Geostatistical Modelling, Analysis and Mapping of Epidemiology of Dengue Fever in Johor State, Malaysia Su Bee Seng1, Albert K. Chong1& Antoni Moore2 1School of Surveying University of Otago, Dunedin, New Zealand. Email:
[email protected];
[email protected] 2Antoni Moore Department of Information Science University of Otago, Dunedin New Zealand. Email:
[email protected] Presented at SIRC 2005 – The 17th Annual Colloquium of the Spatial Information Research Centre University of Otago, Dunedin, New Zealand November 24th-25th 2005 ABSTRACT Dengue fever, and especially the life-threatening form - DHF is an infectious mosquito- borne disease that places a heavy burden on public health systems in Malaysia as well as on most of the tropical countries around the world. Various environmental factors such as rainfall, temperature, living conditions, demography structure domestic waste management and population distribution are important in determining the mosquito survival and reproduction. A geostatistical modelling, analysis and mapping approach has been utilised in this research to understand the correlation between dengue fever prevalence, population distribution and meteorological factor, and the characteristics of space-time clusters in the Johor State. By supplementing GIS with geostatistical analysis and space-time permutation scan statistic tools, the spatial variation of dengue incidence can be mapped. Geographical weighted regression (GWR) analysis has revealed a strong (R2= 0.87) positive spatial association between dengue fever prevalence and population distribution in the Johor State. The dengue prevalence is expected to be higher in densely populated urban area, such as in Johor Bahru: however, there is a “rule” change in the Johor Bahru sub-district due to the positive impact from a dengue control and prevention programme.