Chapter 4. STATUS of CARIBBEAN CORAL REEFS PHOTO: KRISHNA DESAI
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions. -
Surface Currents Near the Greater and Lesser Antilles
SURFACE CURRENTS NEAR THE GREATER AND LESSER ANTILLES by C.P. DUNCAN rl, S.G. SCHLADOW1'1 and W.G. WILLIAMS SUMMARY The surface flow around the Greater and Lesser Antilles is shown to differ considerably from the widely accepted current system composed of the Caribbean Current and Antilles Current. The most prominent features deduced from dynamic topography are a flow from the north into the Caribbean near Puerto Rico and a permanent eastward-flowing counter-current in the Caribbean itself between Puerto Rico and Venezuela. Noticeably absent is the Antilles Current. A satellite-tracked buoy substantiates the slow southward flow into the Caribbean and the absence of the Antilles Current. INTRODUCTION Pilot Charts for the North Atlantic and the Caribbean Sea (Defense Mapping Agency, 1968) show westerly surface currents to the North and South of Puerto Rico. The Caribbean Current is presented as an uninterrupted flow which passes through the Caribbean Sea, Yucatan Straits, Gulf of Mexico, and Florida Straits to become the Gulf Stream. It is joined off the east coast of Florida by the Antilles Current which is shown as flowing westwards along the north coast of Puerto Rico and then north-westerly along the northern edge of the Bahamas (BOISVERT, 1967). These surface currents are depicted as extensions of the North Equatorial Current and the Guyana Current, and as forming part of the subtropical gyre. As might be expected in the absence of a western boundary, the flow is slow-moving, shallow and broad. This interpretation of the surface currents is also presented by WUST (1964) who employs the same set of ship’s drift observations as are used in the Pilot Charts. -
By the Becreu^ 01 Uio Luterior NFS Form 10-900 USDI/NPS NRHP Registration Form (Rev
NATIONAL HISTORIC LANDMARK NOMINATION NFS Form 10-900 USDI/NPS NRHP Registration Form (Rev. 8-86) 0MB No. 1024-0018 FORT FREDERIK (U.S. VIRGIN ISLANDS) Page 1 United States Department of the Interior, National Park Service____________________________ National Register of Historic Places Registration Form l^NAMEOF PROPERTY Historic Name: FORT FREDERIK (U.S. VIRGIN ISLANDS) Other Name/Site Number: FREDERIKSFORT 2. LOCATION Street & Number: S. of jet. of Mahogany Rd. and Rt. 631, N end of Frederiksted Not for publication:N/A City/Town: Frederiksted Vicinity :N/A State: US Virgin Islands County: St. Croix Code: 010 Zip Code:QQ840 3. CLASSIFICATION Ownership of Property Category of Property Private: __ Building(s): X Public-local: __ District: __ Public-State: X Site: __ Public-Federal: Structure: __ Object: __ Number of Resources within Property Contributing Noncontributing 2 __ buildings 1 sites 1 __ structures _ objects 1 Total Number of Contributing Resources Previously Listed in the National Register :_2 Name of related multiple property listing: N/A tfed a by the becreu^ 01 uio luterior NFS Form 10-900 USDI/NPS NRHP Registration Form (Rev. 8-86) OMB No. 1024-0018 FORT FREDERIK (U.S. VIRGIN ISLANDS) Page 2 United States Department of the Interior, National Park Service _______________________________National Register of Historic Places Registration Form 4. STATE/FEDERAL AGENCY CERTIFICATION As the designated authority under the National Historic Preservation Act of 1966, as amended, I hereby certify that this __ nomination __ request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. -
The University of Chicago the Creole Archipelago
THE UNIVERSITY OF CHICAGO THE CREOLE ARCHIPELAGO: COLONIZATION, EXPERIMENTATION, AND COMMUNITY IN THE SOUTHERN CARIBBEAN, C. 1700-1796 A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE SOCIAL SCIENCES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF HISTORY BY TESSA MURPHY CHICAGO, ILLINOIS MARCH 2016 Table of Contents List of Tables …iii List of Maps …iv Dissertation Abstract …v Acknowledgements …x PART I Introduction …1 1. Creating the Creole Archipelago: The Settlement of the Southern Caribbean, 1650-1760...20 PART II 2. Colonizing the Caribbean Frontier, 1763-1773 …71 3. Accommodating Local Knowledge: Experimentations and Concessions in the Southern Caribbean …115 4. Recreating the Creole Archipelago …164 PART III 5. The American Revolution and the Resurgence of the Creole Archipelago, 1774-1785 …210 6. The French Revolution and the Demise of the Creole Archipelago …251 Epilogue …290 Appendix A: Lands Leased to Existing Inhabitants of Dominica …301 Appendix B: Lands Leased to Existing Inhabitants of St. Vincent …310 A Note on Sources …316 Bibliography …319 ii List of Tables 1.1: Respective Populations of France’s Windward Island Colonies, 1671 & 1700 …32 1.2: Respective Populations of Martinique, Grenada, St. Lucia, Dominica, and St. Vincent c.1730 …39 1.3: Change in Reported Population of Free People of Color in Martinique, 1732-1733 …46 1.4: Increase in Reported Populations of Dominica & St. Lucia, 1730-1745 …50 1.5: Enslaved Africans Reported as Disembarking in the Lesser Antilles, 1626-1762 …57 1.6: Enslaved Africans Reported as Disembarking in Jamaica & Saint-Domingue, 1526-1762 …58 2.1: Reported Populations of the Ceded Islands c. -
