Phylogenies and Pheromones

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenies and Pheromones Phylogenies and pheromones Defensive symbionts, phylogenetic affiliations and olfactory communication in beewolves (Philanthini, Hymenoptera, Crabronidae) Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Biologie und Vorklinische Medizin der Universität Regensburg vorgelegt von Kerstin Roeser-Mueller aus München im Jahr 2011 Das Promotionsgesuch wurde eingereicht am 27.9.11 Die Arbeit wurde angeleitet von: Prof. Dr. Erhard Strohm Unterschrift: If you find yourself in a hole, you must stop digging. Will Rogers Für den kleinen Moritz ______________________________________________________________TABLE OF CONTENTS TABLE OF CONTENTS LIST OF PUBLICATIONS ................................................................................................... 3 CHAPTER 1 - GENERAL INTRODUCTION............................................................................ 4 1.1 Symbioses ................................................................................................................ 4 1.2 Sexual selection, pheromones and temperature ............................................................. 6 1.3 The genus Philanthus .................................................................................................. 9 1.4 Outline of the thesis ................................................................................................. 13 CHAPTER 2 - CANDIDATUS STREPTOMYCES PHILANTHI’, AN ENDOSYMBIOTIC STREPTOMYCETE IN THE ANTENNAE OF PHILANTHUS DIGGER WASPS .......................... 15 2.1 Summary ................................................................................................................ 15 2.2 Introduction ............................................................................................................ 15 2.3 Methods.................................................................................................................. 16 2.4 Results ................................................................................................................... 19 2.5 Discussion............................................................................................................... 25 2.6 Description of ‘ Candidatus Streptomyces philanthi’....................................................... 27 2.7 Online supplementary data........................................................................................ 28 CHAPTER 3 - 65 MILLION YEARS OF DEFENSIVE ALLIANCE: MOLECULAR PHYLOGENY OF BEEWOLVES REVEALS THE AGE OF A PROTECTIVE SYMBIOSIS WITH STREPTOMYCES BACTERIA....................................................................................................................... 31 3.1 Abstract.................................................................................................................. 31 3.2 Introduction ............................................................................................................ 32 3.3 Materials and methods.............................................................................................. 33 3.4 Results ................................................................................................................... 38 3.5 Discussion............................................................................................................... 44 3.6 Acknowledgements................................................................................................... 47 3.7 Supplementary material............................................................................................ 48 CHAPTER 4 - LARVAL REARING TEMPERATURE INFLUENCES AMOUNT AND COMPOSITION OF THE MARKING PHEROMONE OF MALE EUROPEAN BEEWOLVES (PHILANTHUS TRIANGULUM )................................................................................................................ 50 4.1 Abstract.................................................................................................................. 50 4.2 Introduction ............................................................................................................ 51 4.3 Materials and methods.............................................................................................. 53 4.4 Results ................................................................................................................... 55 4.5 Discussion............................................................................................................... 60 4.6 Acknowledgements................................................................................................... 63 1 ______________________________________________________________TABLE OF CONTENTS CHAPTER 5 - GENERAL DISCUSSION .............................................................................. 64 5.1 Symbiosis between beewolves and Streptomyces bacteria............................................. 64 5.2 The male pheromone and the impact of rearing temperature......................................... 69 5.3 Final conclusions and future prospects ........................................................................ 71 CHAPTER 6 - SUMMARY .................................................................................................. 72 6.1 Symbiosis between beewolves and Streptomyces bacteria............................................. 72 6.2 Male pheromone and temperature effects during larval development.............................. 73 CHAPTER 7 - ZUSAMMENFASSUNG.................................................................................. 