK, NATHAN J., MS, December 2019 COMPUTER SCIENCE
    KANYOK, NATHAN J., M.S., December 2019 COMPUTER SCIENCE SITUATIONAL AWARENESS MONITORING FOR HUMANS-IN-THE-LOOP OF TELEPRES- ENCE ROBOTIC SYSTEMS (80 pages) Thesis Advisor: Dr. Jong-Hoon Kim Autonomous automobiles are expected to be introduced in increasingly complex increments until the system is able to navigate without human interaction. However, humanity is uncomfortable with relying on algorithms to make security critical decisions, which often have moral dimensions. Many robotic systems keep humans in the decision making loop due to their unsurpassed ability to perceive contextual information in ways we find relevant. It is likely that we will see transportation systems with no direct human supervision necessary, but these systems do not address our worry about moral decisions. Until we are able to embed moral agency in digital systems, human actors will be the only agents capable of making decisions with security-critical and moral components. Additionally, in order for a human to be in the position that we can have confidence in their decision, they must be situationally aware of the environment in which the decision will be made. Virtual reality as a medium can achieve this by allowing a person to be telepresent elsewhere. A telepresence dispatch system for autonomous transportation vehicles is proposed that places emphasis on situational awareness so that humans can properly be in the decision making loop. Pre-trial, in-trial, and post-trial metrics are gathered that emphasize human health and monitor situational awareness through traditional and novel approaches. SITUATIONAL AWARENESS MONITORING FOR HUMANS-IN-THE-LOOP OF TELEPRESENCE ROBOTIC SYSTEMS A thesis submitted to Kent State University in partial fulfillment of the requirements for the degree of Master of Science by Nathan J.
    [Show full text]
  • Promoting Inclusiveness in Exoskeleton Robotics: Addressing Challenges for Pediatric Access
    Paladyn, Journal of Behavioral Robotics 2020; 11: 327–339 Research Article Eduard Fosch-Villaronga, Anto Čartolovni*, and Robin L. Pierce Promoting inclusiveness in exoskeleton robotics: Addressing challenges for pediatric access https://doi.org/10.1515/pjbr-2020-0021 received December 10, 2019; accepted May 24, 2020 1 Introduction Robotics have increased productivity and resource efficiency Abstract: Pediatric access to exoskeletons lags far behind in the industrial and retail sectors, and now there is an that of adults. In this article, we promote inclusiveness in emerging interest in realizing a comparable transformation exoskeleton robotics by identifying and addressing chal- in other areas, including health care [1]. However, the lenges and barriers to pediatric access to this potentially life- introduction of robots for health-care and therapeutic changing technology. We first present available exoskeleton purposes that interact directly with patients, older adults, solutions for upper and lower limbs and note the variability and children is not straightforward. It is widely recognized intheabsenceofthese.Next,wequerythepossiblereasons that these robots can entail risks for users and could infringe for this variability in access, explicitly focusing on children, on rights and further may have a significant impact on care- who constitute a categorically vulnerable population, and recipient values, including those of workers’ and end-users’ also stand to benefitsignificantly from the use of this values [2–9]. technology at this critical point in their physical and A relatively new technology that is changing the lives of emotional growth. We propose the use of a life-based design impaired users is physical assistant robots. Physical assistant approach as a way to address some of the design challenges robots, also named exoskeletons, help users perform a task and offer insights toward a resolution regarding market by augmenting or supplementing their capabilities (ISO viability and implementation challenges.
    [Show full text]
  • Robotics in Germany and Japan DRESDEN PHILOSOPHY of TECHNOLOGY STUDIES DRESDNER STUDIEN ZUR PHILOSOPHIE DER TECHNOLOGIE
    Robotics in Germany and Japan DRESDEN PHILOSOPHY OF TECHNOLOGY STUDIES DRESDNER STUDIEN ZUR PHILOSOPHIE DER TECHNOLOGIE Edited by /Herausgegeben von Bernhard Irrgang Vol./Bd. 5 Michael Funk / Bernhard Irrgang (eds.) Robotics in Germany and Japan Philosophical and Technical Perspectives Bibliographic Information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the internet at http://dnb.d-nb.de. Library of Congress Cataloging-in-Publication Data Robotics in Germany and Japan : philosophical and technical perspectives / Michael Funk, Bernhard Irrgang (eds.). pages cm ----- (Dresden philosophy of technology perspectives, ISSN 1861- -- 423X ; v. 5) ISBN 978-3-631-62071-7 ----- ISBN 978-3-653-03976-4 (ebook) 1. Robotics-----Germany----- Popular works. 2. Robotics----- Japan--Popular works. 3. Robotics-----Philosophy. I. Funk, Michael, 1985- -- editor of compilation. II. Irrgang, Bernhard, editor of compilation. TJ211.15.R626 2014 629.8'920943----- dc23 2013045885 Cover illustration: Humanoid Robot “ARMAR” (KIT, Germany), Photograph: Michael Funk An electronic version of this book is freely available, thanks to the support of libraries working with Knowledge Unlatched. KU is a collaborative initiative designed to make high quality books Open Access for the public good. More information about the initiative and links to the Open Access version can be found at www.knowledgeunlatched.org ISSN 1861-423X • ISBN 978-3-631-62071-7 (Print) E-ISBN 978-3-653-03976-4 (E-PDF) • E-ISBN 978-3-653-99964-8 (EPUB) E-ISBN 978-3-653-99963-1 (MOBI) • DOI 10.3726/978-3-653-03976-4 Open Access: This work is licensed under a Creative Commons Attribution NonCommercial NoDerivatives 4.0 unported license.
    [Show full text]
  • The Practice of Art and AI
    Gerfried Stocker, Markus Jandl, Andreas J. Hirsch The Practice of Art and AI ARS ELECTRONICA Art, Technology & Society Contents Gerfried Stocker, Markus Jandl, Andreas J. Hirsch 8 Promises and Challenges in the Practice of Art and AI Andreas J. Hirsch 10 Five Preliminary Notes on the Practice of AI and Art 12 1. AI–Where a Smoke Screen Veils an Opaque Field 19 2. A Wide and Deep Problem Horizon– Massive Powers behind AI in Stealthy Advance 25 3. A Practice Challenging and Promising– Art and Science Encounters Put to the Test by AI 29 4. An Emerging New Relationship–AI and the Artist 34 5. A Distant Mirror Coming Closer– AI and the Human Condition Veronika Liebl 40 Starting the European ARTificial Intelligence Lab 44 Scientific Partners 46 Experiential AI@Edinburgh Futures Institute 48 Leiden Observatory 50 Museo de la Universidad Nacional de Tres de Febrero Centro de Arte y Ciencia 52 SETI Institute 54 Ars Electronica Futurelab 56 Scientific Institutions 59 Cultural Partners 61 Ars Electronica 66 Activities 69 Projects 91 Artists 101 CPN–Center for the Promotion of Science 106 Activities 108 Projects 119 Artists 125 The Culture Yard 130 Activities Contents Contents 132 Projects 139 Artists 143 Zaragoza City of Knowledge Foundation 148 Activities 149 Projects 155 Artists 159 GLUON 164 Activities 165 Projects 168 Artists 171 Hexagone Scène Nationale Arts Science 175 Activities 177 Projects 182 Artists 185 Kersnikova Institute / Kapelica Gallery 190 Activities 192 Projects 200 Artists 203 LABoral Centro de Arte y Creación Industrial 208 Activities
    [Show full text]