Partner Country Coverage
Total Page:16
File Type:pdf, Size:1020Kb
IMaD’s Lessons Learned Luis Benavente MD, MS CORE’s webinar August 29, 2012 Insert title here Country Number of health Health workers trained in topics related to malaria diagnosis as of June 2012 total N facility visits trained Baseline Outreach How to TOT and On-the- job Database National External Malaria all assesmt. of training & perform supervi- training data entry, Malaria competency micros- Diagnostic support laboratory sors during mainte- Slide sets, assess- copy and capabilities supervision assessments OTSS OTSS nance NAMS ments RDTs Angola 5 6 2 18 12 0 0 12 26 70 Benin 11 409 2 30 1671 9 0 0 40 1,752 Burundi 18 0 0 0 0 0 0 0 0 0 DR Congo 0 0 0 23 0 0 0 0 74 97 Ethiopia 4 0 4 0 0 0 13 17 0 34 Ghana 37 1109 37 46 3704 10 10 6 40 3,853 Guinea Con. 11 0 11 0 0 0 0 0 20 31 Kenya 1192 52 1192 66 312 0 0 37 67 1,674 Liberia 8 200 8 35 975 11 0 7 141 1,177 Madagascar 50 31 50 18 18 0 0 0 23 109 Malawi 14 521 14 75 1132 3 0 0 64 1,288 Mali 5 172 5 24 1188 4 0 0 40 1,261 Nigeria 40 0 0 0 0 0 0 26 0 26 Zambia 6 278 6 12 1733 5 0 9 92 1,857 Total 1,401 2,778 1,331 347 10,745 42 23 114 627 13,229 Proportion of febrile episodes caused by Plasmodium falciparum Source: d’Acremont V, Malaria Journal, 2010 Better testing is needed to assess the impact of malaria control interventions Parasitemia prevalence after IRS, countries with at least biennial monitoring 80% Namibia-C Zimbabwe Moz-Maputo 70% 60% 50% 40% 30% 20% 10% 0% 1948 1950 1952 1954 1956 1958 1960 1962 1964 1966 1968 CORE’s Surviving Malaria Pathway ITNs - Bednet use Caretaker recognizes Caretaker Malaria fever/convulsions provides as Malaria adequate care Caretaker Wellness continues proper Improved health care and survival Informal community services IPT, malaria Caretaker seeks Provider gives outside care prophylaxis, quality care environmental improvements Formal community services Public Private Caretaker Referral Provider gives accepts level quality care referral facility Quality Assurance of malaria microscopy (MM) • EQA protocols harmonized with WHO, CDC • Regional accreditation done by AMREF with sponsorship from IMaD and IMaD logistical support (in Angola) • Slide banks being developed in Ghana and Ethiopia with TA from IMaD’s partner HWH • National Public Health Reference Laboratories being strengthened by IMaD • Refresher training in MM, performance testing • EQA protocols being institutionalized based on the Outreach Training& Support Supervision • Supervisory Data entry and analysis Completing National Malaria Slide sets in a collaborative way Ethiopia Nigeria Benin Ghana Equatorial Guinea Grading of malaria microscopy competence Current grading of highly qualified microscopists is based only on species identification and parasite quantitation. This may be adequate for Asia/pacific but it is not for SAA countries such as Nigeria: Distribution of 0 participants in 6 24 GFATM- sponsored MMRTs by level attained. 