74 7.1 Symbiose zwischen Bienenwölfen und Streptomyceten ................................................. 74 7.2 Männchenpheromon und Temperatureinfluss während der Larvalentwicklung .................. 75 REFERENCES................................................................................................................... 76 DANKSAGUNG………………………………………………………………………………………………………97 ERKLÄRUNG…………………………………………………………………………………………………………99 2 ____________________________________________________________LIST OF PUBLICATIONS LIST OF PUBLICATIONS This thesis is based on the following manuscripts: Kaltenpoth M, Goettler W, Dale C, Stubblefield JW, Herzner G., Roeser-Mueller K, Strohm, E (2006) 'Candidatus Streptomyces philanthi', an endosymbiotic streptomycete in the antennae of Philanthus digger wasps. International Journal of Systematic and Evolutionary Microbiology 56 (6): 1403-1411 (chapter 2). Roeser-Mueller K, Datzmann T, Seger J, Stubblefield JW, Herzner G, Strohm E, Kaltenpoth M (in preparation) 65 million years of defensive alliance: Molecular phylogeny of beewolves reveals the age of a protective symbiosis with Streptomyces bacteria (chapter 3). Roeser-Mueller K, Strohm E, Kaltenpoth M (2010) Larval rearing temperature influences amount and composition of the marking pheromone of the male beewolf, Philanthus triangulum . Journal of Insect Science 10:74 available online: insectscience.org/10.74 (chapter 4). 3 ______________________________________________________________________CHAPTER 1 CHAPTER 1 GENERAL INTRODUCTION The fitness of an individual and its maximisation are of central importance for evolutionary processes. There are different ways how organisms can increase their fitness and pass on their genes to the next generation. This thesis deals with two such aspects that might contribute to the fitness of an organism: an association with symbionts and sexual selection in courtship pheromones. First, the defensive symbiosis between beewolf digger wasps (Hymenoptera, Crabronidae) and Streptomyces bacteria is addressed. Another part of this thesis deals with the sex pheromone of male beewolves and how it is influenced by the temperature an individual is exposed to during development. In addition to these two fitness relevant traits, a reconstruction of the phylogenetic relationships among beewolves and closely related species is presented, that provides a basis for understanding the evolution of both the symbiosis and the composition of the sex pheromones in beewolves. The present chapter summarizes the current knowledge on symbioses and pheromones, in particular their relevance for mate choice, and it ends with an overview of the biology of beewolves. 1.1 Symbioses Symbioses have played an important role in the evolution of life on earth, and examples can be found in all kingdoms of microorganisms, plants and animals (Margulis 1999). According to the original definition of de Bary (1879), the term “symbiosis” encompasses the living together of unlike organisms over significant parts of their live span. This definition includes the whole range of biological interactions from mutualistic relationships via commensalism to parasitism, without specifying costs and benefits for the partners involved in the association (Douglas 2010). However, according to the most common definition of “symbiosis” in the current literature (Douglas 2010), in the present thesis the term “symbiosis” is used in its stricter sense, including only mutualistic associations. The variety of symbiotic interactions is characterized by different traits and definitions. Regarding the degree of interdependence between the symbiotic partners symbioses are either classified as facultative or obligate: Associations with a low dependency on the partner are defined as facultative, symbioses with a strong interdependence, meaning that a symbiont cannot survive without its partner, are defined as obligate (Douglas 2010; Ishikawa 2003). Concerning the location of
Recommended publications
  • Bibliographic Guide to the Terrestrial Arthropods of Michigan
    The Great Lakes Entomologist Volume 16 Number 3 - Fall 1983 Number 3 - Fall 1983 Article 5 October 1983 Bibliographic Guide to the Terrestrial Arthropods of Michigan Mark F. O'Brien The University of Michigan Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation O'Brien, Mark F. 1983. "Bibliographic Guide to the Terrestrial Arthropods of Michigan," The Great Lakes Entomologist, vol 16 (3) Available at: https://scholar.valpo.edu/tgle/vol16/iss3/5 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. O'Brien: Bibliographic Guide to the Terrestrial Arthropods of Michigan 1983 THE GREAT LAKES ENTOMOLOGIST 87 BIBLIOGRAPHIC GUIDE TO THE TERRESTRIAL ARTHROPODS OF MICHIGAN Mark F. O'Brienl ABSTRACT Papers dealing with distribution, faunal extensions, and identification of Michigan insects and other terrestrial arthropods are listed by order, and cover the period of 1878 through 1982. The following bibliography lists the publications dealing with the distribution or identification of insects and other terrestrial arthropods occurring in the State of Michigan. Papers dealing only with biological, behavioral, or economic aspects are not included. The entries are grouped by orders, which are arranged alphabetically, rather than phylogenetic ally , to facilitate information retrieval. The intent of this paper is to provide a ready reference to works on the Michigan fauna, although some of the papers cited will be useful for other states in the Great Lakes region.
