Supplemental Background Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Articles Articles
Articles Articles ALEXI BAKER “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18th Century Résumé Abstract On représente souvent les instruments scientifiques Early modern British “scientific” instruments, including du 18e siècle, y compris les chronomètres de précision, precision timekeepers, are often represented as static, comme des objets statiques, à l’état neuf et complets en pristine, and self-contained in 18th-century depictions eux-mêmes dans les descriptions des débuts de l’époque and in many modern museum displays. In reality, they moderne et dans de nombreuses expositions muséales were almost constantly in physical flux. Movement and d’aujourd’hui. En réalité, ces instruments se trouvaient changing and challenging environmental conditions presque constamment soumis à des courants physiques. frequently impaired their usage and maintenance, Le mouvement et les conditions environnementales especially at sea and on expeditions of “science” and difficiles et changeantes perturbaient souvent leur exploration. As a result, individuals’ experiences with utilisation et leur entretien, en particulier en mer et mending and adapting instruments greatly defined the lors d’expéditions scientifiques et d’exploration. Ce culture of technology and its use as well as later efforts sont donc les expériences individuelles de réparation at standardization. et d’adaptation des instruments qui ont grandement contribué à définir la culture de la technologie. In 1769, the astronomer John Bradley finally the calculation of the distance between the Earth reached the Lizard peninsula in Cornwall and the Sun. Bradley had not needed to travel with his men, instruments, and portable tent as far as many of his Transit counterparts, but observatory after a stressful journey. -
Oxfordshire Local History News
OXFORDSHIRE LOCAL HISTORY NEWS The Newsletter of the Oxfordshire Local History Association Issue 128 Spring 2014 ISSN 1465-469 Chairman’s Musings gaining not only On the night of 31 March 1974, the inhabitants of the Henley but also south north-western part of the Royal County of Berkshire Buckinghamshire, went to bed as usual. When they awoke the following including High morning, which happened to be April Fools’ Day, they Wycombe, Marlow found themselves in Oxfordshire. It was no joke and, and Slough. forty years later, ‘occupied North Berkshire’ is still firmly part of Oxfordshire. The Royal Commission’s report Today, many of the people who live there have was soon followed by probably forgotten that it was ever part of Berkshire. a Labour government Those under forty years of age, or who moved in after white paper. This the changes, may never have known this. Most broadly accepted the probably don’t care either. But to local historians it is, recommendations of course, important to know about boundaries and apart from deferring a decision on provincial councils. how they have changed and developed. But in the 1970 general election, the Conservatives were elected. Prime Minister Edward Heath appointed The manner in which the 1974 county boundary Peter Walker as the minister responsible for sorting the changes came about is little known but rather matter out. He produced another but very different interesting. Reform of local government had been on white paper. It also deferred a decision on provincial the political agenda since the end of World War II. -
THE LONDON GAZETTE, JANUARY 28, 1870. 547 Tiie Date of Such Patents, Pursuant to the Act of York, United States of America.—Dated 19Th the 16Th Viet., C
THE LONDON GAZETTE, JANUARY 28, 1870. 547 tiie date of such Patents, pursuant to the Act of York, United States of America.—Dated 19th the 16th Viet., c. 5, sec. 2, for the week ending January, 1867. the 22nd day of January. 1870. 143. William Bull, of Qualit3"-court, Chancery- 115. John Davies, of No. 24, Ludgate-hill, in the lane, in the county of Middlesex, Civil Engineer, city of London, and Arthur Helwig, of No. 73, for an invention of " improvements in glass Old Kent-road, iu the county of Surrey, En- blowing, and in apparatus therefor."—Commu- gineer, for an invention of "improvements in nicated to him from abroad by Leon Bandoux, the permanent way of railways."—Dated 16th of Charleroi, in the Kingdom of Belgium.— January, lb'67. Dated 19th January, 186/1 116. William Howavlh, Dentist, and Mason Pear- 144. Thomas Willis VVilJin, of Clerkenwell-grcon, son, Overlooker, both of Bradford, in the in the county of Middlesex, for an invention of county of York, and John Pearson, of Thorn- '• improvements in the manufacture of watch ton, in the same county, Jaequard Harness cases, and in apparatus employed therein."— Maker, for an invention of " improvements in Dated 19th January, 1867. Jacquard engines." — Dated 17th January, 147. Robert Harlow, of Heaton Norris, in the 1867. county of Lancaster, Brass Founder, for an in- 119. Ernst Silvern, of Halle, in the Kingdom of vention of " improvements in. the construction Prussia, Architect, for an invention of |S an im- of wash-basins and apparutus for supplying hot proved mode of and apparatus for purifying the and cold water to the same, which improvements impure, waters emanating from sugar-factories are also applicable to apparatus for supplying and oilier industrial establishments applicable water to baths and other similar receptacles."— also to the purification of sewage water."— Dated 21st January, 1867. -
Announces the WATCH EXPERT WITSCHI."'