390 1 2 3 4 We propose a system based on parasite detection (telling apart negatives and positives), species ID and quantitation: Improvement in selected measurements of malaria microscopy (MM) competence among participants in multiple MM refresher trainings, Liberia 2009-2012 100% 92% Pretest first MMRT Postest last MMRT 90% 80% 70% 68% 61% 60% 52% 50% 44% 40% 30% 20% 10% 2% 0% PDetection SpeciesID Density Illustrative managerial decisions based on malaria microscopy competence Was this person competent in Yes Did this person have an excellent Yes Recommendation: have this person attend a sensitivity, specificity, parasite ID, posttest? training session for trainers and engage as trainer and counting? No and supervisor. No Recommendation: schedule this person for a refresher training and reassessment in two years. Is this person competent in sensitivity and Yes Recommendation: assign to examine and report on negatives and positives. Schedule specificity? for refresher training in species identification and counting. No Has this person gone through at least three Yes Recommendation: assign new tasks as he/she is not proficient refresher trainings? and is taking too much effort to retrain. No Recommendation: schedule this person for attendance at the next refresher training and OTSS. bold: under decision rule 90% italics: below average agreement below target (90%) for agreementdenominator less than 12 OTSS visits grouped in pairs Health Facility 23 34 45 56 CHD MONO-COUFFO 95% 100% 85% 80% CHD OUEME-PLATEAU 95% 100% 100% 100% CHD ZOU-COLLINES 100% 100% 100% 100% Cotonou 4 (Aidjedo) 95% 100% 100% 100% CS Abomey 71% 100% 100% 0% CS Adja Ouere 100% 100% 88% 94% CS Adolph Kolping D'Agbanto 100% 100% 95% 95% CS Alibori Gogounou 100% 100% 100% 100% CS Allada 100% 100% 100% 100% CS Godomey 100% 100% ##### ##### CSC ABGBANGNIZOUN 100% 100% ##### ##### CSC ABOMEY - CALAVI 100% 100% ##### ##### CSC ADJARA 100% 100% ##### ##### CSC ATHIEME 85% 80% ##### ##### CSC Ayelawadje 95% 100% 100% 100% CSC BANTE 89% 90% ##### ##### CSC Bembereke 100% 80% 80% 100% CSC Bohicon 40% 100% 83% 90% CSC BONOU 100% 100% ##### ##### CSC BOPA 81% 80% #### ##### CSC Boukoumbe 100% 95% 95% 100% CSC COPARGO 100% 100% ##### ##### CSC Cotonou 1 85% 85% 95% 100% CSC Dangbo 79% 93% 95% 100% bold: under decision rule 90% CSC Djakotomey 90% 100% 100% 100% italics: below average agreement CSC Djougou 100% 100% 100% 100% below target (90%) for agreementdenominator less than 12 CSC Dogbo 83% 95% 95% 90% OTSS visits grouped in pairs CSC Gbegamey 100% 100% 100% 100% Health Facility 23 34 45 56 CSC Glazoue 83% 100% 100% 100% CHD MONO-COUFFO 95% 100% 85% 80% CSC Grand Popo 95% 95% 90% 95% Quality Assurance ofCHD malariaOUEME-PLATEAU microscopy95% 100% 100% 100% (MM) using CSC Houenoussou 88% 100% 100% 100% CHD ZOU-COLLINES 100% 100% 100% 100% CSC Houeyogbe 70% 75% 80% 80% Cotonou 4 (Aidjedo) 95% 100% 100% 100% CSC Ifangni 95% 100% 100% 100% LQAS sampling at healthCS Abomey facility71% level,100% 100% Benin0% CSC KEROU 2009-201195% 100% ##### ##### CS Adja Ouere 100% 100% 88% 94% CSC Ketou 100% 100% 100% 95% CS Adolph Kolping D'Agbanto 100% 100% 95% 95% CSC Kpomasse 100% 86% 90% 100% Note: this analysis usesCS Alibori Gogounou slide as100% observation100% 100% 100% CSC NDALI unit 100% 100% ##### ##### CS Allada 100% 100% 100% 100% CSC OGANLA 75% 80% 60% 65% CS Godomey 100% 100% ##### ##### CSC Ouake 95% 100% 100% 100% CSC Ouesse 100% 