    [Show full text]
  • Changes in the Insect Fauna of a Deteriorating Riverine Sand Dune
    ., CHANGES IN THE INSECT FAUNA OF A DETERIORATING RIVERINE SAND DUNE COMMUNITY DURING 50 YEARS OF HUMAN EXPLOITATION J. A. Powell Department of Entomological Sciences University of California, Berkeley May , 1983 TABLE OF CONTENTS INTRODUCTION 1 HISTORY OF EXPLOITATION 4 HISTORY OF ENTOMOLOGICAL INVESTIGATIONS 7 INSECT FAUNA 10 Methods 10 ErRs s~lected for compar"ltive "lnBlysis 13 Bio1o~ica1 isl!lnd si~e 14 Inventory of sp~cies 14 Endemism 18 Extinctions 19 Species restricted to one of the two refu~e parcels 25 Possible recently colonized species 27 INSECT ASSOCIATES OF ERYSIMUM AND OENOTHERA 29 Poll i n!ltor<'l 29 Predqt,.n·s 32 SUMMARY 35 RECOm1ENDATIONS FOR RECOVERY ~4NAGEMENT 37 ACKNOWT.. EDGMENTS 42 LITERATURE CITED 44 APPENDICES 1. T'lbles 1-8 49 2. St::ttns of 15 Antioch Insects Listed in Notice of 75 Review by the U.S. Fish "l.nd Wildlife Service INTRODUCTION The sand dune formation east of Antioch, Contra Costa County, California, comprised the largest riverine dune system in California. Biogeographically, this formation was unique because it supported a northern extension of plants and animals of desert, rather than coastal, affinities. Geologists believe that the dunes were relicts of the most recent glaciation of the Sierra Nevada, probably originating 10,000 to 25,000 years ago, with the sand derived from the supratidal floodplain of the combined Sacramento and San Joaquin Rivers. The ice age climate in the area is thought to have been cold but arid. Presumably summertime winds sweeping through the Carquinez Strait across the glacial-age floodplains would have picked up the fine-grained sand and redeposited it to the east and southeast, thus creating the dune fields of eastern Contra Costa County.
    [Show full text]
  • Checklist of the Spheciform Wasps (Hymenoptera: Crabronidae & Sphecidae) of British Columbia
    Checklist of the Spheciform Wasps (Hymenoptera: Crabronidae & Sphecidae) of British Columbia Chris Ratzlaff Spencer Entomological Collection, Beaty Biodiversity Museum, UBC, Vancouver, BC This checklist is a modified version of: Ratzlaff, C.R. 2015. Checklist of the spheciform wasps (Hymenoptera: Crabronidae & Sphecidae) of British Columbia. Journal of the Entomological Society of British Columbia 112:19-46 (available at http://journal.entsocbc.ca/index.php/journal/article/view/894/951). Photographs for almost all species are online in the Spencer Entomological Collection gallery (http://www.biodiversity.ubc.ca/entomology/). There are nine subfamilies of spheciform wasps in recorded from British Columbia, represented by 64 genera and 280 species. The majority of these are Crabronidae, with 241 species in 55 genera and five subfamilies. Sphecidae is represented by four subfamilies, with 39 species in nine genera. The following descriptions are general summaries for each of the subfamilies and include nesting habits and provisioning information. The Subfamilies of Crabronidae Astatinae !Three genera and 16 species of astatine wasps are found in British Columbia. All species of Astata, Diploplectron, and Dryudella are groundnesting and provision their nests with heteropterans (Bohart and Menke 1976). Males of Astata and Dryudella possess holoptic eyes and are often seen perching on sticks or rocks. Bembicinae Nineteen genera and 47 species of bembicine wasps are found in British Columbia. All species are groundnesting and most prefer habitats with sand or sandy soil, hence the common name of “sand wasps”. Four genera, Bembix, Microbembex, Steniolia and Stictiella, have been recorded nesting in aggregations (Bohart and Horning, Jr. 1971; Bohart and Gillaspy 1985).
