The Aging Cochlear Hair Cell
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hearing Loss Epidemic the Hair Cell
Hearing loss epidemic One in ten (30 million) Americans has hearing loss FUTURE THERAPIES FOR INNER - Causes include heredity, aging, noise exposure, disease EAR REGENERATION - Number is expected to double by 2030 Hearing loss is the #1 birth defect in America Albert Edge - 1 in 1000 newborns is born profoundly deaf Harvard Medical School - 2-3/1000 will have partial/progressive hearing loss Massachusetts Eye and Ear Infirmary Hearing loss prevalence increases with age - 1 in 3 over 65 years has significant hearing loss - Among seniors, hearing loss is the 3rd most prevalent condition 2 The inner ear The hair cell Auditory Hair Bundle Nerve Middle Ear Sensory hairs vibrate, "tip-links"open ion channels into hair cell Ions flow into hair cell, Inner Ear changing its electrical potential Hair External Ear Cells 3 4 1 The nerve fiber Sensorineural hearing loss: Hair cells and nerve fibers Cochlear Implant can directly stimulate Electric potential causes chemical neurotransmitter release from synapse Sensory Cell Loss NeurotransmitterNeurotransmitter diffuses to nerve fiber and excites electrical activity in the form of action potentials Hair Cell Nerve Fiber Loss 5 6 Regeneration of hair cells in chick inner ear Can stem cell-derived inner ear progenitors replace lost hair cells in vivo (and restore hearing)? Normal Hair Cells Damaged Hair Cells Regenerated Hair Cell Bundles Li et al., TMM (2004) 2 Approaches to regenerating inner ear cells Gene therapy I. Generation of inner ear cells by gene therapy • New hair cells: transfer Atoh1 gene II. -
Cells of Adult Brain Germinal Zone Have Properties Akin to Hair Cells and Can Be Used to Replace Inner Ear Sensory Cells After Damage
Cells of adult brain germinal zone have properties akin to hair cells and can be used to replace inner ear sensory cells after damage Dongguang Weia,1, Snezana Levica, Liping Niea, Wei-qiang Gaob, Christine Petitc, Edward G. Jonesa, and Ebenezer N. Yamoaha,1 aDepartment of Anesthesiology and Pain Medicine, Center for Neuroscience, Program in Communication and Sensory Science, University of California, 1544 Newton Court, Davis, CA 95618; bDepartment of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080; and cUnite´deGe´ne´ tique et Physiologie de l’Audition, Unite´Mixte de Recherche S587, Institut National de la Sante´et de la Recherche Me´dicale-Universite´Paris VI, Colle`ge de France, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris, Cedex 15, France Edited by David Julius, University of California, San Francisco, CA, and approved October 27, 2008 (received for review August 15, 2008) Auditory hair cell defect is a major cause of hearing impairment, often and have an actin-filled process as in the HCs. Thus, we surmise that leading to spiral ganglia neuron (SGN) degeneration. The cell loss that cells of the adult forebrain germinal zone might be potential follows is irreversible in mammals, because inner ear hair cells (HCs) candidate cells to be used autologously for the replacement of have a limited capacity to regenerate. Here, we report that in the nonrenewable HCs and SGNs. adult brain of both rodents and humans, the ependymal layer of the Ependymal cells adjacent to the spinal canal proliferate exten- lateral ventricle contains cells with proliferative potential, which sively upon spinal cord injuries (16, 17). -
Smelling Better with Chloride COMMENTARY Stephan Fringsa,1
COMMENTARY Smelling better with chloride COMMENTARY Stephan Fringsa,1 The sense of smell and its astonishing performance coding is the solution to the problem of low-selectivity pose biologists with ever new riddles. How can the receptors (2). system smell almost anything that gets into the nose, However, the necessity to operate OSNs with fuzzy distinguish it from countless other odors, memorize odorant receptors creates another problem, as it limits it forever, and trigger reliably adequate behavior? the efficacy of the transduction process. OSNs trans- Among the senses, the olfactory system always duce chemical signals through a metabotropic path- seems to do things differently. The olfactory sensory way (Fig. 1A). Such pathways translate external stimuli neurons (OSNs) in the nose were suggested to use an into cellular responses by G-protein–coupled recep- unusual way of signal amplification to help them in tors. Their efficacy depends on the duration of recep- responding to weak stimuli. This chloride-based tor activity: the longer the receptor is switched on, the mechanism is somewhat enigmatic and controversial. more G protein can be activated. This is well studied in A team of sensory physiologists from The Johns photoreceptors, where the rhodopsin molecule may Hopkins University School of Medicine has now de- stay active for more than a second after absorbing a veloped a method to study this process in detail. photon. Within this time, it can activate hundreds of G Li et al. (1) demonstrate how OSNs amplify their proteins, one after the other, thus eliciting a robust electrical response to odor stimulation using chlo- cellular response to a single photon. -