WATCH BATTERY ANALYZER New Electronic Testing Device For Watch Departments - Tests the Complete Range ofWatch Batteries Features/Benefits: • More than a Cell Tester! - Also senses the movement's electronic pulses to determine if there is an electronic problem, without opening the watch case. • Compact, easy to use modern design. • Enhances customer confi dence that they are receiving more professional service. • Comes with a complete set of easy-to-read operating in structions on the bottom of the unit. • Tests all types of batteries - Mercury, Silver Oxide, High SPECIAL PRICE $44.95 Drain, Silver Oxide, Low with purchase of 150 batteries Drain, and Lithium. $19.50 BATIERY TOOL KIT 1 - 6 pc. Screwdriver Set 1 - Case Opening Knife 1 - Pocket Case Opener for Screw-type Backs L- Spri.ng Bar Tool 1-Plastic Tweezer 1 - Cell Cross-Reference and "How-To" Booklet "'S>.R<@' ... Esslirf :"'} & Cb. National Wats: 800-328-0205 ·~~ ·~. Minnesota Wats: 800-392-0334 1165 MedalllorfDrly~~· &J; PauJ; Minnesota 55120 Order by FAX - 24 Hours A Day: 612-452-4298 P.O. Box 64561 :{~i} p a ulfM~ nesota 55164 Inquiries- Information: 612-452-7180 .~x_;..;.;;: :· ·:··· ·:..; VOLUME 16, NUMBER 2 FEBRUARY 1992 PIVOT WORK FOR THE HOROLOGICAL CLOCKMAKER 14 BASIC TOOLS FOR JEWELRY Official Publication of the American Watchmakers Institute CRAFTSMEN 18 Alice B. Carpenter 2 PRESIDENT'S MESSAGE Henry B. Fried 6 QUESTIONS & ANSWERS A Waterbury Train Engine Clock Fred S. Burckhardt 12 ROCK QUARRY If We Didn't Have to Worry About Time . .. J.M. Huckabee 14 AS A CLOCKMAKER TURNS The Lathe and Pivot Work Marshall F. -
Celestial, Flow, and Mechanical Clocks
recalibration Michael A. Lombardi First in a Series on the Evolution of Time Measurement: Celestial, Flow, and Mechanical Clocks ime is elusive. We are comfortable with the concept of us are many centuries older than the first clocks. The first -in time, but in many ways it defies understanding. We struments that we now recognize as clocks could measure T cannot see, hear, or touch time; we can only observe intervals shorter than one day by dividing the day into smaller its effects. Although we are unable to grasp time with our tra- parts. ditional senses, we can clearly “feel” the passage of time as we Most historians credit the Egyptians with being the first civ- watch night turn to day, the seasons change, or a child grow up. ilization to use clocks. Their first clocks were probably nothing We are also aware that we can’t stop or reverse the continuous more than sticks placed in the ground that indicated time by flow of time, a fact that becomes more obvious as we get older. both the length and direction of their shadow. As early as 1500 Defining time seems impossible, and attempts to do so by phi- BC, the Egyptians had developed a more advanced shadow losophers and scientists fall far short of their goal. clock (Fig. 1). This T-shaped instrument was placed in a sun- In spite of its elusiveness, we can measure time exception- lit area on the ground. In the morning, the crosspiece (AA) was ally well. In fact, we can measure time with more resolution set to face east and then rotated in the afternoon to face west. -
Harrison's Wooden Clock At
Harrison’s Wooden Clock at 300 A Visit to Nostell Priory Eve Makepeace o celebrate the 300th birthday of their John Harrison T wooden clock, Nostell Priory, wanted to really put it in the spotlight. They have certainly achieved that and widened its appeal to old and young alike. For many years the clock has stood in a fairly unassuming spot within the Priory where only the eagle-eyed would realise its importance. That has all changed and the clock, one of only three surviving wooden examples by Harrison, is now at the centre of a new exhibition celebrating his skill in the