    [Show full text]
  • Arquivos De Zoologia MUSEU DE ZOOLOGIA DA UNIVERSIDADE DE SÃO PAULO
    Arquivos de Zoologia MUSEU DE ZOOLOGIA DA UNIVERSIDADE DE SÃO PAULO ISSN 0066-7870 ARQ. ZOOL. S. PAULO 37(1):1-139 12.11.2002 A SYNONYMIC CATALOG OF THE NEOTROPICAL CRABRONIDAE AND SPHECIDAE (HYMENOPTERA: APOIDEA) SÉRVIO TÚLIO P. A MARANTE Abstract A synonymyc catalogue for the species of Neotropical Crabronidae and Sphecidae is presented, including all synonyms, geographical distribution and pertinent references. The catalogue includes 152 genera and 1834 species (1640 spp. in Crabronidae, 194 spp. in Sphecidae), plus 190 species recorded from Nearctic Mexico (168 spp. in Crabronidae, 22 spp. in Sphecidae). The former Sphecidae (sensu Menke, 1997 and auct.) is divided in two families: Crabronidae (Astatinae, Bembicinae, Crabroninae, Pemphredoninae and Philanthinae) and Sphecidae (Ampulicinae and Sphecinae). The following subspecies are elevated to species: Podium aureosericeum Kohl, 1902; Podium bugabense Cameron, 1888. New names are proposed for the following junior homonyms: Cerceris modica new name for Cerceris modesta Smith, 1873, non Smith, 1856; Liris formosus new name for Liris bellus Rohwer, 1911, non Lepeletier, 1845; Liris inca new name for Liris peruanus Brèthes, 1926 non Brèthes, 1924; and Trypoxylon guassu new name for Trypoxylon majus Richards, 1934 non Trypoxylon figulus var. majus Kohl, 1883. KEYWORDS: Hymenoptera, Sphecidae, Crabronidae, Catalog, Taxonomy, Systematics, Nomenclature, New Name, Distribution. INTRODUCTION years ago and it is badly outdated now. Bohart and Menke (1976) cleared and updated most of the This catalog arose from the necessity to taxonomy of the spheciform wasps, complemented assess the present taxonomical knowledge of the by a series of errata sheets started by Menke and Neotropical spheciform wasps1, the Crabronidae Bohart (1979) and continued by Menke in the and Sphecidae.
    [Show full text]
  • Insects and Related Arthropods Associated with of Agriculture
    USDA United States Department Insects and Related Arthropods Associated with of Agriculture Forest Service Greenleaf Manzanita in Montane Chaparral Pacific Southwest Communities of Northeastern California Research Station General Technical Report Michael A. Valenti George T. Ferrell Alan A. Berryman PSW-GTR- 167 Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: U.S. Department of Agriculture PO Box 245, Berkeley CA 9470 1 -0245 Abstract Valenti, Michael A.; Ferrell, George T.; Berryman, Alan A. 1997. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California. Gen. Tech. Rep. PSW-GTR-167. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture; 26 p. September 1997 Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level wereinventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the greenleaf manzanita community. Specific host relationships are included for some predators and parasitoids. Herbivores, predators, and parasitoids comprised the majority (80 percent) of identified insects and related taxa. Retrieval Terms: Arctostaphylos patula, arthropods, California, insects, manzanita The Authors Michael A. Valenti is Forest Health Specialist, Delaware Department of Agriculture, 2320 S. DuPont Hwy, Dover, DE 19901-5515. George T. Ferrell is a retired Research Entomologist, Pacific Southwest Research Station, 2400 Washington Ave., Redding, CA 96001. Alan A. Berryman is Professor of Entomology, Washington State University, Pullman, WA 99164-6382. All photographs were taken by Michael A. Valenti, except for Figure 2, which was taken by Amy H.