2. Geophysics and the Structure of the Lesser Antilles Forearc1
2. GEOPHYSICS AND THE STRUCTURE OF THE LESSER ANTILLES FOREARC1 G. K. Westbrook, Department of Geological Sciences, University of Durham and A. Mascle and B. Biju-Duval, Institut Français du Pétrole2 ABSTRACT The Barbados Ridge complex lies east of the Lesser Antilles volcanic arc along the eastern margin of the Caribbean Plate. The complex dates in part from the Eocene, and elements of the arc system have been dated as Late Cretaceous and Late Jurassic, although most of the volcanic rocks date from the Tertiary, particularly the latter part. It is probable that the arc system was moved a considerable distance eastward with respect to North and South America during the Tertiary. The accretionary complex can be divided into zones running parallel to the arc, starting with a zone of initial accre- tion at the front of the complex where sediment is stripped from the ocean floor and the rate of deformation is greatest. This zone passes into one of stabilization where the deformation rate is generally lower, although there are localized zones of more active tectonics where the generally mildly deformed overlying blanket of sediment is significant dis- turbed. Supracomplex sedimentary basins that are locally very thick are developed in the southern part of the complex. The Barbados Ridge Uplift containing the island of Barbados lies at the western edge of the complex; between it and the volcanic arc lies a large forearc basin comprising the Tobago Trough and Lesser Antilles Trough. There are major longitudinal variations in the complex that are broadly related to the northward decrease in sedi- ment thickness away from terrigenous sources in South America and that are locally controlled by ridges in the oceanic igneous crust passing beneath the complex. -
Paleogeography of the Caribbean Region: Implications for Cenozoic Biogeography
PALEOGEOGRAPHY OF THE CARIBBEAN REGION: IMPLICATIONS FOR CENOZOIC BIOGEOGRAPHY MANUEL A. ITURRALDE-VINENT Research Associate, Department of Mammalogy American Museum of Natural History Curator, Geology and Paleontology Group Museo Nacional de Historia Natural Obispo #61, Plaza de Armas, CH-10100, Cuba R.D.E. MA~PHEE Chairman and Curator, Department of Mammalogy American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 238, 95 pages, 22 figures, 2 appendices Issued April 28, 1999 Price: $10.60 a copy Copyright O American Museum of Natural History 1999 ISSN 0003-0090 CONTENTS Abstract ....................................................................... 3 Resumen ....................................................................... 4 Resumo ........................................................................ 5 Introduction .................................................................... 6 Acknowledgments ............................................................ 8 Abbreviations ................................................................ 9 Statement of Problem and Methods ............................................... 9 Paleogeography of the Caribbean Region: Evidence and Analysis .................. 18 Early Middle Jurassic to Late Eocene Paleogeography .......................... 18 Latest Eocene to Middle Miocene Paleogeography .............................. 27 Eocene-Oligocene Transition (35±33 Ma) .................................... 27 Late Oligocene (27±25 Ma) ............................................... -
Thematic Report for the Insular Caribbean Sub-Region
CLME-TT/3 Prov Barbados, February 2007 Original: English THEMATIC REPORT FOR THE INSULAR CARIBBEAN SUB-REGION A discussion paper for the CLME Synthesis Workshop by Sherry Heileman, Ph.D. CLME Project Implementation Unit Centre for Resource Management and Environmental Studies (CERMES) University of the West Indies Cave Hill Campus, Barbados February 2007 Insular Caribbean - CLME Thematic report CONTENTS 1. INTRODUCTION ................................................................................................................................ 1 2. THE INSULAR CARIBBEAN .......................................................................................................... 1 Geography and oceanography ................................................................................................................... 1 Ecological features..................................................................................................................................... 3 Socio-economic background...................................................................................................................... 5 2.4 Environmental and socio-economic vulnerability of SIDS ................................................................. 6 3. PRIORITY TRANSBOUNDARY PROBLEMS.............................................................................. 7 3.1 Unsustainable exploitation of living marine resources ........................................................................ 8 3.1.1 Description of the problem and justification -