100% 80% 80% CSC ABGBANGNIZOUN 100% 100% ##### ##### CSC OUIDAH 85% 90% ##### ##### CSC ABOMEY - CALAVI 100% 100% ##### ##### CSC Ouinhi 80% 85% 80% 80% CSC ADJARA 100% 100% ##### ##### CSC Parakou 100% 100% 100% 100% CSC ATHIEME 85% 80% ##### ##### CSC PEHUNCO 100% 90% 90% ##### CSC Ayelawadje 95% 100% 100% 100% bold: under decision rule 90% CSC Perere 70% 70% ##### ##### CSC BANTE 89% 90% ##### ##### CSC Seme Kpodji 80% 70% 75% 90% italics: below average agreement CSC Bembereke 100% 80% 80% 100% CSC Sô-Ava 77% 73% 88% 100% below target (90%) for agreementdenominator less than 12 CSC Bohicon 40% 100% 83% 90% CSC Tanguieta 95% 95% 94% 100% CSC BONOU 100% 100% ##### ##### CSC Toffo 91% 100% 100% 88% OTSS visits grouped in pairs CSC BOPA 81% 80% #### ##### CSC Tori-Bossito 100% 95% 95% 100% Health Facility 23 34 45 56 CSC Boukoumbe 100% 95% 95% 100% CSC Toviklin 85% 90% 95% 95% CSC COPARGO 100% 100% ##### ##### HZ Abomey Calavi 100% 100% 100% 100% CHD MONO-COUFFO 95% 100% 85% 80% CSC Cotonou 1 85% 85% 95% 100% HZ Adjohoun 100% 94% 90% 95% HZ Aplahoue 95% 90% 85% 90% CHD OUEME-PLATEAU 95% 100% 100% 100% CSC Dangbo 79% 93% 95% 100% CSC Djakotomey 90% 100% 100% 100% HZ Banikoara 90% 100% 100% 100% CHD ZOU-COLLINES 100% 100% 100% 100% CSC Djougou 100% 100% 100% 100% HZ Bassila 95% 100% 100% 100% HZ Come 90% 95% 90% 75% CSC Dogbo 83% 95% 95% 90% Cotonou 4 (Aidjedo) 95% 100% 100% 100% HZ Cove 100% 100% 100% 100% CSC Gbegamey 100% 100% 100% 100% HZ Dassa 95% 94% 94% 95% CS Abomey 71% 100% 100% 0% CSC Glazoue 83% 100% 100% 100% HZ Kandi Alibori 95% 100% 95% 95% CSC Grand Popo 95% 95% 90% 95% CS Adja Ouere 100% 100% 88% 94% HZ Klouekanme 90% 95% 95% 95% CSC Houenoussou 88% 100% 100% 100% CS Adolph Kolping D'Agbanto 100% 100% 95% 95% HZ Kouande 74% 95% 100% 100% CSC Houeyogbe 70% 75% 80% 80% HZ Lokossa 80% 85% 80% 70% CS Alibori Gogounou 100% 100% 100% 100% CSC Ifangni 95% 100% 100% 100% HZ Malanville 95% 100% 100% 100% CSC KEROU 95% 100% ##### ##### CS Allada 100% 100% 100% 100% HZ Natitingou 95% 95% 85% 80% CSC Ketou 100% 100% 100% 95% HZ Ouidah 85% 82% 56% 63% CS Godomey 100% 100% ##### ##### CSC Kpomasse 100% 86% 90% 100% HZ Pobe 100% 100% 100% 94% CSC NDALI 100% 100% ##### ##### HZ Sakete 90% 90% 100% 100% 100% 100% ##### ##### CSC ABGBANGNIZOUN CSC OGANLA 75% 80% 60% 65% HZ Savalou 100% 100% 100% 100% CSC ABOMEY - CALAVI 100% 100% ##### ##### CSC Ouake 95% 100% 100% 100% HZ Save - Ouesse 83% 79% 88% 94% CSC Ouesse 100% 100% 80% 80% HZ Suru Lere 90% 100% 100% 95% CSC ADJARA 100% 100% ##### ##### CSC OUIDAH 85% 90% ##### ##### HZ Tchaourou 90% 100% 100% 100% St. Michel 94% 100% 100% 95% CSC ATHIEME 85% 80% ##### ##### CSC Ouinhi 80% 85% 80% 80% Average agreement all labs 92% 94% 93% 94% CSC Ayelawadje 95% 100% 100% 100% CSC Parakou 100% 100% 100% 100% CSC PEHUNCO 100% 90% 90% ##### CSC BANTE 89% 90% ##### ##### CSC Perere 70% 70% ##### ##### CSC Bembereke 100% 80% 80% 100% CSC Seme Kpodji 80% 70% 75% 90% CSC Sô-Ava 77% 73% 88% 100% CSC Bohicon 40% 100% 83% 90% CSC Tanguieta 95% 95% 94% 100% CSC BONOU 100% 100% ##### ##### CSC Toffo 91% 100% 100% 88% CSC Tori-Bossito 100% 95% 95% 100% CSC BOPA 81% 80% #### ##### CSC Toviklin 85% 90% 95% 95% CSC Boukoumbe 100% 95% 95% 100%