    [Show full text]
  • Sphecos: a Forum for Aculeate Wasp Researchers
    SPHECOS Number 12 - June 1986 , A Forum for Aculeate Wasp Researchers Arnold S. Menke, Editor , Terry Nuhn, E(lj_torial assistant Systematic Entcnology Laboratory Agricultural Research Service, USDA c/o U. s. National Museum of Natural History \olashington OC 20560 (202) 382 1803 Editor's Ramblings Rolling right along, here is issue 12! Two issues of that wonderful rag called Sphecos for the price of one! This number contains a lot of material on collections, collecting techniques, and collecting reports. Recent literature, including another vespine suppliment by Robin Edwards, rounds off this issue. Again I owe a debt of thanks to Terry Nuhn for typing nearly all of this. Rebecca Friedman and Ludmila Kassianoff helped with some French and Russian translations, respectively. Research News John Wenzel (Snow Entomological Museum, Univ. of Kansas, Lawrence, Kansas 66045) writes: "I am broadly interested in problems of chemical communication, mating behavior, sex ratio, population genetics and social behavior. I am currently working on a review of vespid nest architecture and hope that I can contribute something toward resolution of the relationships of the various genera of the tribe Polybiini. After visiting the MCZ, AMNH and the USNM I conclude that there are rather few specimens of nests in the major museums and I am very interested in hearing from anyone who has photos or reliable notes on nests that are anomolous in form, placement, or otherwise depart from expectations. I am especially interested in seeing some nests or fragments of the brood region of any Polybioides or Parapolybia. Tarlton Rayment Again RAYMENT'S DRAWINGS - ACT 3 by Roger A.
    [Show full text]
  • O20387 Polidori, C., Santoro, D. and Blüthgen, N. 2013. Does Prey
    Oikos o20387 Polidori, C., Santoro, D. and Blüthgen, N. 2013 . Does prey mobility affect niche width and individual specialization in hunting wasps? A network-based analysis. – Oikos 122 385: –394. Appendix A1 Table A1. Details on prey taxa hunted by wasps of the studied populations/periods, together with biological information and consequent assignment to the ‘weak mobility’ or to the ‘high mobility’ category. References for prey biology are also reported. If prey genera do not appear is because the sample was just separated in morphospecies within each prey family. Wasp species/population Prey taxa Prey biology Mobility References assignment Bembix merceti I Diptera in the families Bombyliidae, All members of Brachycera, which, in High Yeates and Wiegmann Calliphoridae, Stratiomyidae, contrast to Nematocera (lower Diptera) (eds) 2005 Syrphidae, Tabanidae are fast-flying insects; adults feeding on flowers (Tabanidae are vertebrate blood- suckers) and larviposit in carrion or in insect hosts nests Bembix merceti II Diptera in the families Bombyliidae, as above High Yeates and Wiegmann Calliphoridae, Sarcophagidae, (eds) 2005 Stratiomyidae, Syrphidae, Tachinidae Bembix sinuata Diptera in the families Tachinidae, as above High Yeates and Wiegmann Sarcophagidae, Bombyliidae, (eds) 2005 Calliphoridae, Syrphidae, Therevidae Bembix zonata Diptera in the families Bombyliidae, as above High Yeates and Wiegmann Asylidae, Sarcophagidae, Syrphidae, (eds) 2005 Tachinidae, Therevidae Cerceris arenaria Coleoptera in the family Curculionidae All phytophagous
    [Show full text]
  • Sphecos: a Forum for Aculeate Wasp Researchers
    SPHECOS Number 4 - January 1981 A Newsletter for Aculeate Wasp Researchers Arnold S. Menke, editor Systematic Entomology Laboratory, USDA c/o u. S. National Museum of Natural History washington DC 20560 Notes from the Editor This issue of Sphecos consists mainly of autobiographies and recent literature. A highlight of the latter is a special section on literature of the vespid subfamily Vespinae compiled and submitted by Robin Edwards (seep. 41). A few errors in issue 3 have been brought to my attention. Dr. Mickel was declared to be a "multillid" expert on page l. More seriously, a few typographical errors crept into Steyskal's errata paper on pages 43-46. The correct spellings are listed below: On page 43: p. 41 - Aneusmenus --- p. 108 - Zaschizon:t:x montana and z. Eluricincta On page 45: p. 940 - ----feminine because Greek mastix --- p. 1335 - AmEl:t:oEone --- On page 46: p. 1957 - Lasioglossum citerior My apologies to Dr. Mickel and George Steyskal. I want to thank Helen Proctor for doing such a fine job of typing the copy for Sphecos 3 and 4. Research News Ra:t:mond Wah is, Zoologie generale et Faunistique, Faculte des Sciences agronomiques, 5800 GEMBLOUX, Belgium; home address: 30 rue des Sept Collines 4930 CHAUDFONTAINE, Belgium (POMPILIDAE of the World), is working on a revision of the South American genus Priochilus and is also preparing an annotated key of the members of the Tribe Auplopodini in Australia (AuElOEUS, Pseudagenia, Fabriogenia, Phanagenia, etc.). He spent two weeks in London (British Museum) this summer studying type specimens and found that Turner misinterpreted all the old species and that his key (1910: 310) has no practical value.