Audiology 101: an Introduction to Audiology for Nonaudiologists Terry Foust, Aud, FAAA, CC-SLP/A; & Jeff Hoffman, MS, CCC-A
NATIONALA RESOURCE CENTER GUIDE FOR FOR EARLY HEARING HEARING ASSESSMENT DETECTION & & MANAGEMENT INTERVENTION Chapter 5 Audiology 101: An Introduction to Audiology for Nonaudiologists Terry Foust, AuD, FAAA, CC-SLP/A; & Jeff Hoffman, MS, CCC-A Parents of young Introduction What is an audiologist? children who are arents of young children who are An audiologist is a specialist in hearing identified as deaf or hard identified as deaf or hard of hearing and balance who typically works in of hearing (DHH) are P(DHH) are suddenly thrust into a either a medical, private practice, or an suddenly thrust into a world of new concepts and a bewildering educational setting. The primary roles of world of new concepts array of terms. What’s a decibel or hertz? an audiologist include the identification and a bewildering array What does sensorineural mean? Is a and assessment of hearing and balance moderate hearing loss one to be concerned problems, the habilitation or rehabilitation of terms. about, since it’s only moderate? What’s of hearing and balance problems, and the a tympanogram or a cochlear implant? prevention of hearing loss. When working These are just a few of the many questions with infants and young children, the that a parent whose child has been primary focus of audiology is hearing. identified as DHH may have. In addition to parents, questions also arise from Audiologists are licensed by the state in professionals and paraprofessionals who which they practice and may be members work in the field of early hearing detection of the American Speech-Language- and intervention (EHDI) and are not Hearing Association (ASHA), American audiologists. -
Review of Hair Cell Synapse Defects in Sensorineural Hearing Impairment
Otology & Neurotology 34:995Y1004 Ó 2013, Otology & Neurotology, Inc. Review of Hair Cell Synapse Defects in Sensorineural Hearing Impairment *†‡Tobias Moser, *Friederike Predoehl, and §Arnold Starr *InnerEarLab, Department of Otolaryngology, University of Go¨ttingen Medical School; ÞSensory Research Center SFB 889, þBernstein Center for Computational Neuroscience, University of Go¨ttingen, Go¨ttingen, Germany; and §Department of Neurology, University of California, Irvine, California, U.S.A. Objective: To review new insights into the pathophysiology of are similar to those accompanying auditory neuropathy, a group sensorineural hearing impairment. Specifically, we address defects of genetic and acquired disorders of spiral ganglion neurons. of the ribbon synapses between inner hair cells and spiral ganglion Genetic auditory synaptopathies include alterations of glutamate neurons that cause auditory synaptopathy. loading of synaptic vesicles, synaptic Ca2+ influx or synaptic Data Sources and Study Selection: Here, we review original vesicle turnover. Acquired synaptopathies include noise-induced publications on the genetics, animal models, and molecular hearing loss because of excitotoxic synaptic damage and subse- mechanisms of hair cell ribbon synapses and their dysfunction. quent gradual neural degeneration. Alterations of ribbon synapses Conclusion: Hair cell ribbon synapses are highly specialized to likely also contribute to age-related hearing loss. Key Words: enable indefatigable sound encoding with utmost temporal precision. GeneticsVIon -
Non-Commercial Use Only