Active Structures in the Barbados Accretionary Wedge of the Lesser Antilles Subduction: Implications for Slip Partitioning
EGU2020-10732 https://doi.org/10.5194/egusphere-egu2020-10732 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Main active structures in the Barbados accretionary wedge of the Lesser Antilles Subduction: implications for slip partitioning Gaëlle Bénâtre1, Nathalie Feuillet1, Hélène Carton1, Eric Jacques1, and Thibaud Pichot2 1Université de Paris, Institut de Physique du Globe de Paris, CNRS UMR7154, Paris, F-75005, France ([email protected]) 2Beicip-Franlab, Rueil-Malmaison, France At the Lesser Antilles Subduction Zone (LASZ), the American plates subduct under the Caribbean plate at a slow rate of ~2 cm/yr. No major subduction megathrust earthquakes have occurred in the area since the 1839 and 1843 historical events, and the LASZ is typically considered weakly coupled. At the front of the LASZ, the Barbados accretionary wedge (BAW) is one of the largest accretionary wedges in the world. The width of the BAW decreases northward, owing to the increasing distance to the sediment source (Orinoco river) and the presence of several aseismic oceanic ridges, in particular the Tiburon ridge, that stops sediment progression. Marine geophysical studies conducted to date over the northern part of the BAW (Guadeloupe-Martinique sector) have mostly focused on resolving the geometry of the backstop. However, the structure of the wedge and the mechanical behavior of the subduction interface remain poorly known. Our study aims to describe the geometry of the BAW by a detailed morpho-tectonic analysis in order to place constraints on present and past dynamic interactions between the subducting and overriding plates. -
Colonisation of the Antilles by South American Fauna: Giant Sunken Islands As a Passageway?
NATIONAL PRESS RELEASE – PARIS – 18 MAY 2021 Colonisation of the Antilles by South American fauna: giant sunken islands as a passageway? Fossils of land animals from South America have been found in the Antilles. The appearance/disappearance of archipelagos is due to tectonic plate movements and glacial- interglacial cycles. Archipelagos have emerged and sunk in a cyclic manner for millions of years, favouring the displacement of the Antilles. Fossils of land animals from South America have been found in the Antilles, but how did these animals get there? According to scientists from the CNRS, l’Université des Antilles, l’Université de Montpellier and d’Université Côte d’Azur, land emerged in this region and then disappeared beneath the waves for millions of years, explaining how some species were able to migrate to the Antilles. This study will be published in June 2021 issue in Earth-Science Reviews. Fossils of land animals from the Antilles, including mammals and amphibians, have their closest relatives in South America. The crossing of the Caribbean Sea from South America was therefore possible, but how? As swimming across the continent must be ruled out, given that several hundred kilometres separate the South American continent from the Antilles, the dispersal of this fauna has been attributed either to natural rafts coming out of the continent's flooded rivers, or to the existence of land bridges that are now submerged. A scientific project involving geologists, palaeontologists and geophysicists1 is now solving some of the mysteries related to these terrestrial species in the Antilles. The researchers have reconstructed the geography of the northern Lesser Antilles over the last 40 million years and have shown that the movements of the tectonic plates at the junction between the Lesser Antilles, the Greater Antilles and the Aves Ridge (an underwater mountain), have several times given birth to archipelagos and islands quite close to each other, which were then swallowed up in the course of time. -
Eastern and Southern Caribbean