    [Show full text]
  • Scientific Papers
    QL 568 .S7 M35 1999 Scientific Papers Natural History Museum The University of Kansas 10 December 1999 Number 14:1-55 Phylogenetic Relationships and Classification of the Major Lineages of Apoidea (Hymenoptera), with Emphasis on the Crabronid Wasps 1 By Gabriel A. R. Melo2 Division of Entomology, Natural History Museum The University of Kansas, Lawrence, Kansas 66045, USA CONTENTS ABSTRACT 2 INTRODUCTION 2 Classification and Phylogenetic Relationships within the Apoidea 2 The Present Study 4 Acknowledgments 4 MATERIAL AND METHODS 4 Selection of Representative Taxa 4 Dissection of Adult Specimens 6 Character Selection and Delimitation 6 Terminology 8 Larval and Behavioral Characters 8 Data Analysis 8 CHARACTERS AND CODES FOR THEIR STATES II RESULTS 23 DISCUSSION 23 Choice of Analytical Method 23 Apoidea and its basal clades 26 Heterogynaidae 34 Ampulicidae 34 'Contribution Number 3234 from the Snow Entomological Division. Natural History Museum, and Department of Entomology, The University of Kansas. -Present address: Departamento de Biologia, FFCLRP.Universidade de Sao Paulo. Av. Bandeirantes 3900.14040-901, Ribeirao Preto, SP, Brazil. ISSN No. 1094-0782 © Natural History Museum, The University of Kansas QL 568 .S7 M3 5 1999 Scientific Papers Natural History Museum The University of Kansas 10 December 1999 Number 14:1-55 Phylogenetic Relationships and Classification of the Major Lineages of Apoidea (Hymenoptera), with Emphasis on the Crabronid Wasps 1 By Gabriel A. R. Melo2 Division of Entomology, Natural History Museum The University
    [Show full text]
  • Protective Streptomyces in Beewolves
    Protective Streptomyces in beewolves - Ecology, evolutionary history and specificity of symbiont-mediated defense in Philanthini wasps (Hymenoptera, Crabronidae) - Dissertation zur Erlangung des akademischen Grades „doctor rerum naturalium“ (Dr. rer. nat.) vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena von Dipl.-Biol. Sabrina Koehler geboren am 07.11.1982 in Zwickau Protective Streptomyces in beewolves - Ecology, evolutionary history and specificity of symbiont-mediated defense in Philanthini wasps (Hymenoptera, Crabronidae) - Seit 1558 Dissertation zur Erlangung des akademischen Grades „doctor rerum naturalium“ (Dr. rer. nat.) vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena von Dipl.-Biol. Sabrina Koehler geboren am 07.11.1982 in Zwickau Das Promotionsgesuch wurde eingereicht und bewilligt am: 14. Oktober 2013 Gutachter: 1) Dr. Martin Kaltenpoth, Max-Planck-Institut für Chemische Ökologie, Jena 2) Prof. Dr. Erika Kothe, Friedrich-Schiller-Universität, Jena 3) Prof. Dr. Cameron Currie, University of Wisconsin-Madison, USA Das Promotionskolloquium wurde abgelegt am: 03.März 2014 “There is nothing like looking, if you want to find something. You certainly usually find something, if you look, but it is not always quite the something you were after.” The Hobbit, J.R.R. Tolkien “We are symbionts on a symbiotic planet, and if we care to, we can find symbiosis everywhere.” Symbiotic Planet, Lynn Margulis CONTENTS LIST OF PUBLICATIONS ........................................................................................