place where he was born. In a custom-made display, the clock is shown without its case to highlight the beautiful wooden parts, lighting drawing the eye to the delicacy of the piece, Figure 1. Alongside the clock, visitors can also watch a specially commissioned film about Harrison and view a series of displays which celebrate his work. These include a rarely seen section of the original case, complete with calculations in Harrison’s own hand, kindly loaned by The Worshipful Company of Clockmakers. In a breakaway from the long-held assumption that National Trust properties are ‘look but don’t touch’, there are the parts of a clock displayed in a way that they can be held, examined and appreciated, Figure 2. Of particular interest to me, especially in these times of questioning ‘Conservation or Preservation?’, there is a board asking for input from visitors on their thoughts regarding the care and preservation Figure 1. of the clock. -
John Harrison (1693-1776) and the Heroics of Longitude
DOI 10.6094/helden.heroes.heros./2014/02/09 Ulrike Zimmermann 119 John Harrison (1693-1776) and the Heroics of Longitude 1. A Symposium and a Rediscovery bestseller, and Dava Sobel embarked on a car eer as a wellknown and respected author of 2 When American journalist Dava Sobel attended popular science books. the Longitude Symposium of Harvard Univer Dava Sobel’s first subject already was his sity at Cambridge, Massachusetts, in November tory, albeit part of an unaccountably hidden or 1993, she did not expect anything decisive to at least underrated history. John Harrison was a come out of either the conference or her attend carpenter and selftaught clockmaker, who was ance. “500 people from seventeen countries” born in Yorkshire and spent his early life in Bar came together to hold “a conference about the rowuponHumber, North Lincolnshire. He would history of finding longitude at sea,” W. H. An prob ably have spent his life in obscur ity had he drewes, curator of the scientific instruments col not solved one of the major techno logical prob lec tion at Harvard, notes in his introduction to lems of his time, the problem of how to determine the conference proceedings (Andrewes, Intro a ship’s eastwest position, its longitude, at sea. duction 1). Despite the sizable number of par Harrison has a firm place in the his tory of navi ticipants, the Longitude Symposium was at first gation, and would have been known amongs t sight a convention of specialists sharing their horologists, clock and watch makers, and nava l knowledge and discussing finer points of their historians. -
London Metropolitan Archives Daniels, George
LONDON METROPOLITAN ARCHIVES Page 1 DANIELS, GEORGE {DR} {HOROLOGIST} LMA/4636 Reference Description Dates WATCH AND CHRONOMETER MAKER, INVENTOR AND CONSULTANT TRAINING LMA/4636/A/01/001 Northampton Polytechnic, St John Street, 1951 - 1952 Not available for online ordering. Islington Evening Course 'H.3' on horology: Please see staff Exercise book Containing Daniels' calculations, diagrams and formula concerning balance, motions and other topics. Includes receipt for fees paid 1 volume LMA/4636/A/01/002 National Physical Laboratory Certificate of 1952 Feb 8 Not available for online ordering. Examination of a silver split-seconds Please see staff chronograph watch Movement number 201172. With results of test and performance 1 document WATCH AND CHRONOMETER MAKER AND RESTORER, AGENT FOR BREGUET OF PARIS LMA/4636/A/02/001 Duke of Wellington, Apsley House, Piccadilly, 1965 - 1966 Not available for online ordering. Westminster Please see staff Letters to Daniels concerning his orders for Breguet watch repairs 2 documents LMA/4636/A/02/002 'Harrison number 5' test rates 1967 Nov - Not available for online ordering. On letter head 1967 