Eastern and Southern Caribbean Regional Development Cooperation Strategy 2015-2019 (Public Version) Table of Contents ACRONYMS AND ABBREVIATIONS EXECUTIVE SUMMARY .................................................................................................................................. 4 I. DEVELOPMENT CONTEXT, CHALLENGES, AND OPPORTUNITIES ............................................................. 6 A. Economic Performance ........................................................................................................................ 6 B. Energy ................................................................................................................................................... 7 C. Security and Governance ..................................................................................................................... 8 D. Education ............................................................................................................................................. 8 E. Health ................................................................................................................................................... 8 F. Environment ......................................................................................................................................... 9 G. Gender ............................................................................................................................................... 10 H. Donor Coordination .......................................................................................................................... -
Caribbean Islands
The Bahamas Havana Cuba Camaguey Dominican Republic Santiago Santiago de Cuba Port-au-Prince San Juan Santo Domingo Kingston Haiti Mexico Jamaica Puerto Rico Venezuela Kilometers 0 250 500 1,000 CARIBBEAN ISLANDS Caribbean Islands Hotspot 260,671 km2 Neighboring Hotspot BIODIVERSITY TARGET Protected Area (IUCN Category I-IV) 2020 TARGET: 17% protected Protected Area (IUCN Category V-VI) 2015: 17.6% PROTECTED Protected Area (IUCN Category NA) 7.1% I-IV Urban Area 6.3% V-VI 4.2% NA Agriculture (0-100% landuse) Roads Railroads CARIBBEAN ISLANDS ECOREGIONS Shortfall Assessment to reach Target of 17% protected land in each terrestrial ecoregion 15 16 11 12 9 10 8 17 13 2 20 14 7 18 19 3 5 1 4 6 Antigua & Barbuda, Bahamas, Barbados, Cuba, Dominica, Dominican Republic, Guadeloupe (France), Martinique Kilometers 0 100 200 400 600 800 (France),1,000 Saint Barthélemy (France), Grenada, Jamaica, Aruba (The Netherlands), Caribbean Netherlands (The Netherlands), Curaçao (The Netherlands), Saint Kitts & Nevis, Saint Lucia, Saint Vincent & the Grenadines, Trinidad & Toboga, Anguilla (UK),British Virgin Islands (UK), Cayman Islands (UK), Monserrat (UK), Puerto Rico (USA), US Virgin Islands (USA) 5 BIOMES Deserts & Xeric Shrublands Flood Grasslands & Savanna Mangroves Tropical & Subtropical Moist Broadleaf Forests Tropical & Subtropical Dry Broadleaf Forests 20 ECOREGIONS ENDEMIC PLANT SPECIES 6,550 Kilometers ENDEMIC ANIMAL SPECIES 0 250 500 1,000 908 1. Windward Island Moist Forests 5. Leeward Island Moist Forests Target reached Target reached 6. Amazon Orinoco Southern Caribbean Mangroves To reach Aichi Target of 17% + 43 km2 protected areas 2. Puerto Rican Moist Forests 2,022 km2 remnant habitat To reach Aichi Target of 17% + 905 km2 protected areas 7. -
Latin America and the Caribbean in the World Economy
2014 Latin America and the Caribbean in the World Economy Regional integration and value chains in a challenging external environment 2014 Alicia Bárcena Executive Secretary Antonio Prado Deputy Executive Secretary Osvaldo Rosales Chief, Division of International Trade and Integration Ricardo Pérez Chief, Publications and Web Services Division Latin America and the Caribbean in the World Economy is the annual report prepared by the Division of International Trade and Integration of ECLAC. The ECLAC subregional headquarters for the Caribbean, the ECLAC subregional headquarters in Mexico and the Latin American and Caribbean Institute for Economic and Social Planning (ILPES) assisted with the preparation of this year’s edition. The production of the report was overseen by Osvaldo Rosales, Chief of the Division of International Trade and Integration. Keiji Inoue, Senior Economic Affairs Officer of the Division, was responsible for its technical coordination. The following staff members of the Commission assisted in the preparation and drafting of the chapters: José Elías Durán, Sebastián Herreros, Sheldon McLean, Nanno Mulder and Dayna Zaclicever. The authors are grateful for contributions made to the work by Sebastián Castresana, Carlos D’Elía, Myriam Echeverría, Alfonso Finot, Tania García-Millán, René Hernández, Antoine Le Squeren, Jorge Mario Martínez, José Carlos Mattos, Javier Meneses, Yoshimichi Murakami, Nahuel Oddone, Ramón Padilla and Gustavo Zanabria. Notes The following symbols have been used in the tables in this publication: • Three dots (…) indicate that data are not available or are not separately reported. • A dash (-) indicates that the amount is nil or negligible. • A comma (,) is used to indicate decimals. • The word “dollars” refers to United States dollars, unless otherwise specified.