    [Show full text]
  • The History of Early Bee Diversification Based on Five Genes Plus Morphology
    The history of early bee diversification based on five genes plus morphology Bryan N. Danforth†, Sedonia Sipes‡, Jennifer Fang§, and Sea´ n G. Brady¶ Department of Entomology, 3119 Comstock Hall, Cornell University, Ithaca, NY 14853 Communicated by Charles D. Michener, University of Kansas, Lawrence, KS, May 16, 2006 (received for review February 2, 2006) Bees, the largest (>16,000 species) and most important radiation of tongued (LT) bee families Megachilidae and Apidae and the pollinating insects, originated in early to mid-Cretaceous, roughly short-tongued (ST) bee families Colletidae, Stenotritidae, Andreni- in synchrony with the angiosperms (flowering plants). Under- dae, Halictidae, and Melittidae sensu lato (s.l.)ʈ (9). Colletidae is standing the diversification of the bees and the coevolutionary widely considered the most basal family of bees (i.e., the sister group history of bees and angiosperms requires a well supported phy- to the rest of the bees), because all females and most males possess logeny of bees (as well as angiosperms). We reconstructed a robust a glossa (tongue) with a bifid (forked) apex, much like the glossa of phylogeny of bees at the family and subfamily levels using a data an apoid wasp (18–22). set of five genes (4,299 nucleotide sites) plus morphology (109 However, several authors have questioned this interpretation (9, characters). The molecular data set included protein coding (elon- 23–27) and have hypothesized that the earliest branches of bee gation factor-1␣, RNA polymerase II, and LW rhodopsin), as well as phylogeny may have been either Melittidae s.l., LT bees, or a ribosomal (28S and 18S) nuclear gene data.
    [Show full text]
  • An Endosymbiotic Streptomycete in the Antennae of Philanthus Digger Wasps
    International Journal of Systematic and Evolutionary Microbiology (2006), 56, 1403–1411 DOI 10.1099/ijs.0.64117-0 ‘Candidatus Streptomyces philanthi’, an endosymbiotic streptomycete in the antennae of Philanthus digger wasps Martin Kaltenpoth,1 Wolfgang Goettler,1,2 Colin Dale,3 J. William Stubblefield,4 Gudrun Herzner,2 Kerstin Roeser-Mueller1 and Erhard Strohm2 Correspondence 1University of Wu¨rzburg, Department for Animal Ecology and Tropical Biology, Am Hubland, Martin Kaltenpoth D-97074 Wu¨rzburg, Germany martin.kaltenpoth@biozentrum. 2University of Regensburg, Department of Zoology, D-93040 Regensburg, Germany uni-wuerzburg.de 3University of Utah, Department of Biology, 257 South 1400 East, Salt Lake City, UT 84112, USA 4Fresh Pond Research Institute, 173 Harvey Street, Cambridge, MA 02140, USA Symbiotic interactions with bacteria are essential for the survival and reproduction of many insects. The European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae) engages in a highly specific association with bacteria of the genus Streptomyces that appears to protect beewolf offspring against infection by pathogens. Using transmission and scanning electron microscopy, the bacteria were located in the antennal glands of female wasps, where they form dense cell clusters. Using genetic methods, closely related streptomycetes were found in the antennae of 27 Philanthus species (including two subspecies of P. triangulum from distant localities). In contrast, no endosymbionts could be detected in the antennae of other genera within the subfamily Philanthinae (Aphilanthops, Clypeadon and Cerceris). On the basis of morphological, genetic and ecological data, ‘Candidatus Streptomyces philanthi’ is proposed. 16S rRNA gene sequence data are provided for 28 ecotypes of ‘Candidatus Streptomyces philanthi’ that reside in different host species and subspecies of the genus Philanthus.
    [Show full text]