Dec Please see staff 3 documents LMA/4636/A/02/003 Watch rate certificate for automatic centre 1969 Apr 29 Not available for online ordering. second calendar watch Please see staff Certificate number 2722211, issued by Swiss Institute for Official Chronometer tests. Maker: Ulysse Nardin SA, Le Locle, Switzerland 1 document DRAWINGS AND TECHNICAL INFORMATION Co-axial escapement LMA/4636/A/03/01/001 Showing the action of the escapement 1981 - 1999 Not available for online ordering. Original drawings by Daniels, prints and Please see staff photocopies, early designs showing balance turning and layout for Patek Phillipe (1981). -
John Jefferys, London; a Watchmaker of Repute, but Did He Actually Make Longcase Clocks?
John Jefferys, London; a watchmaker of repute, but did he actually make longcase clocks? Watch and Clock maker of St’ Andrews, Holborn Freeman of the Clockmakers Company of London. Born 1701, Died 1754 Sometimes a really interesting clock comes into the workshop for repair and restoration work, in longcase clock terms this one is a bit special and of great quality. There are very few clocks known and signed by John Jefferys, the style of the work in this clock is without doubt grounded in the workshops of Thomas Tompion and George Graham but at this point it is difficult to say if Jefferys went outside his normal speciality of watch making to make this longcase clock. The longcase clock in question had not run for over 30 years; the owner wanted me to restore it to full working order and research the maker. When the clock came into my workshop in April 2010 it was in a very poor condition, several parts were missing, and the clock was suffering greatly from verdi-gris and brass stress fractures, both these problems needing urgent attention to conserve the clock for the future. The very nice quality English walnut case had, like the movement, been bodge repaired over many years of its life, some of these old repairs now needing further work. This clock was made in the 1740’s; note the simplification of the dial for a new age of elegance. 1 Who was John Jefferys, where did he come from and why so famous? John was born in 1701, the son of John and Jane Jefferys who lived in a house called Darbies in the village of Midgham in the county of Berkshire, the house probably obtaining its name from the Earl of Derby, Henry de Gosmont who held land here in the middle of the 14th century. -
The Royal Observatory Greenwich, Its History and Work
xiSS* i&S* cO^' <py" cjs- D/^ (&?* oiV* T v. v. > v JHDER-f^a-s {^m b#tt+j+jiLe.. ASTRONOMY LIBRARY WELLESLEY COLLEGE LIBRARY PRESENTED Br ^SOScj Wise fearing leajtefh to hlqkev levels. ana to farmer shores -w^vcwwv OC^^U- trfrJLtst** - ^JfU^CL^^y y i^rt>^- V FLAMSTEED, THE FIRST ASTRONOMER ROYAL. {From the portrait in the ' Historia Ccelestis .') THE ROYAL OBSERVATORY GREENWICH A GLANCE AT ITS HISTORY AND WORK EY E. WALTER MAUNDER, F.R.A.S. WITH MANY PORTRAITS AXD ILLUSTRATIONS FROM OLD PRINTS AND ORIGINAL PHOTOGRAPHS LONDON THE RELIGIOUS TRACT SOCIETY 56 Paternoster Row, and 65 St. Paul's Churchyard 1900 i*\So t> LONDON" : PRINTED BY WILLIAM CLOWES AND SONS, LIMITED, STAMFORD STREET AND CHARING CROSS. ^HA 92 PREFACE I WAS present on one occasion at a popular lecture delivered in Greenwich, when the lecturer referred to the way in which so many English people travel to the ends of the earth in order to see interesting or wonderful places, and yet entirely neglect places of at least equal importance in their own land. 1 Ten minutes' walk from this hall,' he said, ' is Greenwich Observatory, the most famous observatory in the world. Most of you see it every day of your lives, and yet I dare say that not one in a hundred of you has ever been inside.' Whether the lecturer was justified in the general scope of his stricture or not, the particular instance he selected was certainly unfortunate. It was not the fault of the majority of his audience that they had not entered Greenwich Observatory, since the regulations by which it is governed forbade them doing so. -