Audiology Research 2013; volume 3:e6 Comparison of cervical and ocular vestibular evoked myogenic potentials in dancers and non-dancers Sujeet Kumar Sinha, Vaishnavi Bohra, Himanshu Kumar Sanju Department of Audiology, All India Institute of Speech and Hearing, India Abstract Introduction The objective of the study was to assess the sacculocollic and otolith In recent years, cervical vestibular evoked myogenic potentials ocular pathway function using cervical vestibular evoked myogenic (cVEMP) have been utilized for the diagnosis of various disorders such potentials (cVEMP) and ocular vestibular myogenic potentials as, Meniere’s disease,1,2 acoustic neuroma,2-5 superior canal dehis- (oVEMP) in dancers and non dancers. Total 16 subjects participated in cence,6 vestibular neuritis,7 benign paroxysmal positional vertigo,8 the study. Out of 16 participants, 8 were trained in Indian classical noise induced hearing loss,9,10 auditory neuropathy/audiovestibular form of dance (dancers) and other 8 participants who were not trained neuropathy,10,11 as well as other disorders such as cerebellopontine in any dance form (non dancers). cVEMP and oVEMP responses were angle tumor,12 and multiple sclerosis.2 Similarly, ocular vestibular recorded for all the subjects. Non Parametric Mann-Whitney U test evoked myogenic potentials (oVEMP) also have been utilised in diag- revealed no significant difference between dancers and non dancers 13 for the latency and amplitude parameter for cVEMP and oVEMP, i.e. nosing superior semicircular canal dehiscence syndrome, internu- 14 P13, N23 latency and P13-N23 complex amplitude and N10, P14 laten- clearophthalmoplegia, to differentiateonly between cerebellar and brain- cy, N10-P14 complex amplitude respectively. -
Audiology and Hearing Aid Services
For more information, call the Hearing Aid Services office nearest you: Comprehensive hearing aid related services Barbourville Bowling Green are available to children diagnosed with (800) 348-4279 (800) 843-5877 permanent childhood hearing loss (PCHL). (606) 546-5109 (270) 746-7816 Elizabethtown Hazard Who should be referred to the OCSHCN (800) 995-6982 (800) 378-3357 Hearing Aid Services program? (270) 766-5370 (606) 435-6167 Children who are in need of new or Lexington Louisville replacement hearing aids and want to (800) 817-3874 (800) 232-1160 receive hearing aids and related services (859) 252-3170 (502) 429-4430 through a OCSHCN audiologist and wish to Morehead Owensboro receive Otology care outside of the (800) 928-3049 (877) 687-7038 clinical Otology program. (606) 783-8610 (270) 687-7038 What audiology services are available Paducah Prestonsburg (800) 443-3651 (800) 594-7058 through the OCSHCN Hearing Aid Services (270) 443-3651 (606) 889-1761 program? Licensed, certified audiologists conduct Somerset (800) 525-4279 periodic comprehensive hearing evaluations, (606) 677-4120 hearing aid checks, hearing aid repairs and Audiology and hearing aid evaluations according to ASHA best practices guidelines. Comprehensive Kentucky Cabinet for Health and Family Services Hearing Aid Services Office for Children with Special Health Care Needs reports are provided to the managing 310 Whittington Parkway, Suite 200, Louisville, KY 40222 otolaryngologist on an on-going basis; Phone: (502) 429-4430 or (800) 232-1160 FAX: (502) 429-4489 additional follow up testing will be http://chfs.ky.gov/agencies/ccshcn Information for Parents and Equal Opportunity Employer M/D/F completed at physician request. -
Audiometry Procedures Manual
Audiometry Procedures Manual January 2008 TABLE OF CONTENTS Chapter Page 1 INTRODUCTION ........................................................................................... 1-1 1.1 History and Overview of Hearing Examinations in NHANES........... 1-1 1.2 Basic Principles of Sound................................................................... 1-5 1.3 Basic Principles of Audition............................................................... 1-8 1.4 Basic Principles of Hearing Loss........................................................ 1-10 2 EQUIPMENT .................................................................................................. 2-1 2.1 Description of Exam Room in MEC................................................... 2-1 2.2 Description of Equipment and Supplies ............................................. 2-2 2.2.1 Otoscope.............................................................................. 2-9 2.2.2 Tympanometer .................................................................... 2-9 2.2.3 Audiometer.......................................................................... 2-9 2.2.4 Bioacoustic Simulator ......................................................... 2-10 2.2.5 Sound Level Meter and Accessories ................................... 2-10 2.2.6 Inventory Procedures .......................................................... 2-11 2.3 Start of Stand Procedures.................................................................... 2-11 2.3.1 Room Setup........................................................................ -
Purinergic Signaling in Cochlear Supporting Cells Reduces Hair