1.1 John Harrison
Name: ___________________________________________ Mapping the Earth Date: __________________________ Period: ___________ The Physical Setting: Earth Science Supplemental: John Harrison Biography John Harrison Biography Nancy Giges - www.asme.org John Harrison (1693 – 1776), English inventor and clockmaker over- came one of the most challenging problems of the 18th century: how to determine the longitude of a ship at sea, saving many lives. In so doing, he had to defy the establishment, fight to collect a huge prize offered by Parliament, and wait for decades before receiving the recognition he deserved. Biographers say Harrison's fascination with watches, clocks, and other timepieces can be traced to age six when he was sick with smallpox, and he entertained himself with a watch his parents placed on his pil- low. Watches in those days were very large, and while not very accu- rate, their works were visible and one could see a relationship between the loud ticking and the watch's mechanical action. Although a carpenter by trade, Harrison's father occasionally repaired clocks, and young John assisted his father in his work as soon as he was old enough. As he grew older, Harrison combined his interest in woodworking and timepieces to begin building clocks and completed his first longcase clock, more commonly called a grandfather clock, in 1713 at the age of 20. It was just a year later that Parliament offered a prize of 20,000 pounds to calculate a ship's precise longitude at sea. Harrison decided to go for it. Sailors knew the principle of calculating longitude: that for every 15 degrees travelled eastward, the local time moved forward one hour. -
The Early History of Chronometers : a Background Study Related to the Voyages of Cook, Bligh, and Vancouver
The Early History of Chronometers : A Background Study Related to the Voyages of Cook, Bligh, and Vancouver SAMUEL L. MAGE Y The purpose of this paper is to outline the historical developments relat ing to the chronometer, which played so crucial a part in the voyages of discovery made by Cook, Bligh and Vancouver. The inventor of the first successful chronometer — a technological marvel of precision watchmak ing — was John Harrison. His most famous model was the prize-winning H4 of 1759. Kendall's copy of this, known as Ki, helped Cook to plot the first charts of New Zealand and Australia. Ki was also used by Van couver, while K2 was once carried by Bligh on the Bounty.1 It is generally well known that in 1714 the British Admiralty offered a prize of twenty thousand pounds (possibly a million dollars in modern terms) for a method that could determine longitude on board a ship to within half a degree (or approximately thirty miles) on a passage to the West Indies. It is, however, less well appreciated how important a part the need for deter mining longitude had already played in the process of developing accurate clocks and watches for use on land as well as on the sea. Commander Waters has pointed out that "By about 1254 the Medi terranean seaman" knew his "direction between places to within less than 30 of arc", as well as his distances; "By about 1275 ... he had also a remarkably accurate sea chart of the whole of the Mediterranean and Black Sea coastlines", together with the sea compass and relevant table.2 Though there are claims that the sea compass was a European inven tion of slightly earlier date, Price feels that the use of the loadstone in navigation was probably of Chinese origin.