RESEARCH ARTICLE Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space Travis A Babola1, Calvin J Kersbergen1, Han Chin Wang1†, Dwight E Bergles1,2,3* 1The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, United States; 2Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, United States; 3Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States Abstract Neurons in developing sensory pathways exhibit spontaneous bursts of electrical activity that are critical for survival, maturation and circuit refinement. In the auditory system, intrinsically generated activity arises within the cochlea, but the molecular mechanisms that initiate this activity remain poorly understood. We show that burst firing of mouse inner hair cells prior to hearing onset requires P2RY1 autoreceptors expressed by inner supporting cells. P2RY1 activation triggers K+ efflux and depolarization of hair cells, as well as osmotic shrinkage of supporting cells that dramatically increased the extracellular space and speed of K+ redistribution. Pharmacological inhibition or genetic disruption of P2RY1 suppressed neuronal burst firing by reducing K+ release, but unexpectedly enhanced their tonic firing, as water resorption by supporting cells reduced the extracellular space, leading to K+ accumulation. These studies indicate that purinergic signaling in *For correspondence: supporting cells regulates hair cell -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria. -
Plan of the Lecture Afferent Innervation Outer Hair Cell 'Electromotility'
Plan of the lecture Afferent innervation Outer hair cell ‘electromotility’ Efferent inhibitory feedback from the brain 1 Will describe results obtained by intracellular voltage-clamp recording from afferent dendrites at point of contact with IHCs. The peculiar advantages of this experiment provide new insights into ribbon function, and perhaps by extension, into mechanisms of transmitter release more generally. 2 Low frequency tones produce ‘phase-locked’ activity in afferent fibers (turtle). 3 Type I afferents contact single inner hair cells and make up 95% of the VIIIth nerve. The main (only?) source of acoustic information to the brain. Type II afferent contact many outer hair cells. Not known what information they carry to the brain, although it is suspected they may only be activated during very loud sound. 4 5 6 This is what the mammalian cochlea (2-3 week old rat) really looks like. These are otic capsules, the bony chamber within the temporal bone of the skull that encloses the inner ear. On the right is the intact capsule. On the left the surgeon (Dr. E. Wersinger, PhD) has dissected away the surrounding bone to reveal the soft tissues of the cochlear spiral. 7 Postsynaptic recordings to study transmitter release. 8 Seen at higher temporal resolution, the majority of synaptic events have classic ‘alpha’ shape with a rapid rise and slower fall. At room temperature these in a fraction of a ms, and fall with a time constant of 1 ms. 9 10 The synaptic currents reverse in sign near 0 mV, so flow through non-selective cation channels. -
Cochlear Implant Guide
Cochlear Implant Guide Ear & Hearing Center at Texas Children’s Hospital® Dear Families, Welcome to the Cochlear Implant Program at Texas Children’s Hospital! Our goal is to provide comprehensive, specialized care for children with severe hearing loss, and help them achieve the best possible communication outcomes. Since our program started in 2001, we have performed more than 700 implants. Your child may be a candidate for a cochlear implant in one or both ears. Cochlear implants, or CIs, are innovative devices which can directly stimulate the auditory nerve and provide access to sound in children with severe or profound hearing loss. The decision about whether to recommend a CI is highly individualized, and requires the input of specialists in multiple areas, including Otolaryngology, Audiology, Speech Pathology, and Neuropsychology, among others. These specialists make up the members of the Cochlear Implant Team. They work in close collaboration to determine who is a candidate for a CI, perform the implantation surgery, and help patients through the rehabilitation afterwards. This guide will help you understand the entire process, who may be considered a CI candidate, the basics of how the device works, how the surgery is done, and the necessary rehabilitation to achieve a successful outcome. Thank you for the opportunity to help your family through this journey. All of our team members are dedicated to helping children with hearing loss achieve their full potential. If you have any questions or concerns, please do not hesitate to contact us. Sincerely, The Cochlear Implant Team at Texas Children’s Hospital Table of Contents 1.